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S1. Experimental section
1. Materials and Instrumentation

All the chemicals were obtained from commercial sources and used without 

further purification. Elemental analyses for C, H, and N were performed on a German 

Elementary Vario EL cube instrument. Infrared spectra (IR) were recorded on a 

Nicolet 6700 FTIR spectrometer in the region 4000−400 cm−1 using KBr pellets. 

Thermogravimetric analyses (TGA) were carried out on a NETZSCH STA 449F3 unit 

at a heating rate of 20 °C min−1 under nitrogen atmosphere. Solution 1H NMR spectra 

were recorded on a Bruker AVANCE-Ⅲ NMR (600 MHz). Power X-ray diffraction 

(PXRD) patterns were collected by a D8 Advance X-ray diffractometer using Cu-Kα 

radiation (λ = 0.154 nm) radiation at room temperature. Sorption isotherms were 

measured over pressure range from vacuum to 20 bar by a gravimetric adsorption 

apparatus (Intelligent Gravimetric analyzer, IGA-001). The mixed gas adsorption 

experiments were conducted on IGA-001, using the same experimental procedure and 

experimental conditions as single-component gas sorption experiments, except that 

binary- component gas mixtures were used. The composition of the feed gas was 

analyzed on a gas chromatograph (Agilent Technologies).

2. Syntheses

Synthesis of 4,4'-(5,6-dimethyl-1H-benzo[d]imidazole-4,7-diyl)dibenzoic 

acid (H3L)

4-(ethoxycarbonyl)phenylboronic acid was prepared according to the procedure 

described in the literature[1].  4,7- dibromo-5,6- dimethyl- 1H- benzo[d] imidazole 

was prepared according to the procedure described in the literature[2]. The ligand 4,4'-

(5,6- dimethyl-1H- benzo [d]imidazole- 4,7- diyl)dibenzoic acid (H3L) was 

synthesized by Suzuki-coupling reaction of 4,7- dibromo -5,6- dimethyl- 1H- benzo 

[d]imidazole and 4- (ethoxycarbonyl) phenylboronic acid. 4,7- dibromo- 5,6- 

dimethyl- 1H-benzo [d]imidazole (3.04 g, 10 mmol), 4-

(ethoxycarbonyl)phenylboronic acid (4.658 g , 24mmol) and K3PO4 (21.0 g, 100 



mmol) were mixed in a 500 ml three-neck flask. Then the mixture was degassed at 

Schlenk line and recharged with Nitrogen. The evacuate-charge procedure was 

repeated for at least three times to ensure the inert gas atmosphere of the reaction 

system. After introducing Pd(PPh3)4 (500 mg, 0.43 mmol), and dioxane (300 ml), the 

mixture of reactants and catalyst was heated to 100 °C and stirred for 72 hours under 

the nitrogen atmosphere. After cooling to room temperature removed the solvent and 

extracted with CHCl3 (50 ml) for three times. Then, the extraction was washed with 

water, dried with anhydrous Na2SO4 and evacuated under vacuum. The resulting 

yellow oil was purified by silica gel column using elute of petroleum / ethyl acetate 

(3/1, v/v,). The obtained white solid was hydrolyzed with the NaOH (12 g, 300 mmol) 

in the solution of THF/EtOH/H2O (2/2/3, 300 ml). After acidified with concentrated 

HCl (adjust the pH value of the solution to about 4), a white precipitate was separated 

by filtration and dried at 60 °C in vacuum. 1HNMR (d6-DMSO, 600MHz): δ = 13.0 (s, 

2H, -COOH), 12.3 (m, 1H, -NH-), 8.08 (d, 4H, Ar-H), 8.04 (s, 1H, -CH-), 7.54 (d,4H, 

Ar-H), 2.20 (s, 6H, -CH3). Selected IR data (cm-1): ν= 3442 (s), 3152 (w), 2926 (w), 

2852 (w), 1682 (vs), 1632 (w), 1608 (m), 1562 (w), 1497 (w), 1385 (s), 1278 (m), 

1176 (m), 1099 (w), 1080 (s), 1034 (w), 1014 (m), 986 (w), 928 (w), 879 (w), 850 (m), 

793 (m), 770 (s), 706 (m), 629 (w), 608 (w), 530 (m).
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Scheme S1 The synthesis of H3L

Synthesis of [Zn(HL)·H2O]·DMA (1)

A mixture of H3L (0.03864 g, 0.1 mmol) and ZnNO3·6H2O (0.1017 g, 0.36 mmol) 

were dissolved in DMA/H2O (1/1) (12 mL) and stirred at room temperature for 30 

minutes in a Teflon-lined autoclave (23 mL). Then the autoclave was heated at 100 °C 

for 2 days. After cooled to room temperature slowly (12 h), colorless crystals of 

compound 1 were filtered off and were washed with DMA. The yield is about 74 % 



based on H3L. Elemental analysis for ZnC27H27N3O6 , calcd (%): C58.44, H 4.90, N 

7.57. Found (%): C 58.60, H 4.93, N 7.56. Selected IR data (cm-1): ν = 3442 (s), 2926 

(w), 2848 (w), 1610 (vs), 1543 (m), 1504 (w), 1389 (vs), 1327 (w), 1254 (m), 1177 

(m), 1101 (w), 1016 (m), 975 (w), 860 (w), 778 (s), 715 (m), 630 (w), 610 (w), 528 

(m).

3. Single crystal X-ray diffraction

Crystal data for compound 1 was collected on a Bruker SMART APEXⅡCCD 

diffractometer with graphite monochromatic Mo-Kα radiation (λ=0.71073Å) at room 

temperature. Data acquisition and integration were undertaken with the SMART and 

SAINT programs respectively. Multi-scan empirical absorption corrections were 

applied to the data using the SADABS program [3]. The structure was solved by direct 

method using SHELXS [4] and refined by full-matrix least-squares fitting on F2 by 

SHELXL-97 [5]. Anisotropic thermal parameters were used for all the non-hydrogen. 

Organic hydrogen atoms were added theoretically, while hydrogen atoms of water 

were added by Fourier syntheses and in a fixed geometrically. All the hydrogen atoms 

were refined isotropically. The guest molecules were disordered and difficult to locate 

and refine. Therefore, we removed those disordered guest molecules with the 

SQUEEZE procedure [6]. Crystallographic details for compound 1 were summarized 

in table S1. Selected bond lengths and bond angles were displayed in Table S2. Data 

for the crystal structure has been deposited at the Cambridge Crystallographic Data 

Centre (CCDC 963443), these data are obtained free of charge via Internet at 

www.ccdc.cam.ac.uk.

S2. Single crystal X-ray crystallography

http://www.ccdc.cam.ac.uk/


Table S1 Crystallographic data for 1 

Compound 1(squeeze)

Formula C23H18 N2 O5 Zn

Formula weight 467.76

Cryst system Orthorhombic

Space group P2(1)2(1)2(1)

a (Å) 6.215(2)

b (Å) 20.656(8)

c (Å) 25.022(10)

α (deg) 90.00

β (deg) 90.00

γ (deg) 90.00

Z 4

V (Å3) 3213(2)

Density (gm/cm3) 0.967

Absorption coefficient (mm-1) 0.789

F(000) 960

Reflections collected/unique 13374 / 5551 / 0.0921

Data/restraints/parameters 5551 / 30 / 245

Final R indices [R1>2σ(I)] R1=0.0794, wR2=0.1804

GOF on F2  1.081

Largest diff. peak and hole(e/Å3) 0.801 and -0.671

Table S2 Selected Bond Lengths (Å) and Angles (deg) for 1 

compound 1a

Zn1-N1C  1.979(7) Zn1-O1 1.987(5) Zn1-O4D 2.000(6)

Zn1-O1W 2.058(5) N1-Zn1B 1.979(7) O4-Zn1A 2.000(6)

N1C-Zn(1)-O1 132.7(3) N1C-Zn1-O4D 100.4(3) O1-Zn1-O4D   107.3(3)

N1C-Zn1-O1W 107.6(3) O1-Zn1-O1W 107.0(2) O4D-Zn1-O1W 95.6(2)



Equivalent position codes:  A) x-1/2, -y+3/2, -z+2; B) x-1/2, -y+3/2, -z+2; C) -x+3/2, -y+1, z-1/2; 
D) x+1/2, -y+3/2, -z+2

Fig. S1 The coordination environments of the Zn(II) ions and the ligand in 1. symmetry codes: 
A）: -x+3/2, -y+1, z+1/2；B）: x-1/2, -y+3/2, -z+2；C）: -x+3/2, -y+1, z-1/2；D）: x+1/2, -

y+3/2, -z+2)

As shown in Fig. S2, the asymmetric unit contains one zinc ion, one part 

deprotonated L2-, one coordinated aqua ligand and some discrete solvent molecules. 

Zinc ion is surrounded by three oxygen atoms and one nitrogen atoms to form a 

slightly distorted tetrahedral geometry. The coordinated oxygen atoms come from two 

carboxylic groups with the monodentate coordination mode and one terminal water 

molecule and one nitrogen atom from the imidazole group. The length of Zn-N bond 

is 1.979, while Zn-O bands is within the range of 1.987- 2.058.

Fig.S2 (a) The 1D chain assemblied by dicarboxylate part of ligand and metal ions ; (b) The 
ball and stick presentation of 1 viewing from a axis. 



 Fig.S3 The perspective view of pores of compound 1 viewing from a axis 

Fig. S4 The L-helix and R-helix of compound 1 

S3. IR, TGA and PXRD patterns
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Fig. S6 TGA curve of compound 1 under N2 atmosphere from room temperature to 800 ℃



Fig. S7 Simulated PXRD pattern from crystallographic data (black) and PXRD patterns of the as-
synthesized sample (blue), the activated sample (red) and the sample after sorption (green)

Fig. S8 PXRD patterns of the sample after several sorption cycles (violet), activated and exposed 
to moisture for 24 hours (magenta), activated and soaked in water for 24 hours (green), activated 
and immersed in DMA/H2O (1/1, v/v) solutions for 24 hours (orange).

S4. Gas isotherms and characterization of pore structure
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Fig. S10 CH4 isotherms of 1a at 273 K, 293 K and 313 K

Calculation of BET surface area 
The BET surface area of 1a was calculated by using Brunauer-Emmett-Teller equation from 

CO2 adsorption isotherm at 273 K (as shown in equation 1).

                         (1)
0 0

1 1
( ) m m

P C P
V P P CV CV P


  



   Using the CO2 isotherm of 1a at 273 K, the term P/V(P0-P) was plotted and linear fitted with 

P/P0 in the pressure range of 0.05 < P/P0 < 0.26, as shown in Fig. S8.

According to the Brunauer-Emmett-Teller equation, the term (C-1)/ CVm and 1/CVm are equal 



to the slope and the intercept of the fitted line, respectively. 

              
1 0.69093

m

C
CV



1 0.01362

mCV


So, we can obtain the value of C and Vm for 1a as following:

C = 51.7291                     Vm = 1.4193 mmol g-1

The BET surface area is calculated by the equation 4.

                                       (2)BET m mS V A   

Where A is the Avogadro constant (6.023×1023 mol-1), is sectional area of one CO2 m

molecular (2.16×10-19 m2 ). So the BET surface area of 1a is 185 m2 /g.
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Adj. R-Square 0.99968

Value Standard Error
y Intercept 0.01362 7.96761E-4
y Slope 0.69093 0.00466

Fig. S8 BET plot of 1a for CO2 adsorption at 273 K in the linear region (0.05<P/P0<0.26)

Calculation of Pore volume
Given the fact that 1a takes up no significant N2 at 77 K due to diffusion difficulty of 
N2 molecules in ultra narrow pores under cryogenic conditions, the pore volume of 
compound 1a cannot be obtained by conventional method using N2 as adsorptive. 
However, the pore volume of 1a can be determined from the Dubinin-Radushkevich 
(DR) equation using CO2 as adsorptive,[7] which is proposed as an effective method to 
analysis pore texture of microporous materials, especially the materials with ultra 
narrow pores that N2 has kinetic restrictions.[8] Therefore, in this paper, the DR 
equation (equation 3) is employed to depict the characteristic curve for 1a.

, with                         (3)2
0

0

exp ( )refV V
E
 

   
 

ln( / )s
ref

RT P P




Where V (cm3·g-1) is the volume adsorbed at a pressure P (bar), V0 (cm3·g-1) is the 



micropore volume, εref (kJ·mol-1) is the adsorption potential for a reference adsorbate, 
E0 (kJ·mol-1) is the characteristic energy, β is the affinity parameter (In the case of 
CO2 adsorption at 273 K, the value of β is proposed to be 0.35[7]).

According to DR equation, the characteristic curve for adsorption of CO2 on 1a 
can be obtained. As shown in Fig. S9, the characteristic curve of 1a composed of two 
parts with different trends. The curve with high adsorption potential in the lower 
pressure range is linear, while the curve with low adsorption potential in the higher 
pressure range is non-linear. Considering the fact that 1a takes up no significant 
amount of N2 at 77 K, so there is no meso- or macro- pores involved in 1a. Therefore, 
the linear part on characteristic curve in low pressure range (P< 1 bar) could be 
induced by the ultra micropores at low CO2 loadings, while the non-linear curves in 
higher pressure range (P> 1 bar) could be attributed to the pore expansion when 
accommodating larger amount of CO2.

Fig. S9 Characteristic curve for adsorption of CO2 at 273 K on 1a

So, the ultra micro pore structure of compound 1a (V0) can be characteristic using 
the linear part of the characteristic curve. The micropore volume is 0.0558 cm3 g-1, 
which is a very small pore volume compared to the pore volume of the as-synthesized 
MOF (the pore volume calculated from crystallographic data is 0.467 cm3·g-1). The 
characteristic energy E0 can be calculated as 35.89 kJ·mol-1. Based on the fact that the 
activated MOF is a crystalline material and only one type of pore is involved in this 
MOF, the pore structure can be deemed as homogeneous. Therefore, the pore width of 
1a can be determined from Stoeckli equation[9] (equation 4).

                                                (4)
0

10.8
11.4

L
E




With the characteristic energy between 20 and 42 kJ·mol-1, where L (nm) is the 



mean pore width, E0 (kJ·mol-1) is the characteristic energy.

So, the pore width of 1a can be calculated as 0.42 nm which is an ultra narrow 
pore width that is agreeable with the sorption behaviors. The substantial reduce of the 
pore volume and pore width of the activated MOF compared to the as-synthesized 
MOF clearly states that the pore of the pore of this MOF has been contracted upon 
activation.

S5. Calculation procedures of selectivity from IAST
The separation selectivity of gas mixtures are calculated from the single-component 

gas isotherms by using the ideal adsorbed solution theory (IAST).[10] Firstly, CO2 and 

CH4 adsorption Isotherms are fitted by dual site Langmuir-Freundlich model (DSLF), 

using the following equation:

                                       (5)
1 2

1

1/ 1/
1 2

1 21/ 1/ 2
1 21 1

n n

n n

b P b PN N N
b P b P

   
 

where P is the pressure of bulk gas at equilibrium with adsorbed phase, N1 and N2 
are maximum loading in sites 1 and 2, b1 and b2 are the affinity constants of sites 1 
and 2, and n1 and n2 are used to characterize the deviation from the simple Langmuir 
equation. 

The fitting parameters of DSLF equation as well as the correlation coefficients (R2) 
are listed in Table S3. The experimental and fitted isotherms for CO2, CH4 and N2 at 273 
K are depicted in Fig. 3a.
Table S3. Equation parameters for the DSLF isotherm model for CO2 and CH4 Adsorption Isotherms at 273 K

Adsorbates 𝑁1 𝑏1 1/𝑛1 𝑁2 𝑏2 1/𝑛2 𝑅2

CO2 6.07797 0.17811 0.35917 8.06154 0.0001227 2.05419 0.99997

CH4 0.46492 0.40654 0.95495 4.42869 0.00886 1.07131 0.99984

N2 0.7612 0.06527 0.63631 4.05585 0.006 1.00609 0.99996

IAST is a method for predicting the adsorption equilibria for components in a mixture derived 
by Myers and Prausnitz[11] using single-component adsorption data. Which is based upon three 
assumptions: (i) that the same surface area is available to all adsorbates, (ii) that the adsorbent is 
inert, and (iii) that the multicomponent mixture behaves as an ideal solution (such that the mean 
strength of interaction is equal between all molecules of the solution) at constant spreading 
pressure and temperature.

From the IAST, the spreading pressure π is given by： 

                            (6)
0
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                              (7)
0
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iP iqA dP
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Where A is the specific surface area of the adsorbent, π and π* are the spreading 
pressure and the reduced spreading pressure, separately. is the gas pressure of component 
i that corresponding to the spreading pressure π of the gas mixture.

At a constant temperature, each component has the same spreading pressure:

                                   (8)( )i j i j    

From Raoult’s law for ideal solutions, the relation between the mole fraction in 

the gaseous phase yi, and the mole fraction in the adsorbed phase xi :

                                    (9)0 *( )i i iP y P x  

Where is the pressure of the single component in its standard state which is fixed 

by the spreading pressure of the mixture according to Equation (8). The total amount 

adsorbed of the mixture, qt, is determined using the expression

                                         (10)0 0

1
( )

n i
i

t i i

x
q q P


Where  are the adsorbed amounts of the single-component isotherms. 0 0( )i iq P

The selectivity for component j relative to component i is defined as: 

                            (11)
0

0
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Where xj and xi are, respectively, the mole fractions of components j and i in the 
adsorbed phase and yj and yi are the mole fraction of components j and i in the bulk 
phase, respectively.

S6. Calculation procedures of isosteric adsorption enthalpy
1. Isosteric heats of adsorption (Qst) at zero surface coverage 

The Virial equation can be written in the following form:

                       (12)2 3
0 1 2 3ln( / )n P A A n A n A n        

Where n is the amount adsorbed at pressure p and the first Virial coefficient, A0 is 

a constant related to the Henry’s law constant. In the low pressure range, the higher 

terms (A2, A3… etc) in the Virial equation could be ignored at low surface coverage. 

As shown in the plots, the term ln(n/P) shows the nearly linear relationship with 

adsorption amounts (as shown in Fig. S9-11 for CO2 and in Fig. S13-15 for CH4). 

Therefore, the values of the first Virial coefficient (A0) and the second Virial 



coefficient (A1) which reflect the adsorbate-adsorbent interaction and adsorbate-

adsorbate interactions, respectively, can be obtained from the linear fit of ln(n/P) 

versus n.

The isosteric heats of adsorption at zero surface coverage (Qst (n=0)) can be 

obtained from the gradient of the graph of the first Virial coefficient (A0) versus 1/T 

(Fig. S12 for CO2 and Fig. S16 for CH4). The Qst (n=0) for CO2 and CH4 can be 

calculated as 43.7±3.1 and 16.4±1.3 kJ/mol, respectively.
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Fig. S14 Virial graph for the adsorption of CH4 on 1a at 293 K
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Fig. S15 Virial graph for the adsorption of CH4 on 1a at 303 K
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Fig. S16 A graph of A0 versus 1/T for CH4 adsorption on 1a

2. Isosteric heats of adsorption (Qst) 

Method :
The isosteric adsorption enthalpy of CO2 and CH4 were calculated by the 

Clausius-Clapeyron equation. 

                                        (13)(ln )
(1/ )

stQ d P
R d T



lnP and 1/T were obtained from the CO2 and CH4 isotherms at 273, 293 and 313 K. 



As shown in Figs. S17-32, the term lnP exhibits an excellent linear relationship with 

(1/T), indicating the good reliability of the adsorption data. The slope of lnP versus 

1/T was obtained from the linear regression, and Qst was calculated by using the 

above equation.
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Fig. S17 The Vant’ Hoff Isochores for CO2 adsorption on 1a (n=0.4 mmol/g)

0.0032 0.0033 0.0034 0.0035 0.0036 0.0037

5.5

6.0

6.5

7.0

7.5

 lnP
 Linear Fit of lnP

ln
 P

 (l
n 

m
ba

r)

1/T (K-1)

Equation y = a + b*x
Adj. R-Square 0.9669

Value Standard Error
lnP Intercept 20.36584 1.7897
lnP Slope -4023.61031 521.93586

n=0.6 mmol/g (adsorption)
Qst=33.45  4.3 kJ/mol

Fig. S18 The Vant’ Hoff Isochores for CO2 adsorption on 1a (n=0.6 mmol/g)
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Fig. S19 The Vant’ Hoff Isochores for CO2 adsorption on 1a (n=0.8 mmol/g)
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Fig. S20 The Vant’ Hoff Isochores for CO2 adsorption on 1a (n=1.0 mmol/g)
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Fig. S21 The Vant’ Hoff Isochores for CO2 adsorption on 1a (n=1.2 mmol/g)
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Fig. S22 The Vant’ Hoff Isochores for CO2 adsorption on 1a (n=1.4 mmol/g)
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Fig. S23 The Vant’ Hoff Isochores for CO2 adsorption on 1a (n=1.6 mmol/g)
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Fig. S24 The Vant’ Hoff Isochores for CO2 adsorption on 1a (n=1.7 mmol/g)
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Fig. S25 The Vant’ Hoff Isochores for CO2 desorption on 1a (n=0.4 mmol/g)
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Fig. S26 The Vant’ Hoff Isochores for CO2 desorption on1a (n=0.6 mmol/g)
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Fig. S27 The Vant’ Hoff Isochores for CO2 desorption on 1a (n=0.8 mmol/g)
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Fig. S28 The Vant’ Hoff Isochores for CO2 desorption on 1a (n=1.0 mmol/g)
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Fig. S29 The Vant’ Hoff Isochores for CO2 desorption on 1a (n=1.2 mmol/g)
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Fig. S30 The Vant’ Hoff Isochores for CO2 desorption on 1a (n=1.4 mmol/g)
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Fig. S31 The Vant’ Hoff Isochores for CO2 desorption on 1a (n=1.6mmol/g)

0.0032 0.0033 0.0034 0.0035 0.0036 0.0037
8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

 lnP
 Linear Fit of lnP

ln
P 

(ln
 m

ba
r)

1/T (1/K)

Equation y = a + b*x
Adj. R-Square 0.99017

Value Standard Error
lnP Intercept 17.5662 0.57931
lnP Slope -2404.22338 168.9458

n=1.7 mmol/g (desorption)
Qst= 20  1.4 kJ/mol

Fig. S32 The Vant’ Hoff Isochores for CO2 desorption on evacuated 1a (n=1.7mmol/g)
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Fig. S33 Isosteric adsorption enthalpies of CO2 on 1a from adsorption and desorption branches 
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Fig. S34 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=0.2 mmol/g)
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Fig. S35 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=0.3 mmol/g)

0.0032 0.0033 0.0034 0.0035 0.0036 0.0037
7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

8.7

 lnP
 Linear Fit of lnP

ln
P 

(ln
 m

ba
r)

1/T (1/K)

Equation y = a + b*x
Adj. R-Square 0.98788

Value Standard Error
lnP Intercept 13.2217 0.38162
lnP Slope -1425.10915 111.29369

n=0.4 mmol/g
Qst = 11.85  0.93 kJ/mol 

Fig. S36 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=0.4 mmol/g)
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Fig. S37 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=0.5 mmol/g)
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Fig. S38 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=0.6 mmol/g)
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Fig. S39 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=0.7 mmol/g)
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Fig. S40 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=0.8 mmol/g)
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Fig. S41 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=0.9 mmol/g)
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Fig. S42 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=1.0 mmol/g)
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Fig. S43 The Vant’ Hoff Isochores for CH4 adsorption on evacuated 1a (n=1.1 mmol/g)
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Fig. S44 Isosteric adsorption enthalpies of CH4 on 1a
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