Supporting Information

Stereospecific hydrodehalogenation of alkenyl bromides: a new approach to the synthesis of (E)-alkenes

Giorgio Chelucci
Dipartimento di Agraria, Università di Sassari, viale Italia 39, I-07100 Sassari, Italy
Tel: +39-079-229539; Fax: +39-079-229559; E-mail: chelucci@uniss.it

Content

1. General information S 2
2. Known 1,1-dibromo-1-alkenes. S 2
3. Known 1,2-disubstituted alkenes S 2
4. General procedure for the Suzuki-Miyaura cross-couplings of 1,1-dibromo-1-alkenes with boronic acids. S 2
5. General procedure for the hydrodehalogenation of alkenyl bromides S 5
5.1. General procedure using $\mathrm{Bu}_{3} \mathrm{SnH}$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
5.2. General procedure using n - $\mathrm{Bu}_{3} \mathrm{~N}-\mathrm{HCOOH}$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$
5.3. General procedure using HCOONa-DMF and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
5.4. General procedure using $\mathrm{HCOONH}_{4}-\mathrm{MeOH}$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$
5.5. General procedure using NaOMe-DMF and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
5.6. General procedure using $\mathrm{Et}_{3} \mathrm{SiH}-\mathrm{MeCN}$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$
5.7. General procedure using $\mathrm{NaBH}_{4}-\mathrm{TMEDA}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{PPh}_{3}$
5.8. General procedure using $\mathrm{NaBH}_{4}-\mathrm{TMEDA}$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$
6. Characterization data of new 1,1-dibromo-1-alkenes S 8
7. References S 8
8. NMR spectra of the new products S 9

1. General information

All reactions were carried out under nitrogen in oven-dried glassware with magnetic stirring. Unless otherwise noted, all materials were obtained from commercial suppliers and were used without further purification. All solvents were reagent grade. THF was distilled from sodium-benzophenone ketyl and degassed thoroughly with dry nitrogen directly before use. Unless otherwise noted, organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a fritted glass funnel, and concentrated with a rotary evaporator $(20-30 \mathrm{mmHg})$. Flash chromatography was performed with silica gel (200300 mesh) using the mobile phase indicated. Melting points were determined on a Büchi 510 capillary apparatus and are uncorrected. The NMR spectra were obtained with a Varian VXR-300 spectrometer at 300 for ${ }^{1} \mathrm{H}$ and 75.4 MHz for ${ }^{13} \mathrm{C}$ or with a Bruker Ascend 400 MHz spectrometer at 400.1 for ${ }^{1} \mathrm{H}$ and 100.6 MHz for ${ }^{13} \mathrm{C}$ in CDCl_{3} solution with TMS as internal standard. Chemical shifts are reported in ppm downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$ in CDCl_{3}. The following abbreviations were used to describe peak patterns where appropriate: singlet (s), doublet (d), triplet (t), multiplet (m) and broad resonances (br).

2. Known 1,2-disubstituted 1-bromoalkenes

Analytical and spectra data of the products (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene (1a), ${ }^{1}$ (Z)-methyl 4-(2-bromo-2-phenylvinyl)benzoate (1f), ${ }^{2}$ ((1Z,3E)-1-bromobuta-1,3-diene-1,4diyl)dibenzene $\quad(\mathbf{1 n}),{ }^{3} \quad\left((1 Z, 3 E)\right.$-2-bromobuta-1,3-diene-1,4-diyl)dibenzene $\quad(\mathbf{1 0})^{4}$ and (Z)-(2-bromobut-1-en-3-yne-1,4-diyl)dibenzene ($\mathbf{(1 p})^{5}$ were identical to those reported in the literature.

3. Known 1,2-disubstituted alkenes

Analytical and spectra data of the products (E)-1-methoxy-4-styrylbenzene (2a), ${ }^{6}$ (E)-1-methyl-3styrylbenzene (2b), ${ }^{7}(E)$-1-chloro-4-styrylbenzene (2c), ${ }^{8}(E)$-1-chloro-3-styrylbenzene (2d), ${ }^{(}$(E)-1-nitro-4-styrylbenzene (2e), ${ }^{9}(E)$-methyl 4-styrylbenzoate (2f), ${ }^{10}(E)$-1-bromo-4-styrylbenzene ($\mathbf{2 g}$), ${ }^{11}$ (E)-3-styrylbenzonitrile (2h), ${ }^{12}$ (E)-3-(3-methylstyryl)pyridine (2i), ${ }^{13}$ ($1 E, 3 E$)-1,4-diphenylbuta-1,3diene (21), ${ }^{14}(Z)$-but-1-en-3-yne-1,4-diyldibenzene ($\left.\mathbf{2 m}\right)^{15}$ and (Z)-but-1-en-3-yne-1,4-diyldibenzene $(2 n)^{16}$ were identical to those reported in the literature.

4. General procedure for the Suzuki-Miyaura cross-couplings of 1,1-dibromo-1-alkenes with boronic acids.

A mixture of 1,1-dibromo-1-alkene (2.4 mmol), phenyl boronic acid ($317.3 \mathrm{mg}, 2.6 \mathrm{mmol}$), cesium carbonate ($2.25 \mathrm{~g}, 6.9 \mathrm{mmol}$), 1,4-diossano (15 mL) and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ was degassed by bubbling argon for few minutes and then $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(57.0 \mathrm{mg}, 0.062 \mathrm{mmol})$ e tri(2-furyl)phosphine (TFP) $(86.0 \mathrm{mg}, 0.37 \mathrm{mmol})$ were added. The mixture was heated at $65^{\circ} \mathrm{C}$ for the proper time under argon. After cooling, the mixture was taken up in ethyl acetate (60 mL) and washed two times with
brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The residue was purified by flash chromatography by using as the eluent petroleum ether or mixtures of petroleum ether and ethyl acetate.
(Z)-1-(2-bromo-2-phenylvinyl)-3-methylybenzene (1b): This compound was purified by flash chromatography by using petroleum ether as the eluent: 71\% yield, pale yellow oil, ${ }^{1} \mathrm{H}$ NMR (400.1 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.14$ (s, 1H), $7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.2,139.9,130.3$, 130.1, 129.0, 128.8, 128.5, 128.3, 128.0, 126.5, 124.0, 21.7. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Br}$: C, 65.27; H, 40.80. Found: C, 65.74; H, 40.55 .
(Z)-1-(2-bromo-2-phenylvinyl)-4-chlorobenzene (1c): This compound was purified by flash chromatography by using petroleum ether as the eluent: 75% yield, white solid $\mathrm{mp} 55-56{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400.1 MHz, CDCl_{3}): $\delta 7.67-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~s}, \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.8,134.7,133.8,130.5,129.0,128.7$, 128.4 (2C), 127.8, 124.9. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrCl}: \mathrm{C}, 57.27$; H, 3.43. Found: C, 57.89; H, 3.47.
\boldsymbol{Z})-1-(2-bromo-2-phenylvinyl)-3-chlorobenzene (1d): This compound was purified by flash chromatography by using petroleum ether as the eluent: 69% yield, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (400.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=6.8,2 \mathrm{H}), 7.55(\mathrm{~d}, J=6.8,1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): δ 140.7, 130.1, 134.1, 129.4, 129.1, 129.0, 128.6, 128.5, 128.0, 127.8, 127.4, 125.6. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrCl}$: C, 57.27 ; H, 3.43. Found: C, 56.72; H, 3.39 .
(Z)-1-(2-bromo-2-phenylvinyl)-4-nitrobenzene (1e): This compound was purified by flash chromatography by using petroleum ether as the eluent: 80% yield, white solid, $\mathrm{mp} 112-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24(\mathrm{~d}, J=8.8,2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8,2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.37(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.9,142.8,140.2,130.0,129.6$, 128.6, 128.2, 127.9, 127.8, 123.5. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNO}_{2}$: C, 55.29; H, 3.31; N, 4.61. Found: C, 55.44; H, 3.34; N, 4.59.
(\boldsymbol{Z})-1-bromo-4-(2-bromo-2-phenylvinyl)benzene ($\mathbf{1 g}$): This compound was purified by flash chromatography by using petroleum ether as the eluent: white solid, mp $53-54{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.7,135.1,131.3,130.7,128.9$, 128.7, 128.4, 127.7, 124.9, 122.0. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2}$: C, 49.74; H, 2.98. Found: C, 49.73; H, 2.96.
(Z)-1-(1-bromo-2-phenylvinyl)-4-methoxybenzene (1h): This compound was purified by flash chromatography by using petroleum ether/ $\mathrm{AcOEt}=95 / 5$ as the eluent: 73% yield, white solid, mp $71-73{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 160.1,136.6,133.6,129.3,129.2,128.5,128.2,127.9,124.0,113.7$, 55.5. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}$: C, 62.30 ; H, 4.53; Br, 27.63; O, 5.53. Found: C, 62.88; H, 4.47.
(Z)-3-(1-bromo-2-phenylvinyl)benzonitrile (1i): This compound was purified by flash chromatography by using petroleum ether/ $\mathrm{AcOEt}=95 / 5$ as the eluent: 73% yield, yellow-orange solid, mp 71-73 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96-7-94(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{ddd}, J=8.0,2.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.73-7.70 (m, 2H), 7.63 (ddd, $J=7.6,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dt}, J=8.0,0.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45-7.34 (m, 3H), $7.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.3,135.5,132.1,132.0$, 131.4, 129.3 (2C), 129.2, 128.7, 128.4, 121.0, 118.4, 112.8. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrN}$: C, 63.40; H, 3.55; N 4.93. Found: C, 63.17; H, 3.49;N 4.88.
(Z)-1-(1-bromo-2-phenylvinyl)-3-chlorobenzene (1j): This compound was purified by flash chromatography by using petroleum ether as the eluent: 73\% yield, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.6,135.7,134.2,130.9,129.4,129.2,128.6,128.3,128.2$, 127.8, 125.9, 122.0. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrCl}$: C, 57.27; H, 3.43. Found: C, 57.62; H, 3.41.
(Z)-3-(2-bromo-2-m-tolylvinyl)pyridine (1k): This compound was purified by flash chromatography by using petroleum ether as the eluent: 42% yield, pale yellow oil, ${ }^{1} \mathrm{H}$ NMR (400.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.78(\mathrm{~d}, J=2.4,1 \mathrm{H}), 8.50(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 150.2, 148.2, 139.8, 137.6, 135.2, 131.9, 129.5, 127.9, 127.8.126.5, 125.6, 124.5, 122.5, 20.9. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrN}$: C, 61.33; H, 4.41; N, 5.11. Found: C, 61.66; H, 4.39; N, 5.10.
(Z)-1-(1-bromo-4-phenylbut-1-enyl)-3-methylbenzene (11): This compound was purified by flash chromatography by using petroleum ether as the eluent: 43% yield, pale yellow oil, ${ }^{1} \mathrm{H}$ NMR (400.1 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.08(\mathrm{~m}, 8 \mathrm{H}), 6.99(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.68$ (m, 2H), 2.65-2.58 (m, 2H), $2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.4,140.0,137.9$, 130.5, 129.3, 128.3 (2C), 128.0, 126.4, 126.2, 124.9, 34.7, 34.5, 21.5. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Br}: \mathrm{C}$, 67.78; H, 5.69. Found: C, 67.40; H, 5.64.
(Z)-1-(1-bromo-2-cyclohexylvinyl)-3-methylbenzene (1m): This compound was purified by flash chromatography by using petroleum ether as the eluent: 30% yield, pale yellow oil, ${ }^{1} \mathrm{H}$ NMR: δ 7.32-7.02 (m, 2H), 7.25-7.10 (m, 1H), 7.55-7.03 (m, 1H), $6.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.52(\mathrm{~m}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.12(\mathrm{~m} 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 140.2,137.9,136.8,129.0$, 128.3, 128.1, 124.80, 123.4, 41.6, 31.8, 26.0, 25.7, 21,4. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Br}: \mathrm{C}, 64.52 ; \mathrm{H}$, 6.86. Found: C, 64.86; H, 6.83.

5. General procedure for the hydrodehalogenation of alkenyl bromides

5.1. General procedure for the hydrodehalogenation of halogenated alkenyl bromides using $\mathbf{B u}_{3} \mathbf{S n H}$ and $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4}$

A mixture of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene (144.6 mg, 0.5 mmol) and anhydrous toluene (5 mL) was degassed by bubbling argon for few minutes. Then, $\mathrm{Bu}_{3} \mathrm{SnH}$ (174.6 $\mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(28.9 \mathrm{mg}, 0.025 \mathrm{mmol})$ were added. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ under argon for 48 h . The residue was taken up in brine and extracted tree times with ethyl ether. The organic phase was dried and the solvent was evaporated. The ${ }^{1} \mathrm{H}$ NMR of the residue showed that it contains only the starting material 1a.

5.2. General procedure for the hydrodehalogenation of halogenated alkenyl bromides using $n-\mathrm{Bu}_{3} \mathbf{N}-\mathbf{H C O O H}$ and $\mathbf{P d C l}_{\mathbf{2}}\left(\mathbf{P P h}_{3}\right)_{2}$

A mixture of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene ($101.2 \mathrm{mg}, 0.35 \mathrm{mmol}$) and anhydrous DMF (3 mL) was degassed by bubbling argon for few minutes. Then, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(24.6$ $\mathrm{mg}, 0.035 \mathrm{mmol}), n-\mathrm{Bu}_{3} \mathrm{~N}(38 \mathrm{mg}, 48.7 \mathrm{~mL})$, $\mathrm{HCOOH}(40 \mathrm{mg}, 32.8 \mathrm{~mL})$ were added. The mixture was heated at $60{ }^{\circ} \mathrm{C}$ under argon for 16 h . The residue was taken up in brine and extracted tree times with ethyl ether. The organic phase was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, separated, dried, the solvent was evaporated and the residue was purified by flash chromatography using of petroleum ether/ethyl acetate $=95 / \%$ as the eluent, to give $48.6 \mathrm{mg}(66 \%$ yield $)$ of pure $\mathbf{2 a}$.

5.3. General procedure for the hydrodehalogenation of halogenated alkenyl bromides using HCOONa-DMF and $\operatorname{Pd}\left(\mathbf{P P h}_{3}\right)_{4}$

A mixture of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene ($289.2 \mathrm{mg}, 1.0 \mathrm{mmol}$) and anhydrous DMF (8 mL) was degassed by bubbling argon for few minutes. Then, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(57.8$ $\mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{HCOONa}(102.0 \mathrm{mg}, 1.5 \mathrm{mmol})$ were added. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ under argon for 14 h . The mixture was taken up in brine and extracted tree times with ethyl ether. The organic phase was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, separated and dried. The solvent was evaporated and the residue was purified by flash chromatography using petroleum ether/ethyl acetate $=95 / 5$ as the eluent, to give 168.2 mg (80% yield) of pure $\mathbf{2 a}$.

5.4. General procedure for the hydrodehalogenation of halogenated alkenyl bromides using $\mathbf{H C O O N H} 4 \mathbf{4}_{4} \mathbf{M e O H}$ and $\mathbf{P d C l}_{\mathbf{2}}\left(\mathbf{P P h}_{3}\right)_{2}$

A mixture of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene ($112.8 \mathrm{mg}, 0.39 \mathrm{mmol}$) and anhydrous $\mathrm{MeOH}(3 \mathrm{~mL})$ was degassed by bubbling argon for few minutes. Then, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(14.0 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{HCOONH}_{4}(34.6 \mathrm{mg}, 0.55 \mathrm{mmol})$ were added. The resulting mixture was heated at $60{ }^{\circ} \mathrm{C}$ under argon for 48 h . The residue was taken up in brine and extracted tree times with ethyl ether. The organic phase was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, separated, dried and the solvent was evaporated. The ${ }^{1} \mathrm{H}$ NMR of this residue showed that it contains the starting material 1a and the product $\mathbf{2 a}$ in a ratio of 67:33.

5.5. General procedure for the hydrodehalogenation of halogenated alkenyl bromides using $\mathbf{N a O M e}-\mathrm{DMF}$ and $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4}$

A mixture of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene ($101.2 \mathrm{mg}, 0.35 \mathrm{mmol}$) and anhydrous DMF (3 mL) was degassed by bubbling argon for few minutes. Then, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(31.2$ $\mathrm{mg}, 0.027 \mathrm{mmol})$ and $\mathrm{NaOMe}(0.4 \mathrm{~g})$ were added. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ under argon for 36 h . The residue was taken up in brine and extracted tree times with ethyl ether. The organic phase was washed with $10 \% \mathrm{NH}_{4} \mathrm{Cl}$, separated, dried, the solvent was evaporated and the residue was purified by flash chromatography using of petroleum ether/ethyl acetate $=95 / \%$ as the eluent, to give 24.3 mg (33% yield) of pure $\mathbf{2 a}$.

5.6. General procedure for the hydrodehalogenation of halogenated alkenyl bromides using $\mathbf{E t}_{3} \mathbf{S i H}-\mathbf{M e C N}$ and $\mathbf{P d C l}_{\mathbf{2}}\left(\mathbf{P P h}_{3}\right)_{2}$

A mixture of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene (144.6 mg, 0.5 mmol) and anhydrous $\mathrm{MeCN}(4 \mathrm{~mL})$ was degassed by bubbling argon for few minutes. Then, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(14.0 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{SiH}(80.1 \mathrm{mg}, 0.11 \mathrm{ml})$ were added. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ under argon for 24 h . The mixture was taken up in brine and extracted tree times with ethyl acetate. The organic phase was dried and the solvent was evaporated. The ${ }^{1} \mathrm{H}$ NMR of this residue showed no signal attributable to both the starting material 1a and the product 2a.

5.7. General procedure for the hydrodehalogenation of halogenated alkenyl bromides using $\mathbf{N a B H}_{4}-\mathbf{T M E D A}$ and $\mathbf{P d}(\mathbf{O A c})_{2}-\mathbf{P P h}_{3}$

A mixture of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene (144.6 mg, 0.5 mmol) in anhydrous THF (10 mL) was degassed by bubbling argon for few minutes. Then, $\operatorname{Pd}(\mathrm{OAc})_{2}(5.6$ $\mathrm{mg}, 0.025 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(26.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ were added. After 15 minutes TMEDA ($0.215 \mathrm{~g}, 1.82 \mathrm{mmol}, 3.64$ equiv) and finally $\mathrm{NaBH}_{4}(53.0 \mathrm{mg}, 1.40 \mathrm{mmol}, 2.8$ equiv) were introduced in sequence. The mixture was stirred at room temperature under argon for 20 h . The residue was taken up in brine and extracted with ethyl acetate. The organic phase was separated, dried, the solvent was evaporated and the residue was purified by flash chromatography using of petroleum ether/ethyl acetate $=95 / \%$ as the eluent, to give $92.5 \mathrm{mg}(88 \%$ yield $)$ of pure $\mathbf{2 a}$.

5.8. General procedure for the hydrodehalogenation of halogenated alkenyl bromides by using $\mathbf{N a B H}_{4}-\mathbf{T M E D A}$ and $\mathbf{P d C l}_{\mathbf{2}}\left(\mathbf{P P h}_{3}\right)_{\mathbf{2}}$

A mixture of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene ($145 \mathrm{mg}, 0.5 \mathrm{mmol}$) in anhydrous THF (10 mL) was degassed by bubbling argon for few minutes. Then, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(17.6 \mathrm{mg}$, $0.025 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), TMEDA ($0.215 \mathrm{~g}, 1.82 \mathrm{mmol}, 3.64$ equiv) and finally $\mathrm{NaBH}_{4}(53.0 \mathrm{mg}$, $1.40 \mathrm{mmol}, 2.8$ equiv) were introduced in sequence. The mixture was stirred at room temperature or heated at $65^{\circ} \mathrm{C}$ under argon for 20 h . The residue was taken up in brine and extracted with ethyl acetate. The organic phase was separated, dried, the solvent was evaporated and the residue was purified by flash chromatography using of petroleum ether/ethyl acetate $=95 / \%$ as the eluent, to give 96.7 mg (92% yield) of pure $\mathbf{2 a}$.

6. Characterization data of new alkenes

(\boldsymbol{E})-1-methyl-3-(4-phenylbut-1-enyl)benzene (2j): This compound was purified by flash chromatography by using petroleum ether as the eluent: 64% yield, white solid $44-46{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.11(\mathrm{~m}, 8 \mathrm{H}), 7.01(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 6.28-$
$6.20(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $141.8,138.0,137.7,130.4,129.8,128.5,128.4,127.7,126.7,125.9,123.1,35.9,34.9,21.4$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18}: \mathrm{C}, 91.84 ; \mathrm{H}, 8.16$. Found: C, C, 91.29; H, 8.19.
(E)-1-(2-cyclohexylvinyl)-3-methylbenzene (2k): This compound was purified by flash chromatography by using petroleum ether as the eluent: 75% yield, pale yellow oil, ${ }^{1} \mathrm{H}$ NMR: δ 7.21-6.90 (m, 4H), $6.30(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 6.15(\mathrm{dd}, 1 \mathrm{H}, J=16.0,6.8 \mathrm{~Hz}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.16-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 143.3,138.1,138.0,136.7,128.4$, $127.6,127.4,126.7,123.2,41.2,33.1,26.3,26.1,21.5$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}: \mathrm{C}, 89.94 ; \mathrm{H}$, 10.06. Found: C, 90.55; H, 10.02.

7. References

(1) C. Muthiah, K. P. Kumar, S. Kumaraswamy, K. C. K. Swamy, Tetrahedron 1998, 54, 1431514326.
(2) W. Shen, L. Wang, J. Org. Chem., 1999, 64, 8873-8879.
(3) H. Klein, T. Roisnel, C. Bruneau, S. Derien, Chem. Commun., 2012, 48, 11032-11034.
(4) J.-X. Wang, K. Wang, L. Zhao, H. Li, Y. Fu, Y. Hu, Adv. Synth. Catal., 2006, 348, 12621270.
(5) J.-c. Shi, X. Zeng, E.-i. Negishi, Org. Lett., 2003, 5, 1825-1828.
(6) E. Alacid, C. Najera, J. Org. Chem., 2009, 74, 8191-8195.
(7) J. Zhang, W. Zhang, Y. Wang, M. Zhang, Adv. Synth. Catal., 2008, 350, 2065-2076.
(8) C. Belger, B. Plietker, Chem. Comm., 2012, 48, 5419-5421.
(9) A. R. Hajipour, K. Karami, G. Tavakoli, Appl. Organometal. Chem., 2010, 24, 798-804.
(10) E. Shirakawa, H. Otsuka, T. Hayashi, Chem. Commun. 2005, 47, 5885-5886.
(11) R. Frei, A. S. Breitbach, H. E. Blackwell, Angew. Chem. 2012, 51, 5226-5229.
(12) X. Cui, Z. Li, C.-Z. Tao, Y. Xu, J. Li, L. Liu, Q.-X. Guo, Org. Lett., 2006, 8, 2467-2470.
(13) H. F. Sore, C. M. Boehner, L. Laraia, P. Logoteta, C. Prestinari, M. Scott, K. Williams, W. R. Galloway, D. R. Spring, Org. Biomol. Chem., 2011, 9, 504-515.
(14) Z.-Y. Peng, F.-F. Ma, L-F. Zhu, X-M. Xie, Z. Zhang, J. Org. Chem., 2009, 74, 6855-6858.
(15) C. Jahier, O. L. Zatolochnaya, V. Gevorgyan, N. V. Zvyagintsev, V. P. Ananikov, Org. Lett., 2012, 14, 2846-2849.
(16) T. Li, J. Mao, X. Qu, P. Sun, H. Yang, Y. Zhu, Org. Biomol. Chem., 2011, 9, 7309-7312.
8. NMR spectra of the new products

(Z)-1-(2-bromo-2-phenylvinyl)-3-methylybenzene (1b):

(Z)-1-(2-bromo-2-phenylvinyl)-4-chlorobenzene (1c):

35

(Z)-1-(2-bromo-2-phenylvinyl)-3-chlorobenzene (1d):

\times

(Z)-1-(2-bromo-2-phenylvinyl)-4-nitrobenzene (1e):

코늘

(Z)-1-bromo-4-(2-bromo-2-phenylvinyl)benzene (1g):

고랄

(Z)-1-(1-bromo-2-phenylvinyl)-4-methoxybenzene (1h):

34

(Z)-3-(1-bromo-2-phenylvinyl)benzonitrile (1i):

(Z)-1-(1-bromo-2-phenylvinyl)-3-chlorobenzene (1j):

3-

(Z)-3-(2-bromo-2-m-tolylvinyl)pyridine (1k):

32

(Z)-1-(1-bromo-4-phenylbut-1-enyl)-3-methylbenzene (11):

\times

(Z)-1-(1-bromo-2-cyclohexylvinyl)-3-methylbenzene (1m):

$x=$

(E)-1-methyl-3-(4-phenylbut-1-enyl)benzene (2 j):

35

(E)-1-(2-cyclohexylvinyl)-3-methylbenzene (2k):

