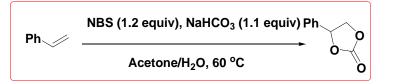
Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Supporting Information

for

Microwave Assisted Synthesis of Cyclic Carbonates from Olefins with Sodium Bicarbonates as the C1 Source Xiaoqing Yang,^{a,b} Jie Wu,^c Xianwen Mao,^a Timothy F. Jamison*^c and T. Alan Hatton*^a ^a Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA ^b College of Electronics and Information Engineering, Sichuan University, Chengdu, 610065, CHINA ^c Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

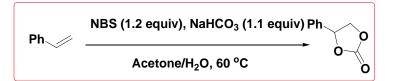
Table of Contents:


General Experimental	S2
Representative Batch Procedure for Cyclic Carbonate Formation	S 3
Representative Microwave Procedure for Cyclic Carbonate Formation	S 3
Reaction Mechanism Analysis	S 12
¹ H and ¹³ C Spectra	S 14

General Experimental Information:

All reactions in this project are not sensitive to air or moisture. Volumetric flasks were oven-dried and cooled in a desiccator prior to use. Anhydrous N-Bromosuccinimide (NBS), N,N-dimethylformamide (DMF), acetone and bicarbonates were purchased from Sigma-Aldrich and used without any further purification. All other commercial reagents or materials were used as received without purification: styrene (1a), 1-vinylnaphthalene (1b), 4-vinylanisole (1c), 4-acetoxystyrene (1d),1-chloro-4-vinylbenzene (1e),1-(trifluoromethyl)-3-vinylbenzene (1f), 4-fluorostyrene (1g), 3-vinylbenzaldehyde (1h), 1-octene (1j), hex-5-enenitrile (1k), methyl pent-4-enoate (1l), 4penten-1-ol (1m), hex-5-en-1-ol (1n), hex-5-en-2-one (1o), allyl phenyl ether (1p), cyclopentene (1q) and *trans*-3-hexene (1r). Thin layer chromatography (TLC) was performed on DC-Fertigplatten SIL G-25 UV₂₅₄ pre-coated TLC plates. The developed chromatogram was visualized by UV lamp or stained using one of the following: aqueous potassium permanganate (KMnO4) or ethanolic para-anisaldehyde. Selected purifications were performed using a Biotage Isolera One flash purification system, as noted in the experimental procedures.

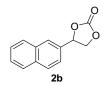
Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Varian Inova (500 MHz) spectrometers in deuterochloroform (CDCl₃) unless otherwise noted. Chemical shifts are recorded in parts per million (ppm) and are referenced to the centerline of deuterochloroform (δ 7.24 ppm ¹H NMR; δ 77.0 ppm ¹³C NMR). Data was recorded as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). Coupling constants (*J* values) are given in Hertz (Hz). Infrared (IR) spectra were recorded on a Bruker Daltonics APEXIV 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS) by Li Li of the Massachusetts Institute of Technology Department of Chemistry Instrumentation Facility.


Representative Batch Procedure for Cyclic Carbonate Formation:

In a microwave-transparent tube (CEM Discover and Explorer SP 35ml tube) containing a stir bar, NBS (4.8 mmol, 1.2 equiv) was mixed with 4 mL of water and 4 mL of acetone immediately followed by the addition of sodium bicarbonate (4.4 mmol, 1.1 equiv) and styrene (4 mmol, 1 equiv). The tube was sealed and the reaction mixture was stirred and placed in oil bath. The temperature was maintained at 60 °C for 18 hours, and the mixture was cooled down to room temperature and depressurized. Ethyl acetate was used to extract any organic material. Further purification was performed using a Biotage Isolera One flash purification system to afford cyclic carbonate **2a** (360.9 mg, 55% yield).

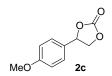
Representative Microwave Assisted Synthesis Procedure for Cyclic

Carbonate Formation:

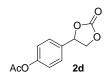

In a microwave-transparent tube (CEM Discover and Explorer SP 35ml tube) containing a stir bar, NBS (4.8 mmol, 1.2 equiv) was mixed with 4 mL of water and 4mL of acetone followed by the addition of sodium bicarbonate (4.4 mmol, 1.1 equiv) and styrene (4 mmol, 1 equiv). The tube was put into the CEM Discover and Explorer SP reactor. The temperature measured by the fiber optic sensor was set up at rising from 24°C to 60 °C in 10 minutes and maintained at 60 °C in 17 hours and 50 minutes. The reactor was cooled down to room temperature and depressurized. Ethyl acetate was used to extract any organic material. Further purification was performed using a

Biotage Isolera One flash purification system to afford cyclic carbonate **2a** (564.3 mg, 86% yield).

4-Phenyl-1, 3-dioxolan-2-one (2a)


Styrene (458 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2a** was isolated and analysis of the final sample indicated 86% yield (564.3 mg). IR (neat): 1784, 1670, 1160, 1050 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.44-7.36 (m, 3H), 7.36-7.28 (m, 2H), 5.64 (t, J = 8.0 Hz, 1H), 4.78 (t, J = 8.4 Hz, 1H), 4.30 (dd, J = 8.6, 7.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 154.9, 135.8, 129.8, 129.3, 125.9, 78.0, 71.2. HRMS (DART) *m/z* calcd for C₉H₁₂NO₃ [M+NH₄]⁺: 182.0812. Found: 182.0810.

4-(Naphthalen-2-yl)-1,3-dioxolan-2-one (2b)


1-Vinylnaphthalene (0.616g, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2b** was isolated and analysis of the final sample indicated 74% yield (633.6mg). IR (neat): 2925, 2855, 1795, 1712, 1165, 1058 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, *J* = 8.5Hz, 1H), 7.83 (m, 3H), 7.53 (m, 2H), 7.39(dd, *J* = 8.4 Hz, 2Hz, 1H), 5.79(t, *J* =8.0 Hz, 1H), 4.82(t, *J* = 8.5 Hz, 1H), 4.38(t, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): 154.9, 133.5, 132.8, 132.8, 129.4, 128.0, 127.7, 127.0, 126.9, 125.7, 122.3, 78.1, 71.0. HRMS (DART) *m*/*z* calcd for C₁₃H₁₁O₃ [M+H]⁺: 215.0708. Found: 215.0704.

4

4-(4-Methoxyphenyl)-1,3-dioxolan-2-one (2c)

4-Vinylanisole (532 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2c** was isolated and analysis of the final sample indicated 68% yield (527.8mg). IR (solid film): 2962, 2925, 1783, 1250, 1161, 1050 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): 7.28 (m, 2H), 6.93 (m, 2H), 5.60 (t, J = 8.0 Hz, 1H), 4.73 (dd, J = 8.5, 8.0 Hz, 1H), 4.32 (t, J = 8.0 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): 160.7, 154.9, 127.8, 127.3, 114.5, 78.1, 71.1, 55.4. HRMS (DART) *m*/*z* calcd for C₁₀H₁₄NO₄ [M+NH₄]⁺: 212.0923. Found: 212.0918.

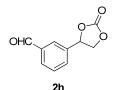
4-(2-Oxo-1,3-dioxolan-4-yl)phenyl acetate (2d)

4-Acetoxystyrene (612 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2d** was isolated and analysis of the final sample indicated 82% yield (728.3mg). IR (solid film): 1781, 1748, 1510, 1370, 1193, 1157, 1068, 1012 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): 7.28 (d, J = 9 Hz, 2H), 6.93 (d, J = 9 Hz, 2H), 5.60 (t, J = 8.0 Hz, 1H), 4.73 (dd, J = 9.0, 8.5 Hz, 1H), 4.33 (dd, J = 8.5, 8.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): 169.1, 154.6, 151.3, 133.1, 127.1, 121.3, 77.3, 70.9, 20.9. HRMS (DART) *m*/*z* calcd for C₁₁H₁₄NO₅ [M+NH4]⁺: 240.0872. Found: 240.0863.

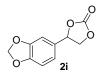
4-(3-Chlorophenyl)-1,3-dioxolan-2-one (2e)

1-Chloro-4-vinylbenzene (480 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2e** was isolated and analysis of the final sample indicated 78% yield (617.8mg). IR (solid film): 3577, 2966, 2126, 1789, 1489, 1162, 1048, 955 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.37 (m, 2H), 7.26 (m, 2H), 5.64 (t, *J* = 8.0 Hz, 1H), 4.78 (t, *J* = 8.0 Hz, 1H), 4.27 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (125MHz, CDCl₃): δ 154.5, 135.5, 134.2, 129.3, 127.2, 77.2, 70.9. HRMS (DART) *m/z* calcd for C₉H₈ClO₃ [M+H]⁺: 199.0162. Found: 199.0156.

4-(3-(Trifluoromethyl)phenyl)-1,3-dioxolan-2-one (2f)

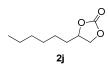

1-(Trifluoromethyl)-3-vinylbenzene (592 *u*L, 4 mmol) was added according to the representative microwave procedure and DMF/H₂O as co-solvent instead of acetone/H₂O to improve the reaction conversion. Following the general procedure, compound **2f** was isolated and analysis of the final sample indicated 70% yield (649.7mg). IR (solid film): 2923, 1793, 1326, 1066, 902 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.67(d, *J* = 7.0Hz, 1H), 7.56 (m, 3H), 5.74(t, *J* = 8.0 Hz, 1H), 4.85(t, *J* = 8.5 Hz, 1H), 4.31 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 154.4, 136.9, 131.6 (q), 129.9, 129.0, 126.4, 123.5 (q), 122.6, 77.1, 70.9 (q). HRMS (DART) *m*/*z* calcd for C₁₀H₇F₃NaO₃ [M+Na]⁺: 255.0245. Found: 255.0255.

4-(4-Fluorophenyl)-1,3-dioxolan-2-one (2g)

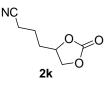

4-Fluorostyrene (475 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2g** was isolated and analysis of the final sample indicated 69% yield (502.4mg). IR (solid film): 1780,

1602, 1507, 1329, 1215, 1158, 1052 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.33 (m, 2H), 7.08 (m, 2H), 5.64 (t, *J* = 8.5 Hz, 1H), 4.77 (t, *J* = 8.5 Hz, 1H), 4.28 (t, *J* = 8.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 164.2, 162.2, 154.6, 131.5, 128.0, 116.2, 77.4, 71.0. HRMS (DART) *m*/*z* calcd for C₉H₁₁FNO₃ [M+NH₄]⁺: 200.0723. Found: 200.0707.

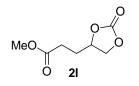
3-(2-Oxo-1,3-dioxolan-4-yl)benzaldehyde (2h)


3-Vinylbenzaldehyde (505 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2h** was isolated and analysis of the final sample indicated 63% yield (483.9mg). IR (solid film): 1791, 1696, 1607, 1381, 1161, 1068 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 10.03 (s, 1H), 7.92 (m, 2H), 7.87 (s, 2H), 5.76 (t, *J* = 8.5 Hz, 1H), 4.86 (dd, *J* = 8.5, 8.0 Hz, 1H), 4.34 (dd, *J* =9.0, 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 191.4, 154.4, 137.1, 136.8, 131.5, 131.0, 130.0, 126.4, 77.3, 70.9. HRMS (DART) *m/z* calcd for C₁₀H₉O₄ [M+H]⁺: 193.0501. Found: 193.0504.

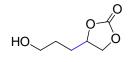
4-(Benzo[d][1,3]dioxol-5-yl)-1,3-dioxolan-2-one (2i)


5-Vinylbenzo[d][1,3]dioxole (0.592 g, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2i** was isolated and analysis of the final sample indicated 52% yield (433.5mg). IR (solid film): 2920, 1787, 1447, 1247, 1162, 1033, 923 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 6.8 (m, 3H), 5.96 (s, 2H), 5.55 (t, *J* = 8.0 Hz, 1H), 4.71 (t, J = 8.5 Hz, 1H), 4.27 (t, *J* = 8.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 154.7, 148.7, 148.4, 129.1,

120.4, 108.5, 106.1, 101.5, 78.1, 71.0. HRMS (DART) *m/z* calcd for C₁₀H₉O₅ [M+H]⁺: 209.0450. Found: 209.0447.

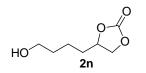

4-Hexyl-1,3-dioxolan-2-one (2j)

1-Octene (1.56 mL, 10 mmol, 1 equiv) was added according to the representative microwave procedure. Following the general procedure, compound **2j** was isolated and analysis of the final sample indicated 69% yield (320.3mg). IR (neat): 2928, 2859, 1788, 1384, 1165, 1059, 774 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 4.67 (dd, *J* = 7.5, 5.5 Hz, 1H), 4.50 (t, *J* = 8.1 Hz, 1H), 4.04 (dd, *J* = 8.3, 7.3 Hz, 1H), 1.79-1.73 (m, 1H), 1.68-1.61 (m, 1H), 1.45-1.27 (m, 8H), 0.86 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 155.1, 77.1, 69.4, 33.9, 31.5, 28.8, 24.3, 22.5. HRMS (DART) *m*/*z* calcd for C₉H₂₀NO₃ [M+NH₄]⁺: 190.1438. Found: 190.1438.

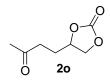

4-(2-Oxo-1,3-dioxolan-4-yl)butanenitrile (2k)

Hex-5-enenitrile (454 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2k** was isolated and analysis of the final sample indicated 83% yield (514.8mg). IR (solid film): 2927 , 2247, 1781, 1390, 1164, 1057 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 4.71 (m,1H), 4.55(t, *J* = 8.5 Hz, 1H), 4.06 (t, *J* =7.0 Hz, 1H), 2.42 (m, 2H), 1.85(m, 3H), 1.74 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 154.6, 118.9, 75.9, 69.0, 32.5, 20.8, 16.6. HRMS (DART) *m*/*z* calcd for C₇H₁₀NO₃ [M+H]⁺: 156.0661. Found: 156.0661.

Methyl 3-(2-oxo-1,3-dioxolan-4-yl)propanoate (2l)


Methyl pent-4-enoate (0.456 g, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2l** was isolated and analysis of the final sample indicated 85% yield (591.8mg). IR (solid film): 1786, 1729, 1360, 1158, 1059, 980 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 4.77 (m, 1H), 4.54 (t, *J* = 8.1 Hz, 1H), 4.07 (dd, *J* = 6.9, 15.6 Hz, 1H), 3.67 (s, 3H), 2.51 (m, 2H), 2.03 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 172.4, 154.6, 75.8, 69.2, 51.8, 28.9. HRMS (DART) *m*/*z* calcd for C₇H₁₄NO₅ [M+NH₄]⁺: 192.0872. Found: 192.0855.

2m


4-(3-Hydroxypropyl)-1,3-dioxolan-2-one (2m)

4-Penten-1-ol (395 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2m** was isolated and analysis of the final sample indicated 65% yield (379.8mg). IR (solid film): 2922, 1780, 1707, 1388, 1171, 1053cm⁻¹. ¹H NMR (500 MHz, CDCl₃): 4.77 (m, 1H), 4.55(t, J = 8.0 Hz, 1H), 4.09 (t, J = 7.0 Hz, 1H), 3.71 (m, 2H), 1.87 (m, 2H), 1.68 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): 155.0, 76.9, 69.4, 61.7, 30.6, 27.4. HRMS (DART) *m/z* calcd for C₆H₁₄NO₄ [M+NH₄]⁺: 164.0923. Found: 164.0926.

4-(4-Hydroxybutyl)-1,3-dioxolan-2-one (2n)

Hex-5-en-1-ol (480 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2n** was isolated and analysis of the final sample indicated 84% yield (537.8mg). IR (solid film): 3414, 2932, 2868, 1775, 1165, 1055 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): 4.70 (m, 1H), 4.51(t, J = 8.0 Hz, 1H), 4.06 (t, J = 7.0 Hz, 1H), 3.64 (t, J = 5.5 Hz, 2H), 1.81 (m, 1H), 1.73 (m, 1H), 1.64 (br, 1H), 1.56(m, 3H), 1.46(m, 1H). ¹³C NMR (125 MHz, CDCl₃):155.2, 77.0, 69.3, 61.9, 33.4, 31.8, 20.7. HRMS (DART) *m*/*z* calcd for C_{7H16}NO4 [M+NH4]⁺: 178.1079. Found: 178.1070.

4-(3-Oxobutyl)-1,3-dioxolan-2-one (20)

Hex-5-en-2-one (480 mL, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **20** was isolated and analysis of the final sample indicated 83% yield (524.8mg). IR (solid film): 2920, 1782, 1394, 1159, 1055 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 4.72 (m, 1H), 4.52 (dd, J = 8.5, 8.0 Hz, 1H), 4.04 (dd, J = 9.0, 7.0 Hz, 1H), 2.64 (t, J = 7.0Hz, 2H), 2.14 (s, 3H), 2.01 (m, 1H), 1.87 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 206.8, 154.7, 76.0, 69.4, 38.0, 29.9, 27.6. HRMS (DART) *m*/*z* calcd for C₇H₁₄NO₄ [M+NH4]⁺: 176.0923. Found: 176.0914.

4-(Phenoxymethyl)-1,3-dioxolan-2-one (2p)

Allyl phenyl ether (545 uL, 4 mmol) was added according to the representative microwave procedure and DMF/H₂O as co-solvent instead of acetone/H₂O to improve the reaction conversion. Following the general procedure, compound **2p** was

isolated and analysis of the final sample indicated 55% yield (426.9mg). IR (solid film): 2927, 1783, 1600, 1490, 1396, 1161, 1081, 1009 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.34-7.20 (m, 2H), 7.03-6.94 (m, 1H), 6.93-6.82 (m, 2H), 5.04-4.98 (m, 1H), 4.60 (t, *J* = 8.4 Hz, 1H), 4.51 (dd, *J* = 8.5, 5.9, 1H), 4.21 (dd, *J* = 10.6, 4.2 Hz, 1H), 4.12 (dd, *J* = 10.6, 3.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 157.8, 154.7, 129.7, 122.0, 114.6, 74.1, 66.9, 66.3. HRMS (DART) *m*/*z* calcd for C₁₀H₁₄NO4 [M+NH₄]⁺: 212.0917. Fou/nd: 212.0916.

Cis-hexahydrobenzo[d][1,3]dioxol-2-one (2q)

Cyclopentene (404 *u*L, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound 2q was isolated and analysis of the final sample indicated 49% yield (251.0mg). IR (solid film): 2970, 1784, 1717, 1373, 1165, 1043, 929 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): 5.08 (dd, J = 4.0, 2.0 Hz, 1H), 2.14 (m, 2H), 1.78 (m, 2H), 1.64 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): 155.4, 81.8, 33.2, 21.5. HRMS (DART) m/z calcd for C₆H₁₂NO₃ [M+NH₄]⁺: 146.0817. Found: 146.0817.

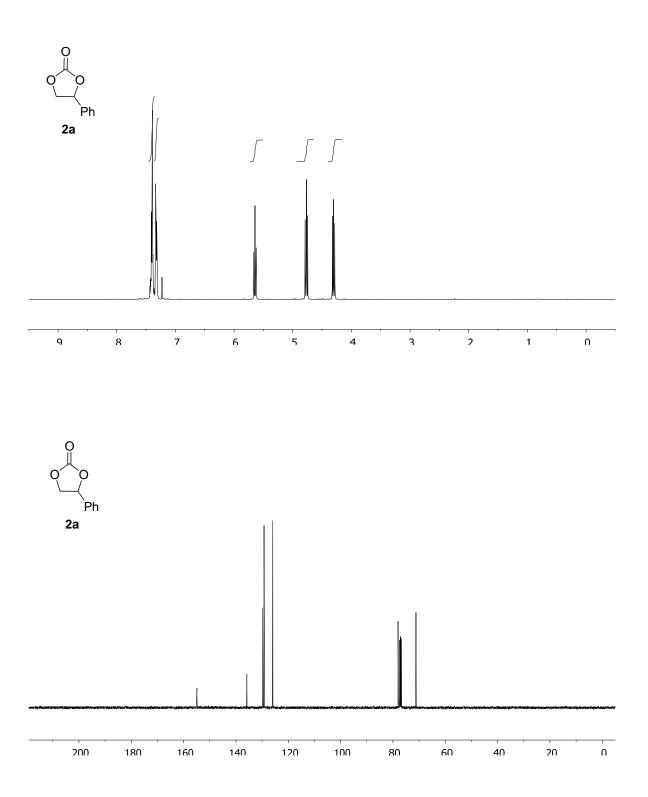
trans-4,5-Diethyl-1,3-dioxolan-2-one (2r)

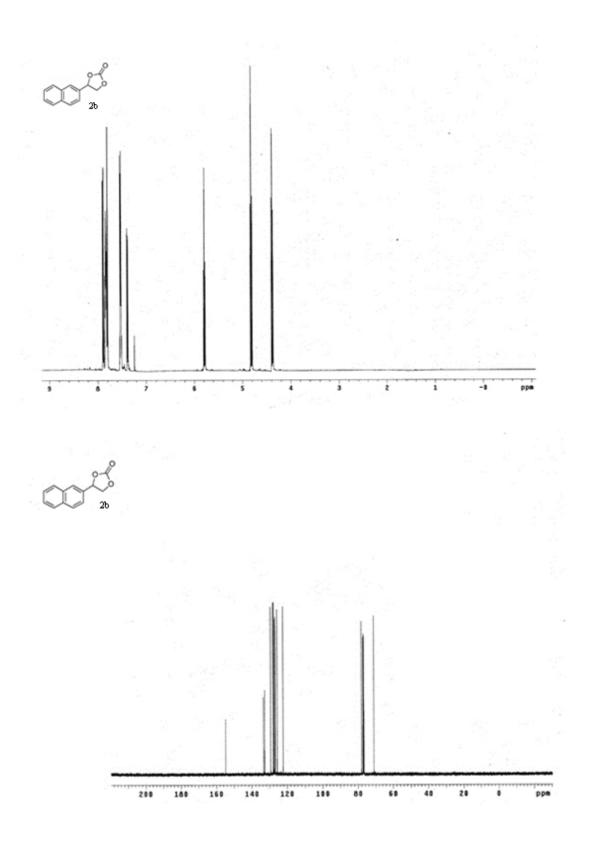
trans-3-Hexene (480 mL, 4 mmol) was added according to the representative microwave procedure. Following the general procedure, compound **2r** was isolated and analysis of the final sample indicated 86% yield (495.6mg). IR (solid film): 2936, 2864, 1786, 1200, 1052, 965 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 4.10 (s, 2H), 1.88 (m, 2H), 1.75 (m, 2H), 1.63 (m, 2H), 1.5 (m, 3H), 1.38 (m, 1H). ¹³C NMR (125 MHz,

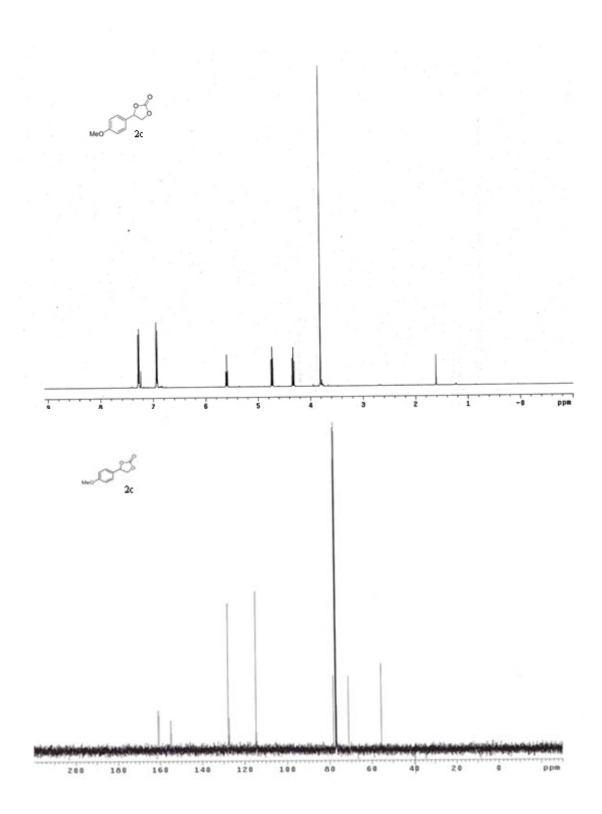
CDCl₃): δ 154.6, 83.2, 74.4, 35.4, 24.4, 22.2. HRMS (DART) *m*/*z* calcd for C₈H₁₃O₃ [M+NH₄]⁺: 157.0865. Found: 157.0859.

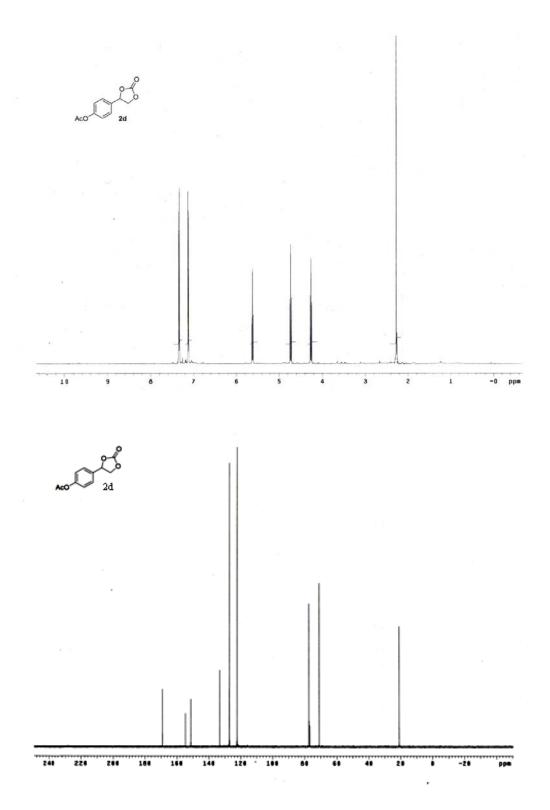
Experiments of Reaction Mechanism Analysis

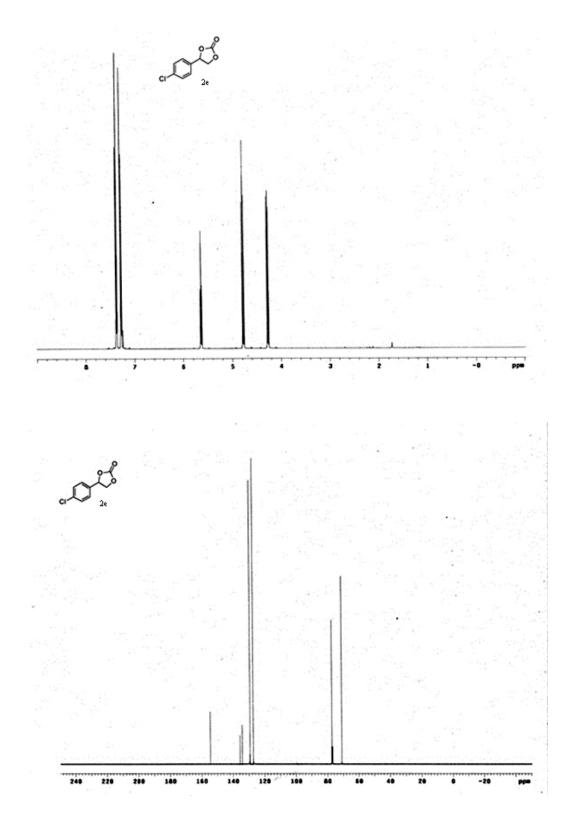
In order to understand the reaction process, we investigated the product distribution at different time and temperature scales. The experiment results were summarized Table S1 and Table S2.


Entry	Condition		Product Yield			
		Time	Ph Br OH	Ph O	Ph O O O	РһОн ОН
A1	Microwave	10min	73%	15%	9%	0%
A2	Oil bath	10min	95%	0%	0%	0%
B1	Microwave	30min	51%	28%	20%	0%
B2	Oil bath	30min	63%	23%	11%	0%
C1	Microwave	60min	10%	40%	48%	0%
C2	Oil bath	60min	33%	41%	24%	0%
D1	Microwave	180min	5%	30%	62%	0%
D2	Oil bath	180min	8%	47%	36%	0%
E1	Microwave	450min	0%	11%	78%	0%
E2	Oil bath	450min	0%	45%	37%	5%
F1	Microwave	1080min	u 0%	0%	86%	0%
F2	Oil bath	1080min		31%	48%	12%


Table S1 The influence of reaction time (in Acetone/H₂O, 60 °C)


G	No heating (24 °C)	360min	85%	10%	3%	0%
Η	No heating (24 °C)	30min	100%	0%	0%	0%


Entry	Condition	Temp.	Product Yield			
			Ph Br OH	Ph O	Ph O O O	
A	Microwave	30 °C	89%	5%	6%	
В	Microwave	60 ⁰ C	20%	29%	45%	
С	Microwave	60 ⁰ C	20%	29%	45%	
D	Microwave	80 ⁰ C	10%	10%	65%	
Ε	Microwave	100 °C	20%	0%	70%	
F	No heating	24 °C	0%	60%	0%	


C c • .

