Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information for

Solvent and Electrolyte Effects on $Ni(P^R_2N^{R'}_2)_2$ -Catalyzed Electrochemical Oxidation of Hydrogen

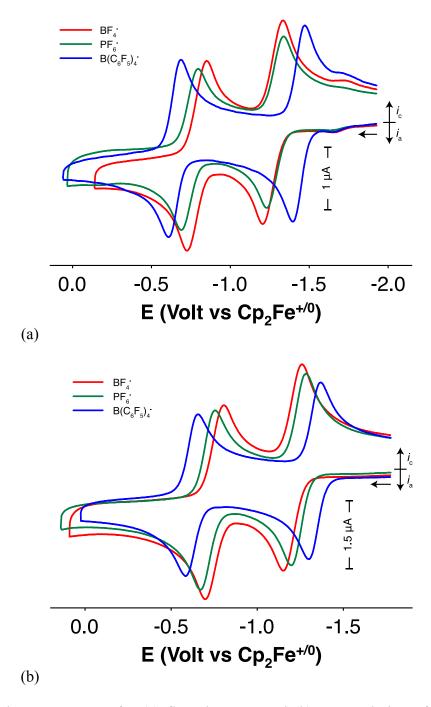
Ryan M. Stolley, Jonathan M. Darmon, and Monte L. Helm*
Correspondence to monte.helm@pnnl.gov

PDF file includes:

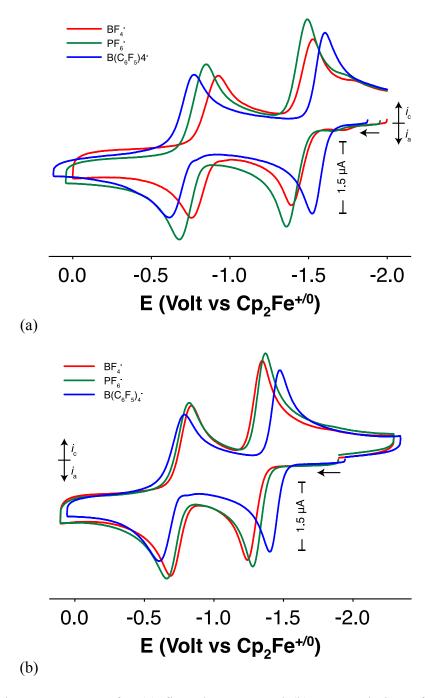
Table of Contents Materials and Methods

Table of Contents

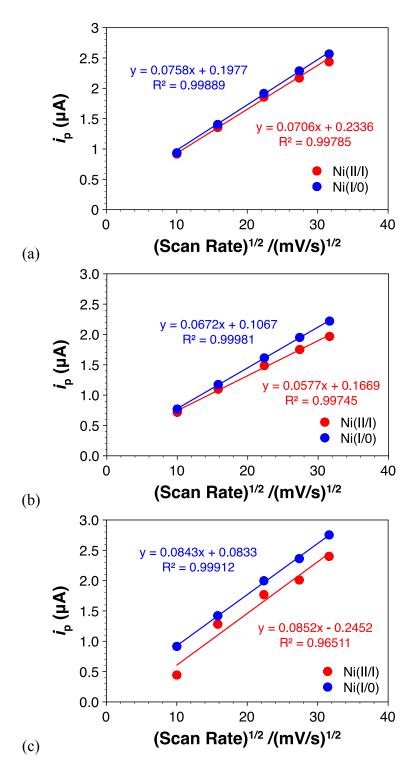
Materials and Methods	S3
Materials	S3
Instrumentation	S3
Figure S1. Cyclic volatommograms of fluorobenzene and THF	
solutions of $Ni(P^{Cy}_2N^{Bn}_2)_2$ as a function of supporting electrolyte	S4
Figure S2. Cyclic volatommograms of fluorobenzene and THF	
solutions of $Ni(P^{Cy_2}N^{tBu_2})_2$ as a function of supporting electrolyte	S5
Figure S3. Plot of the peak current (i_p) versus (scan rate) ^{1/2} for Ni($P^{Cy}_2N^{Bn}_2$) ₂ in fluorobenzene.	S6
Figure S4. Plot of the peak current (i_p) versus (scan rate) ^{1/2} for Ni($P^{Cy}_2N^{Bn}_2$) ₂ in THF	S7
Figure S5. Plot of the peak current (i_p) versus (scan rate) ^{1/2} for Ni($P^{Cy}_2N^{Bn}_2$) ₂ in PhCN	S8
Figure S6. Plot of the peak current (i_p) versus (scan rate) ^{1/2} for Ni($P^{Cy}_2N^{tBu}_2$) ₂ in fluorobenzene	S9
Figure S7. Plot of the peak current (i_p) versus (scan rate) ^{1/2} for Ni($P^{Cy}_2N^{tBu}_2$) ₂ in THF	S10
Figure S8. Identification of variables needed to calculate $k_{\rm obs}$.	S11
Figure S9. Cyclic volatommograms of $Ni(P^{Cy}_2N^{Bn}_2)_2$ in fluorobenzene upon addition of nBuNH_2 .	S12
Figure S10. Cyclic volatommograms of $Ni(P^{Cy}_2N^{Bn}_2)_2$ in THF upon addition of nBuNH_2 .	S13
Figure S11. Cyclic volatommograms of $Ni(P^{Cy}_2N^{Bn}_2)_2$ in PhCN upon addition of nBuNH_2 .	S14
Figure S12. Cyclic volatommograms of Ni(P ^{Cy} ₂ N ^{Bn} ₂) ₂ as a function of scan rate in THF with ⁿ BuN	NH ₂ . S15
Figure S13. Cyclic volatommograms of Ni(P ^{Cy} ₂ N ^{tBu} ₂) ₂ in fluorobenzene upon addition of ⁿ BuNH ₂	. S16
Figure S14. Cyclic volatommograms of $Ni(P^{Cy}_2N^{tBu}_2)_2$ in THF upon addition of "BuNH ₂	S17
Figure S15. Plot of the catalytic current (i_{cat}) versus the concentration of ${}^{n}BuNH_{2}$ for Ni(${P^{Cy}}_{2}N^{Bn}_{2}$)	2. S18
Figure S16. Plot of the catalytic current (i_{cat}) versus the concentration of ${}^{n}BuNH_{2}$ for Ni(${}^{Cy_{2}}N^{tBu_{2}}$)) ₂ . S19
References	S20

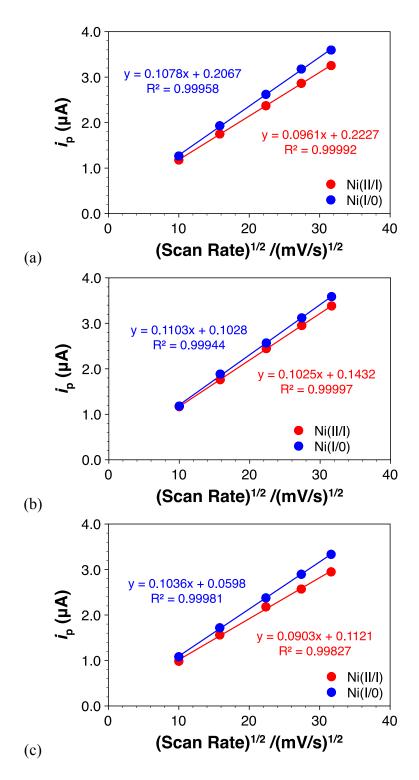

Materials and Methods

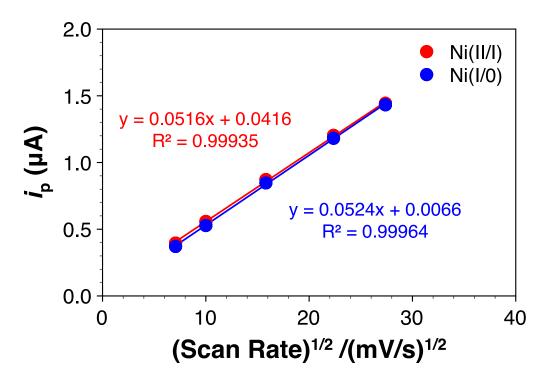
Materials

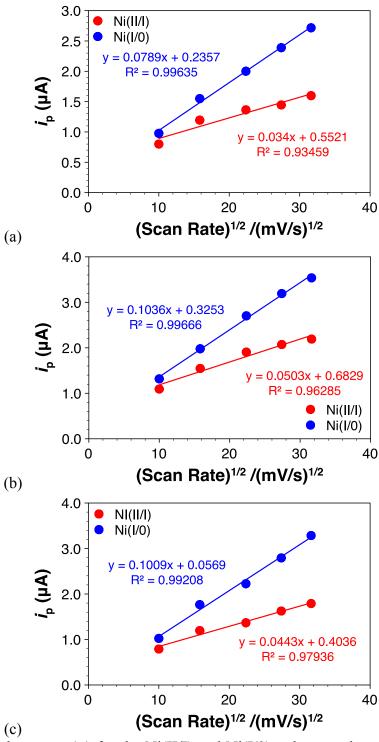

All manipulations were carried out using standard vacuum line, Schlenk and inert atmosphere glovebox techniques. Solvents were purified by passage through neutral alumina using an Innovative Technology, Inc., PureSolvTM solvent purification system. Water was dispensed from a Millipore MilliQ purifier ($\rho = 18.2 \text{ M}\Omega\cdot\text{cm}$) and was degassed using three freeze-pump-thaw cycles prior to use. All amines used for electrocatalysis were dried over KOH or CaH₂, degassed, distilled under vacuum, and stored in a nitrogen-filled glovebox. Both Ni($P^{Cy}_2N^{Bn}_2$)₂ (1) and Ni($P^{Cy}_2N^{tBu}_2$)₂ (2) were prepared using literature procedures.

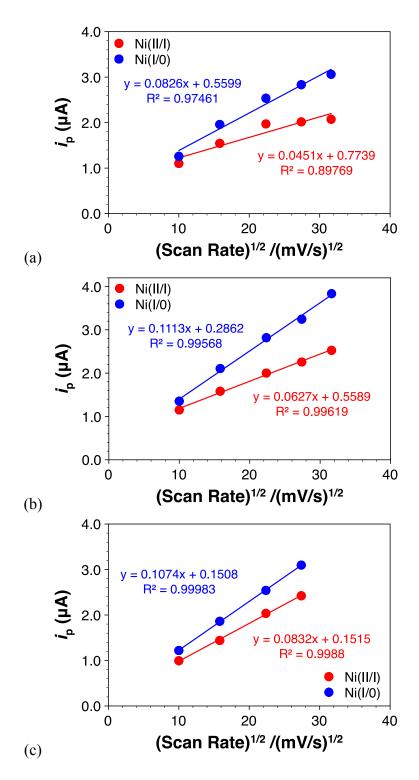
Instrumentation


All electrochemical procedures were conducted at ambient temperature, 23 °C, under dinitrogen using either standard Schlenk conditions or a Vacuum Atmospheres drybox. A standard three-electrode configuration was employed in conjunction with a CH Instruments potentiostat interfaced to a computer with CH Instruments 700 D software. All voltammetric scans were recorded using glassy-carbon working electrode disks of 1 mm diameter (Cypress Systems EE040). A glassy-carbon rod (Structure Probe, Inc.) was used as the auxiliary electrode. A platinum wire (Alfa-Aesar) suspended in a solution of the electrolyte and separated from the analyte solution by a Vycor frit (CH Instruments 112) served as a pseudo-reference electrode. All glassware for electrochemical experiments was oven dried overnight and allowed to cool to room temperature before use. [Cp*2Co][PF6] and [Cp2Co][PF6] were used as an internal standard, and all potentials reported within this work are referenced to the ferrocenium/ferrocene couple at 0.00 V. Bases were measured and transferred to electrochemical solutions via gas-tight syringes.


Figure S1. Cyclic volatommograms of a (a) fluorobenzene and (b) THF solution of $Ni(P^{Cy}_2N^{Bn}_2)_2$ utilizing $[^nBu_4N][BF_4]$ (red), $[^nBu_4N][PF_6]$ (green), and $[^nBu_4N][B(C_6F_5)_4]$ (blue) as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, **scan rate**. Potentials are referenced to $Cp_2Fe^{+/0}$.


Figure S2. Cyclic volatommograms of a (a) fluorobenzene and (b) THF solution of $Ni(P^{Cy_2}N^{tBu_2})_2$ utilizing $[^nBu_4N][BF_4]$ (red), $[^nBu_4N][PF_6]$ (green), and $[^nBu_4N][B(C_6F_5)_4]$ (blue) as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, **scan rate**. Potentials are referenced to $Cp_2Fe^{+/0}$.


Figure S3. Plot of the peak current (i_p) for the Ni(II/I) and Ni(I/0) redox couples of Ni($P^{Cy}_2N^{Bn}_2$)₂ versus the square root of the scan rate in fluorobenzene solution using (a) $[^nBu_4N][BF_4]$, (b) $[^nBu_4N][PF_6]$, and (c) $[^nBu_4N][B(C_6F_5)_4]$ as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte.


Figure S4. Plot of the peak current (i_p) for the Ni(II/I) and Ni(I/0) redox couples of Ni($P^{Cy}_2N^{Bn}_2$)₂ versus the square root of the scan rate in THF solution using (a) [nBu_4N][BF₄], (b) [nBu_4N][PF₆], and (c) [nBu_4N][B(C₆F₅)₄] as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte.

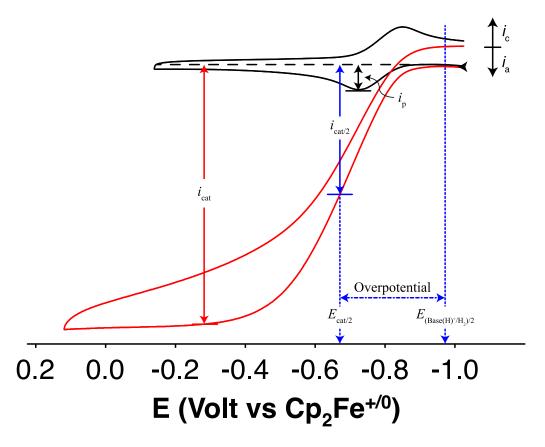
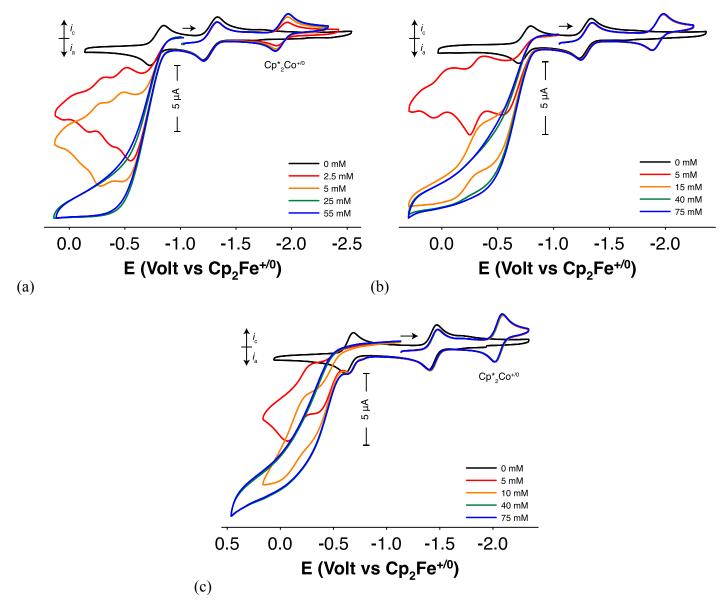
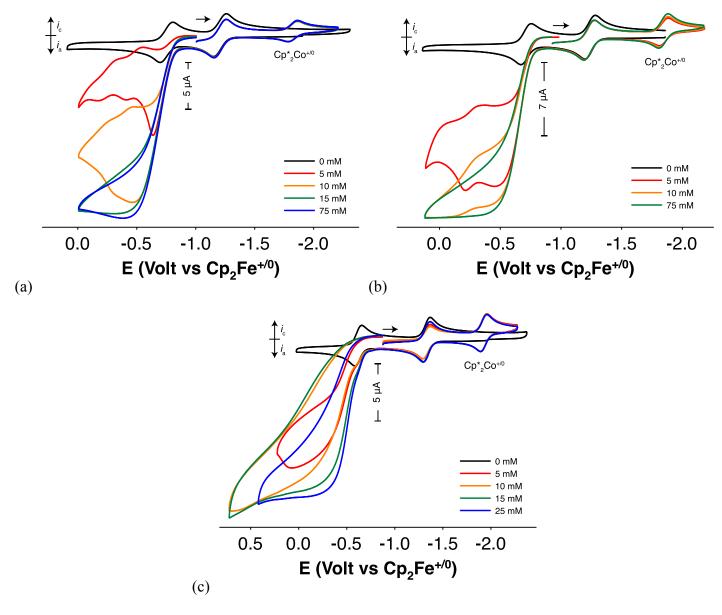

Figure S5. Plot of the peak current (i_p) for the Ni(II/I) and Ni(I/0) redox couples of Ni($P^{Cy_2}N^{Bn_2}$)₂ versus the square root of the scan rate in benzonitrile solution using $[^nBu_4N][PF_6]$ as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte.

Figure S6. Plot of the peak current (i_p) for the Ni(II/I) and Ni(I/0) redox couples of Ni($P^{Cy}_2N^{tBu}_2$)₂ versus the square root of the scan rate in fluorobenzene solution using (a) [nBu_4N][BF₄], (b) [nBu_4N][PF₆], and (c) [nBu_4N][B(C₆F₅)₄] as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte.

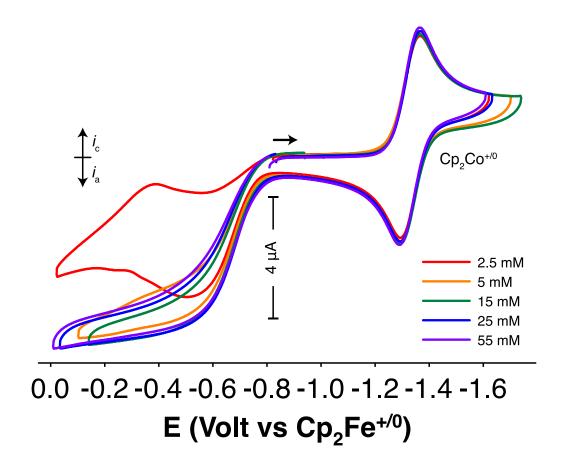
Figure S7. Plot of the peak current (i_p) for the Ni(II/I) and Ni(I/0) redox couples of Ni($P^{Cy}_2N^{tBu}_2$)₂ versus the square root of the scan rate in THF solution using (a) [nBu_4N][BF₄], (b) [nBu_4N][PF₆], and (c) [nBu_4N][B(C₆F₅)₄] as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte.

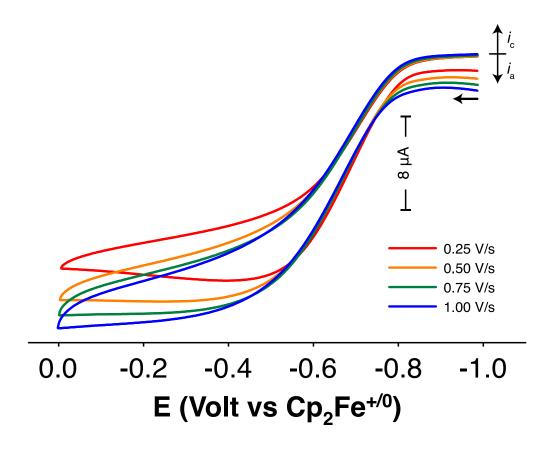

Figure S8. Cyclic voltammograms of a fluorobenzene solution of $Ni(P^{Cy}_2N^{Bn}_2)_2$ (*black*) and subsequent current enhancement upon addition of 55 mM n BuNH₂ (*red*).

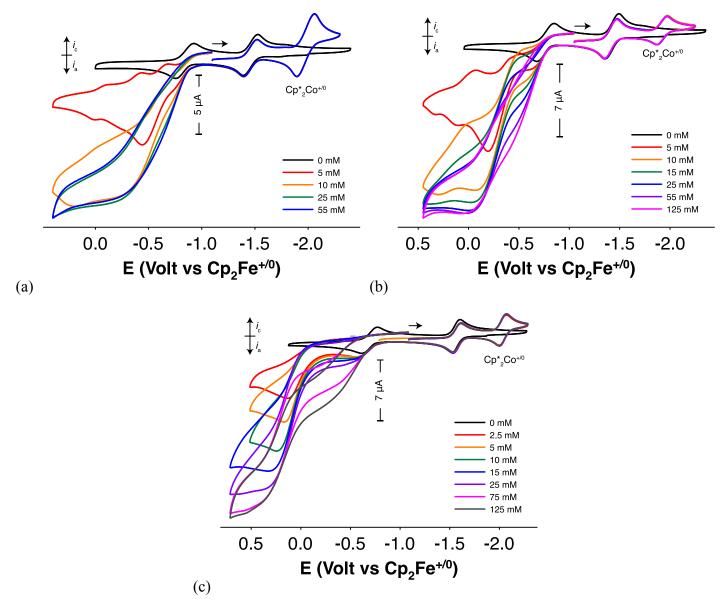
Determination of turnover frequency (k_{obs}):

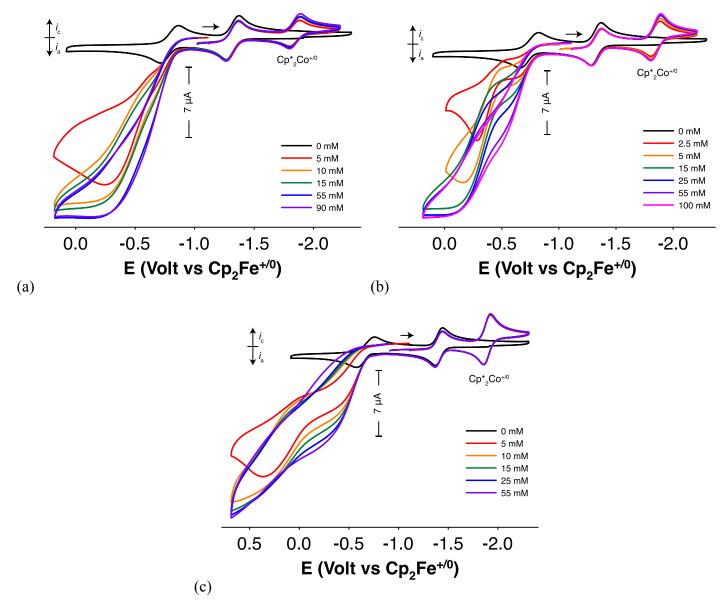

Turnover frequencies (k_{obs}) were determined from the ratio of i_{cat}/i_p using eq. 1, where n is the number of electrons (2 for H₂ oxidation), R is the gas constant (8.314 J K⁻¹ mol⁻¹), F is Faraday's constant (9.65 × 10⁴ C/mol), T is the temperature (298 K), and v is the scan rate in V/s. The equation was simplified for hydrogen oxidation in eq. 2.

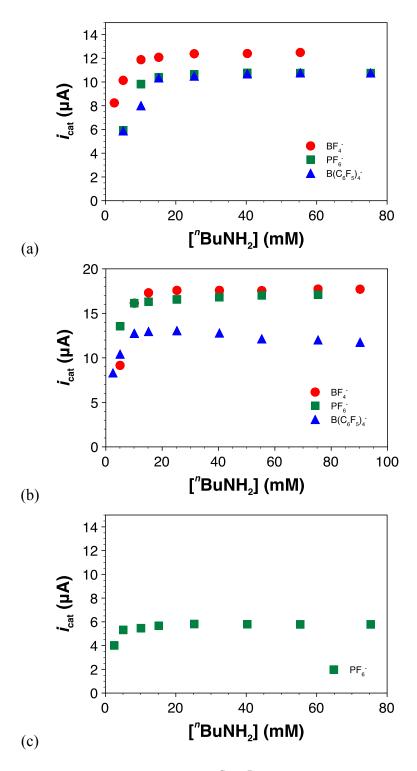
$$k_{obs} = \left(\frac{0.4463}{n}\right)^{2} \cdot \left(\frac{F\nu}{RT}\right) \cdot \left(\frac{i_{cat}}{i_{p}}\right)^{2}$$


$$k_{obs} = 1.94 V^{-1} \cdot \nu \cdot \left(\frac{i_{cat}}{i_{p}}\right)^{2}$$
(eq. 1)


Figure S9. Cyclic volatommograms of a fluorobenzene solution of $Ni(P^{Cy_2}N^{Bn_2})_2$ upon addition of nBuNH_2 using (a) $[{}^nBu_4N][BF_4]$, (b) $[{}^nBu_4N][PF_6]$, and (c) $[{}^nBu_4N][B(C_6F_5)_4]$ as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, 250 mV/s. Potentials are referenced to $Cp_2Fe^{+/0}$.


Figure S10. Cyclic volatommograms of a THF solution of $Ni(P^{Cy}_2N^{Bn}_2)_2$ upon addition of nBuNH_2 using (a) $[{}^nBu_4N][BF_4]$, (b) $[{}^nBu_4N][PF_6]$, and (c) $[{}^nBu_4N][B(C_6F_5)_4]$ as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, 250 mV/s. Potentials are referenced to $Cp_2Fe^{+/0}$.


Figure S11. Cyclic volatommograms of a PhCN solution of $Ni(P^{Cy}_2N^{Bn}_2)_2$ upon addition of nBuNH_2 using $[{}^nBu_4N][PF_6]$ as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, 250 mV/s. Potentials are referenced to $Cp_2Fe^{+/0}$.


Figure S12. Cyclic volatommograms of a THF solution of Ni($P^{Cy}_2N^{Bn}_2$)₂ as a function of scan rate. Conditions: 0.8 mM [Ni], 0.2 M [nBu_4N][BF₄], 90 mM nBu_1NH_2 . Potentials are referenced to $Cp_2Fe^{+/0}$.

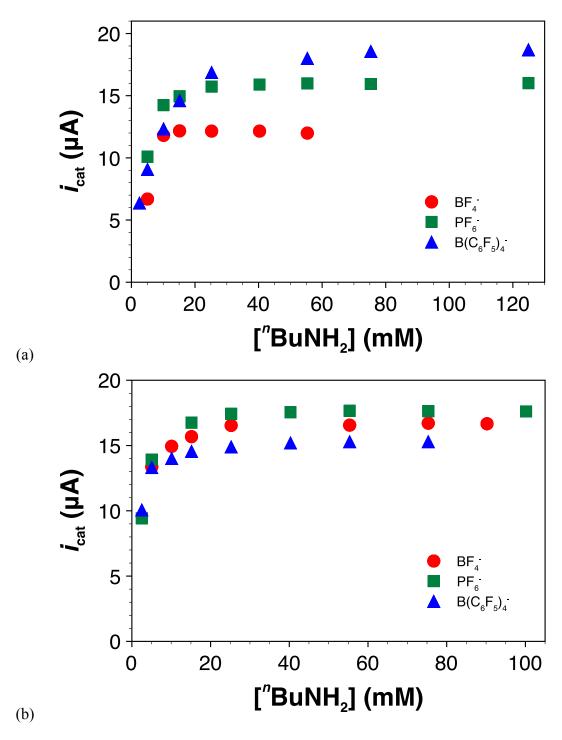

Figure S13. Cyclic volatommograms of a fluorobenzene solution of $Ni(P^{Cy}_2N^{tBu}_2)_2$ upon addition of nBuNH_2 using (a) $[{}^nBu_4N][BF_4]$, (b) $[{}^nBu_4N][PF_6]$, and (c) $[{}^nBu_4N][B(C_6F_5)_4]$ as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, 250 mV/s. Potentials are referenced to $Cp_2Fe^{+/0}$.

Figure S14. Cyclic volatommograms of a THF solution of $Ni(P^{Cy}_2N^{tBu}_2)_2$ upon addition of nBuNH_2 using (a) $[{}^nBu_4N][BF_4]$, (b) $[{}^nBu_4N][PF_6]$, and (c) $[{}^nBu_4N][B(C_6F_5)_4]$ as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, 250 mV/s. Potentials are referenced to $Cp_2Fe^{+/0}$.

Figure S15. Plot of the catalytic current (i_{cat}) of Ni($P^{Cy}_2N^{Bn}_2$)₂ versus the concentration of nBuNH_2 in (a) fluorobenzene, (b) THF, and (c) benzonitrile solution using $[{}^nBu_4N][BF_4]$ (red circle), $[{}^nBu_4N][PF_6]$ (green square), and $[{}^nBu_4N][B(C_6F_5)_4]$ (blue triangle) as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, 250 mV/s.

Figure S16. Plot of the catalytic current (i_{cat}) of Ni($P^{Cy_2}N^{tBu_2}$)₂ versus the concentration of nBuNH_2 in (a) fluorobenzene and (b) THF solution using $[{}^nBu_4N][BF_4]$ (red circle), $[{}^nBu_4N][PF_6]$ (green square), and $[{}^nBu_4N][B(C_6F_5)_4]$ (blue triangle) as the supporting electrolyte. Conditions: 0.8 mM [Ni], 0.2 M electrolyte, 250 mV/s.

References:

Tererences:

^{1.} M. O'Hagan, W. J. Shaw, S. Raugei, S. Chen, J. Y. Yang, U. J. Kilgore, D. L. DuBois, and R. M. Bullock, *J. Am. Chem. Soc.*, 2011, **133**, 14301–14312.

^{2.} J. Y. Yang, S. Chen, W. G. Dougherty, W. S. Kassel, R. M. Bullock, D. L. DuBois, S. Raugei, R. Rousseau, M. Dupuis, and M. R. DuBois, *Chem. Commun.*, 2010, **46**, 8618.