Supplementary Information

for

Palladium-Catalyzed Oxidative C–H/C–H Cross-Coupling of Benzothiazoles with Thiophenes and Thiazoles

Xuxing Chen, Xiaojing Huang, Qian He, Yuyuan Xie, and Chunhao Yang*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China

chyang@simm.ac.cn

Table of Contents

General information	S2
Optimization of reaction conditions	
General procedure for cross-dehydrogenative coupling of benzothiazoles with	thiophenes and
thiazoles	S4
The H/D exchange experiment for 1a	S12
Kinetic isotope experiments	S14
¹ H NMR, ¹³ C NMR and HSQC spectra	S17

General information

Analytical thin layer chromatography (TLC) was HSGF 254 (0.15–0.2 mm thickness, Yantai Huiyou Company, China). Column chromatography was carried out on silica gel (200–300 mesh). NMR spectra were recorded at Varian Mercury-300 spectrometer, Varian Mercury-400 spectrometer and Varian Mercury-500 spectrometers (300 MHz or 400 MHz for ¹H NMR, 100 MHz or 125 MHz for ¹³C NMR). Tetramethylsilane (TMS) was used as internal standard. Chemical shifts were reported in parts per million (ppm, δ). Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), heptet (hept), multipet (m) and broad (br). Low-and high-resolution mass spectra (LRMS and HRMS) were recorded on a Finnigan/MAT-95 (EI), Finnigan LCQ/DECA and Micromass Ultra Q-TOF (ESI) spectrometer. LC-MS was performed on an Agilent 1200-6110 instrument. Melting points (m.p.) were measured by Büchi 510 melting point apparatus and were uncorrected.

Optimization of reaction conditions

	+ H S Me -	Pd(OAc) ₂ (10 mol%)	N S Me
1a	2a	DIVIA, TTU °C	3aa
Entry	Oxidant	Time (h)	Yield ^{b} (%)
1	$Cu(OAc)_2$	20	11
2	CuBr ₂	20	Trace
3	CuCl ₂	20	Trace
4	Cu(OTf) ₂	20	Trace
5	AgOAc	20	18
6	AgTFA	20	6
7	Ag_2CO_3	20	21
8	Ag_2SO_4	20	Trace
9	Ag ₂ O	20	13
10	AgNO ₃	12	28
11 ^c	AgNO ₃	12	27
12	O_2	20	0
13	BO	20	Trace

 Table S1 Screening of Oxidants.^a

^{*a*} 1a (1.0 mmol, 1.0 equiv), 2a (4.0 mmol, 4.0 equiv), DMA (3.0 mL), all of reagents were mixed and stirred at r.t. for 5 minutes, then the sealed tubes were screw capped and heated at 110

°C for indicated time. ^{*b*} Yield Determined by ¹H NMR analysis of the crude product using dimethyl terephthalate as an internal standard. ^{*c*} The reaction was carried out under N₂ atmosphere. **Table S2** Screening of Ligands.^{*a*}

	H + H + H + H + H + H + H + H + H + H +	$\xrightarrow{\text{nol}\%)}_{\text{nol}\%)} \qquad \qquad$	Me
	20		
Entry	Ligand	Time (h)	Yield ^{v} (%)
1	-	12	28
2	AcOH	12	29
3	PivOH	10	36
4	Me-Gly-OH	5	18
5	(Me) ₂ -Gly-OH	5	17
6	Pro-OH	12	14
7	Boc-Me-Ala-OH	2	22
8	PhCO ₂ H	10	15
9	pNO ₂ -PhCO ₂ H	10	12
10	Bipy	10	45
11	Phen	10	50
12	Phen (15 mol%), Boc-Me-Ala-OH	H (15 4	41
	mol%)		
13	Phen (15 mol%), PivOH (15 mol	1%) 4	40

^{*a*} **1a** (1.0 mmol, 1.0 equiv), **2a** (4.0 mmol, 4.0 equiv), DMA (3.0 mL), all of reagents were mixed and stirred at r.t. for 5 minutes, then the sealed tubes were screw capped and heated at 110 °C until **1a** disappeared. ^{*b*} Determined by ¹H NMR analysis of the crude product using dimethyl terephthalate as an internal standard.

Table S3 Screening of Solvents.^a

Ia	+ H S Me - 2a	Pd(OAc) ₂ (10 mol%) AgNO ₃ (2.0 eq.) Phen (30 mol%) Solvent, 110 °C	Saa Me
Entry	Solvent	Time (h)	$\operatorname{Yield}^{b}(\%)$
1	DMA	10	50
2	DMF	10	31
3	NMP	10	27
4	DMSO	10	69(63) ^c
5	Dioxane	10	27
6	EtAc	10	8
7	DME	10	12
8	<i>n</i> BuOH	10	21

^{*a*} **1a** (1.0 mmol, 1.0 equiv), **2a** (4.0 mmol, 4.0 equiv), solvent (3.0 mL), all of reagents were mixed and stirred at r.t. for 5 minutes, then the sealed tubes were screw capped and heated at 110 °C until **1a** disappeared. ^{*b*} Determined by ¹H NMR analysis of the crude product using dimethyl

terephthalate as an internal standard. ^c The isolated yield was given in parentheses.

Table S4 Screening of Bases.^a

N N	, H S Me	Pd(OAc) ₂ (10 mol%) AgNO ₃ (2.0 eq.)	N Sy ^{Me}
ls − 1a		Phen (30 mol%), Base DMSO, 110 °C	Saa 3aa
Entry	Base	Time (h)	Yield ^b (%)
1	-	10	69
2^c	-	10	6
3	NaOAc	10	24
4	Na ₂ CO ₃	10	32
5	K_2CO_3	10	33
6	KF	10	37
7	Na ₃ PO ₄ ·3H ₂ O	10	15

^{*a*} **1a** (1.0 mmol, 1.0 equiv), **2a** (4.0 mmol, 4.0 equiv), DMSO (3.0 mL), all of reagents were mixed and stirred at r.t. for 5 minutes, then the sealed tubes were screw capped and heated at 110 °C until **1a** disappeared. ^{*b*} Determined by ¹H NMR analysis of the crude product using dimethyl terephthalate as an internal standard. ^{*c*} TEMPO (30 mol%) was added.

Table S5 Screening of loadings of reagents.^a

Ia	+ H S Me	Pd(OAc) ₂ AgNO ₃ (2.0 eq.) Phen, DMSO 10 h, 110 °C	
Entry	Reagent	Loading	Yield ^b (%)
1	$Pd(OAc)_2$	5 mol%	18
2	$Pd(OAc)_2$	2.5 mol%	trace
3	$Pd(OAc)_2$	0	0
4	Phen	1.0 equiv	42

^{*a*} **1a** (1.0 mmol, 1.0 equiv), **2a** (4.0 mmol, 4.0 equiv), DMSO (3.0 mL), all of reagents were mixed and stirred at r.t. for 5 minutes, then the sealed tubes were screw capped and heated at 110 $^{\circ}$ C for 10 h. ^{*b*} Determined by ¹H NMR analysis of the crude product using dimethyl terephthalate as an internal standard.

General procedure for cross-dehydrogenative coupling of benzothiazoles with thiophenes

and thiazoles

To a septum capped 25 mL of sealed tube were added Pd(OAc)₂ (10 mol%), AgNO₃ (2.0 equiv)

and 1,10-Phenanthroline hydrate (30 mol%) under air, followed by DMSO (3.0 mL) with stirring. Benzothiazoles **1** (1.0 mmol, 1.0 equiv) and thiophenes/thiazoles **2** (4.0 euqiv) were then added subsequently. The sealed tube was screw capped and heated to 110 °C. After being stirred for 10 h, the reaction mixture was cooled to room temperature, diluted with 20 mL of CH_2Cl_2 , filtered through a celite pad, washed with 80 mL of CH_2Cl_2 . The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (PE/EA) to provide the desired product.

2-(5-Methylthiophen-2-yl)benzo[*d*]**thiazole**¹: As a pale brown powder (PE:EA = 40:1 v:v); m.p. 95–97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (ddd, *J* = 8.2, 1.2, 0.6 Hz, 1 H), 7.83 (ddd, *J* = 8.0, 1.3, 0.6 Hz, 1 H), 7.48–

7.42 (m, 2 H), 7.34 (ddd, J = 8.0, 7.3, 1.2 Hz, 1 H), 6.80 (dq, J = 3.4, 1.1 Hz, 1 H), 2.56 (d, J = 1.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.59, 153.66, 144.68, 134.79, 134.46, 128.84, 126.43, 126.27, 124.92, 122.70, 121.33, 15.67; HRMS (EI): m/z Calcd. For C₁₂H₉NS₂ [M]⁺: 231.0176; Found: 231.0149.

2-(5-Ethylthiophen-2-yl)benzo[*d*]thiazole: As brown oil which solidified at room temperature (PE:EA = 40:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ 8.00 (ddd, *J* = 8.2, 1.2, 0.6 Hz, 1 H), 7.82 (ddd, *J* = 7.9, 1.3, 0.6

Hz, 1 H), 7.50–7.41 (m, 2 H), 7.34 (ddd, J = 7.9, 7.3, 1.2 Hz, 1 H), 6.82 (dt, J = 3.7, 1.0 Hz, 1 H), 2.91 (qd, J = 7.5, 0.8 Hz, 2 H), 1.36 (t, J = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.69, 153.67, 152.37, 134.49, 134.40, 128.67, 126.27, 124.91, 124.62, 122.69, 121.34, 23.77, 15.69; HRMS (EI): m/z Calcd. For C₁₃H₁₁NS₂ [M]⁺: 245.0333; Found: 245.0325.

2-(5-Chlorothiophen-2-yl)benzo[*d*]**thiazole**²: As a pale yellow powder (PE:EA = 40:1 v:v); m.p. 103–105 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (ddd, *J* = 8.2, 1.2, 0.6 Hz, 1 H), 7.84 (ddd, *J* = 8.0, 1.2, 0.6 Hz, 1 H), 7.48

(ddd, *J* = 8.4, 7.3, 1.3 Hz, 1 H), 7.43–7.32 (m, 2 H), 6.96 (d, *J* = 4.0 Hz, 1 H); ¹³C NMR (100MHz, CDCl₃) δ 160.28, 153.41, 135.79, 134.43, 134.38, 127.62, 127.19, 126.52, 125.40, 122.96, 121.44; HRMS (EI): *m/z* Calcd. For C₁₁H₆CINS₂ [M]⁺: 250.9630; Found: 250.9621.

2-(5-Bromothiophen-2-yl)benzo[*d*]thiazole³: As a pale yellow powder (PE:EA = 40:1 v:v); m.p. 110–112 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (ddd, *J* = 8.1, 1.3, 0.6 Hz, 1 H), 7.85 (ddd, *J* = 7.9, 1.4, 0.6 Hz, 1 H), 7.48

(ddd, J = 8.3, 7.2, 1.4 Hz, 1 H), 7.41–7.33 (m, 2 H), 7.10 (d, J = 4.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 160.15, 153.45, 138.66, 134.44, 130.88, 128.43, 126.53, 125.43, 122.99, 121.45, 117.10; HRMS (EI): *m/z* Calcd. For C₁₁H₆BrNS₂ [M]⁺: 294.9125; Found: 294.9124.

2-(5-Phenylthiophen-2-yl)benzo[*d*]thiazole¹: As a yellow powder (PE:EA = 80:1 v:v); m.p. 156–158 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.08–7.99 (m, 1 H), 7.90–7.80 (m, 1 H), 7.71–7.65 (m, 2 H), 7.62 (d, *J* =

3.9 Hz, 1 H), 7.52–7.32 (m, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 161.28, 153.71, 148.19, 136.09, 134.66, 133.52, 129.55, 129.12, 128.49, 126.49, 125.97, 125.22, 123.92, 122.90, 121.47; HRMS (EI): *m/z* Calcd. For C₁₇H₁₁NS₂ [M]⁺: 293.0333; Found: 293.0038.

1-(5-(Benzo[*d*]thiazol-2-yl)thiophen-2-yl)ethanone⁴: As a pale yellow powder (PE:EA = 30:1 v:v); m.p. 188–190 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.20–7.96 (m, 1 H), 7.93–7.86 (m, 1 H), 7.70 (d, *J* = 4.0 Hz, 1 H), 7.65 (d,

J = 4.0 Hz, 1 H), 7.61–7.48 (m, 1 H), 7.50–7.36 (m, 1 H), 2.61 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 190.49, 160.05, 153.60, 146.01, 144.05, 135.12, 132.57, 128.47, 126.81, 125.97, 123.51, 121.62, 26.97; HRMS (EI): *m/z* Calcd. For C₁₃H₉NOS₂ [M]⁺: 259.0126; Found: 259.0120.

5-(Benzo[*d*]thiazol-2-yl)thiophene-2-carbaldehyde⁴: As a yellow powder (PE:EA = 10:1 v:v); m.p. 146–148 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.96 (s, 1 H), 8.08 (ddd, *J* = 8.1, 1.2, 0.6 Hz, 1 H), 7.88 (ddd, *J*

= 8.0, 1.2, 0.6 Hz, 1 H), 7.76 (d, J = 4.0 Hz, 1 H), 7.70 (d, J = 4.0 Hz, 1 H), 7.52 (ddd, J = 8.3, 7.2, 1.3 Hz, 1 H), 7.43 (ddd, J = 8.3, 7.2, 1.3 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 182.87, 159.65, 153.54, 145.48, 145.18, 136.19, 135.20, 128.41, 126.87, 126.13, 123.61, 121.61; HRMS (EI): m/z Calcd. For C₁₂H₇NOS₂ [M]⁺: 244.9969; Found: 244.9961.

Methyl 5-(benzo[d]thiazol-2-yl)thiophene-2-carboxylate⁵: As a pale yellow powder (PE:EA = 20:1 v:v); m.p. 162–164 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.06 (ddd, J = 8.2, 1.2, 0.6 Hz, 1 H), 7.88 (ddd, J

= 8.0, 1.3, 0.6 Hz, 1 H), 7.79 (d, *J* = 4.0 Hz, 1 H), 7.61 (d, *J* = 4.0 Hz, 1 H), 7.51 (ddd, *J* = 8.2, 7.3, 1.3 Hz, 1 H), 7.41 (ddd, *J* = 8.3, 7.2, 1.2 Hz, 1 H), 3.93 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.18, 160.06, 153.52, 143.02, 135.72, 134.95, 133.75, 128.11, 126.69, 125.81, 123.38, 121.54, 52.46; HRMS (EI): *m/z* Calcd. For C₁₃H₉NO₂S₂ [M]⁺: 275.0075; Found: 275.0066.

5-(Benzo[d]thiazol-2-yl)thiophene-2-carbonitrile¹: As a pale yellow

powder (PE:EA = 30:1 v:v); m.p. 176–178 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (ddd, J = 8.2, 1.3, 0.6 Hz, 1 H), 7.90 (ddd, J = 7.9, 1.4, 0.7 Hz, 1 H), 7.63 (d, J = 4.0 Hz, 1 H), 7.59 (d, J = 4.0 Hz, 1 H), 7.54 (ddd, J = 8.3, 7.2, 1.4 Hz, 1 H), 7.45 (ddd, J = 7.9, 7.2, 1.3 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 158.64, 153.33, 143.79, 137.86, 134.96, 127.44, 126.99, 126.29, 123.59, 121.66, 113.67, 112.01; HRMS (EI): *m/z* Calcd. For C₁₂H₆N₂S₂ [M]⁺: 241.9972; Found: 242.0001.

2-(Benzo[b]thiophen-2-yl)benzo[d]thiazole⁶: As a pale yellow powder (PE:EA = 100:1 v:v); m.p. 193–195 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.09 (ddd, J = 8.2, 1.2, 0.6 Hz, 1 H), 7.95–7.73 (m, 4 H), 7.50

(td, J = 8.3, 7.7, 1.3 Hz, 1 H), 7.45–7.33 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 161.48, 153.68, 140.82, 139.53, 137.14, 135.01, 126.58, 126.17, 125.63, 125.33, 125.00, 124.59, 123.34, 122.62, 121.54; HRMS (EI): m/z Calcd. For C₁₅H₉NS₂ [M]⁺: 267.0176; Found: 267.0169.

Tert-butyl2-(benzo[d]thiazol-2-yl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-carboxylate: As yellow oil which solidified atroom temperature (PE:EA = 10:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ

7.99 (ddd, J = 8.2, 1.2, 0.6 Hz, 1 H), 7.83 (ddd, J = 8.0, 1.3, 0.6 Hz, 1 H), 7.46 (ddd, J = 8.3, 7.3, 1.3 Hz, 1 H), 7.39–7.31 (m, 2 H), 4.52 (brs, 2 H), 3.76 (t, J = 5.5 Hz, 2 H), 2.90 (t, J = 5.5 Hz, 2 H), 1.50 (s, 9 H); **conformational isomer 1:** ¹³C NMR (125 MHz, CDCl₃) δ 161.26, 154.74, 153.62, 138.42, 134.76, 134.57, 133.38, 126.39, 125.13, 122.79, 121.41, 80.23, 44.12, 40.58, 28.47, 25.43; **conformational isomer 2:** ¹³C NMR (125 MHz, CDCl₃) δ 161.26, 154.74, 153.62, 137.95, 134.76, 134.57, 133.75, 126.39, 125.13, 122.79, 121.41, 80.23, 43.44, 41.80, 28.47, 25.31; HRMS (EI): *m/z* Calcd. For C₁₉H₂₀N₂O₂S₂ [M]⁺: 372.0966; Found: 372.0965.

2-(2-Methylthiazol-5-yl)benzo[*d*]thiazole⁷: As a pale yellow powder (PE:EA = 20:1 v:v); m.p. 123–125 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.15 (s, 1 H), 8.02 (ddd, *J* = 8.0, 1.2, 0.6 Hz, 1 H), 7.87 (ddd, *J* = 7.9, 1.3, 0.7

Hz, 1 H), 7.49 (ddd, J = 8.2, 7.2, 1.3 Hz, 1 H), 7.40 (ddd, J = 7.9, 7.2, 1.2 Hz, 1 H), 2.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.25, 158.37, 153.35, 142.78, 134.39, 132.60, 126.55, 125.59, 123.01, 121.49, 19.59; HRMS (EI): m/z Calcd. For C₁₁H₈N₂S₂ [M]⁺: 232.0129; Found: 232.0121.

2-(2-Isobutylthiazol-5-yl)benzo[*d*]thiazole: As colorless oil which solidified at room temperature (PE:EA = 20:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ 8.18 (s, 1 H), 8.02 (ddd, *J* = 8.2, 1.3, 0.7 Hz, 1 H), 7.86 (ddd, *J* =

7.9, 1.3, 0.6 Hz, 1 H), 7.48 (ddd, J = 8.3, 7.2, 1.3 Hz, 1 H), 7.39 (ddd, J = 8.3, 7.2, 1.3 Hz, 1 H), 2.93 (d, J = 7.2 Hz, 2 H), 2.17 (hept, J = 6.8 Hz, 1 H), 1.03 (d, J = 6.7 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 173.05, 169.31, 157.61, 152.92, 142.38, 134.12, 132.88, 126.26, 125.39, 122.74, 121.16, 69.39, 20.61, 20.34; HRMS (EI): m/z Calcd. For C₁₄H₁₄N₂S₂ [M]⁺: 274.0598; Found: 274.0604.

1-(5-(Benzo[*d*]thiazol-2-yl)thiazol-2-yl)ethyl acetate: As a pale yellow powder (PE:EA = 8:1 v:v); m.p. 108–109 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.22 (s, 1 H), 8.03 (ddd, *J* = 8.2, 1.2, 0.6 Hz, 1 H), 7.87

 $(ddd, J = 8.0, 1.3, 0.7 Hz, 1 H), 7.50 (ddd, J = 8.3, 7.3, 1.3 Hz, 1 H), 7.45 - 7.35 (m, 1 H), 6.18 (q, J = 6.6 Hz, 1 H), 2.18 (s, 3 H), 1.73 (d, J = 6.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) <math>\delta$ 173.24, 158.10, 152.97, 142.35, 134.00, 131.82, 126.14, 125.17, 122.60, 121.10, 42.22, 29.44, 21.85; HRMS (EI): *m/z* Calcd. For C₁₄H₁₂N₂O₂S₂ [M]⁺: 304.0340; Found: 304.0342.

5-(Benzo[*d*]**thiazol-2-yl)furan-2-carbaldehyde**⁸: As a brown powder (PE:EA = 30:1 v:v); m.p. 180–182 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.79 (s, 1 H), 8.10 (ddd, *J* = 8.2, 1.3, 0.7 Hz, 1 H), 7.95 (ddd, *J* = 8.0, 1.3,

0.7 Hz, 1 H), 7.54 (dd, J = 8.2, 1.4 Hz, 1 H), 7.46 (dd, J = 8.0, 1.3 Hz, 1 H), 7.39 (d, J = 3.8 Hz, 1 H), 7.35 (d, J = 3.8 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 177.87, 155.84, 153.63, 153.15, 152.78, 134.88, 126.92, 126.20, 123.69, 121.83, 121.60, 112.53; HRMS (EI): m/z Calcd. For C₁₂H₇NO₂S [M]⁺: 229.0197; Found: 229.0193.

2-(5-Ethylthiophen-2-yl)-6-methoxybenzo[*d*]thiazole: As a brown powder (PE:EA = 20:1 v:v); m.p. 74–76 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 9.0 Hz, 1 H), 7.41 (d, *J* = 3.7 Hz, 1 H), 7.29 (d, *J*

= 2.5 Hz, 1 H), 7.05 (dd, J = 8.9, 2.5 Hz, 1 H), 6.80 (dt, J = 3.7, 1.0 Hz, 1 H), 3.88 (s, 3 H), 2.90 (qd, J = 7.5, 1.0 Hz, 2 H), 1.36 (t, J = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 159.33, 157.55, 151.64, 148.15, 135.85, 134.55, 127.93, 124.47, 123.18, 115.30, 104.15, 55.75, 23.73, 15.70; HRMS (EI): m/z Calcd. For C₁₄H₁₃NOS₂ [M]⁺: 275.0439; Found: 275.0445.

2-(5-Ethylthiophen-2-yl)-6-methylbenzo[*d*]thiazole: As brown oil which solidified at room temperature (PE:EA = 40:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 1 H), 7.61 (dd, *J* = 1.8, 1.0 Hz,

1 H), 7.45 (d, J = 3.7 Hz, 1 H), 7.26 (dd, J = 8.2, 1.9 Hz, 1 H), 6.81 (dt, J = 3.7, 1.0 Hz, 1 H), 2.90

(qd, *J* = 7.6, 1.0 Hz, 2 H), 2.47 (s, 3 H), 1.36 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 160.69, 151.99, 151.75, 135.06, 134.64, 134.56, 128.28, 127.80, 124.52, 122.19, 121.13, 23.75, 21.50, 15.71; HRMS (EI): *m/z* Calcd. For C₁₄H₁₃NS₂ [M]⁺: 259.0489; Found: 259.0486.

2-(5-Ethylthiophen-2-yl)-6-fluorobenzo[*d*]**thiazole:** As a pale yellow powder (PE:EA = 40:1 v:v); m.p. 102–103 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (dd, *J* = 9.0, 4.8 Hz, 1 H), 7.51 (dd, *J* = 8.1, 2.6 Hz,

1 H), 7.45 (d, J = 3.7 Hz, 1 H), 7.18 (td, J = 9.0, 2.6 Hz, 1 H), 6.82 (dt, J = 3.7, 1.0 Hz, 1 H), 2.91 (qd, J = 7.5, 1.0 Hz, 2 H), 1.36 (t, J = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.39 (d, J = 3.4 Hz, C–CH–CH–CF), 160.26 (d, J = 246.0 Hz, C–F), 152.48, 150.27, 135.46 (d, J = 10.8 Hz, C–CH–CF), 134.04, 128.69, 124.64, 123.50 (d, J = 9.4 Hz, CH–CH–CF), 114.76 (d, J = 24.7 Hz, CH–CF), 107.66 (d, J = 26.8 Hz, CH–CF), 23.75, 15.67; HRMS (EI): m/z Calcd. For C₁₃H₁₀FNS₂ [M]⁺: 263.0239; Found: 263.0241.

6-Chloro-2-(5-ethylthiophen-2-yl)benzo[*d*]**thiazole:** As a pale yellow powder (PE:EA = 40:1 v:v); m.p. 138–142 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, *J* = 8.7 Hz, 1 H), 7.79 (d, *J* = 2.1 Hz, 1 H), 7.47

(d, J = 3.7 Hz, 1 H), 7.40 (dd, J = 8.7, 2.1 Hz, 1 H), 6.83 (dt, J = 3.7, 1.0 Hz, 1 H), 2.91 (qd, J = 7.5, 1.0 Hz, 2 H), 1.36 (t, J = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.10, 152.88, 152.24, 135.66, 133.91, 130.62, 128.99, 127.02, 124.72, 123.32, 120.93, 23.78, 15.65; HRMS (EI): m/z Calcd. For C₁₃H₁₀ClNS₂ [M]⁺: 278.9943; Found: 278.9925.

6-Bromo-2-(5-ethylthiophen-2-yl)benzo[*d*]**thiazole:** As a pale yellow powder (PE:EA = 40:1 v:v); m.p. 136–138 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 1.9 Hz, 1 H), 7.83 (d, *J* = 8.7 Hz, 1 H), 7.54

(dd, J = 8.7, 2.0 Hz, 1 H), 7.48 (d, J = 3.7 Hz, 1 H), 6.83 (dt, J = 3.8, 1.0 Hz, 1 H), 2.91 (qd, J = 7.5, 0.9 Hz, 2 H), 1.36 (t, J = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.12, 152.99, 152.58, 136.12, 133.86, 129.75, 129.05, 124.75, 123.85, 123.71, 118.24, 23.79, 15.66; HRMS (EI): m/z Calcd. For C₁₃H₁₀BrNS₂ [M]⁺: 322.9438; Found: 322.9440.

4,6-Dichloro-2-(5-ethylthiophen-2-yl)benzo[*d*]**thiazole:** As a brown powder (PE:EA = 40:1 v:v); m.p. 103–105 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 2.0 Hz, 1 H), 7.50 (d, *J* = 3.8 Hz, 1 H), 7.47 (d, *J* = 2.0 Hz, 1 H), 6.83 (dt, *J* = 3.7, 1.0 Hz, 1 H), 2.91 (qd, *J* = 7.7,

1.1 Hz, 2 H), 1.36 (t, J = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.66, 153.67, 149.54, 136.56, 133.55, 130.42, 129.51, 127.80, 126.97, 124.82, 119.53, 23.82, 15.64; HRMS (EI): m/z Calcd. For C₁₃H₉Cl₂NS₂ [M]⁺: 312.9553; Found: 312.9555.

2-(5-Ethylthiophen-2-yl)-6-phenylbenzo[*d*]thiazole: As a pale yellow powder (PE:EA = 40:1 v:v); m.p. 126–128 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.10–8.01 (m, 2 H), 7.75–7.62 (m, 3 H), 7.54–7.44 (m,

3 H), 7.39 (t, J = 7.3 Hz, 1 H), 6.85 (dt, J = 3.7, 1.0 Hz, 1 H), 2.94 (dt, J = 7.4, 1.1 Hz, 2 H), 1.39 (t, J = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 161.84, 153.02, 152.49, 140.54, 138.33, 135.29, 134.43, 128.86, 128.70, 127.42, 127.28, 125.94, 124.66, 122.73, 119.60, 23.79, 15.70; HRMS (EI): m/z Calcd. For C₁₉H₁₅NS₂ [M]⁺: 321.0646; Found: 321.0645.

Ethyl 2-(5-ethylthiophen-2-yl)benzo[d]thiazole-6-carboxylate: As a pale yellow powder (PE:EA = 20:1 v:v); m.p. 122–124 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.55 (dd, J = 1.7, 0.6 Hz, 1 H), 8.13 (dd,

J = 8.6, 1.7 Hz, 1 H), 7.99 (dd, J = 8.6, 0.6 Hz, 1 H), 7.54 (d, J = 3.8 Hz, 1 H), 6.85 (dt, J = 3.7, 1.0 Hz, 1 H), 4.42 (q, J = 7.1 Hz, 2 H), 2.92 (qd, J = 7.4, 0.8 Hz, 2 H), 1.43 (t, J = 7.1 Hz, 3 H), 1.37 (t, J = 7.5 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.08, 164.85, 156.64, 153.54, 134.39, 133.97, 129.59, 127.59, 126.88, 124.89, 123.43, 122.17, 61.19, 23.81, 15.63, 14.34; HRMS (EI): m/z Calcd. For C₁₆H₁₅NO₂S₂ [M]⁺: 317.0544; Found: 317.0546.

2-(5-Ethylthiophen-2-yl)-6-(trifluoromethyl)benzo[*d*]thiazole: As a pale yellow powder (PE:EA = 40:1 v:v); m.p. 139–142 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.13–8.09 (m, 1 H), 8.05 (dd, *J* = 8.8, 1.0 Hz, 1

H), 7.71–7.65 (m, 1 H), 7.54 (d, J = 3.7 Hz, 1 H), 6.86 (dt, J = 3.8, 0.9 Hz, 1 H), 2.92 (qd, J = 7.6, 0.9 Hz, 2 H), 1.37 (t, J = 7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 164.53 , 155.69 , 153.67 , 134.56 , 133.69 , 129.69 , 126.87 (q, J = 32.4 Hz, C–CF₃), 123.90 (q, J = 272.2 Hz, C–F₃) , 124.90 , 123.31 (q, J = 3.5 Hz, CH–C–CF₃), 122.80 , 118.95 (q, J = 4.2 Hz, CH–C–CF₃), 23.80, 15.61; HRMS (EI): m/z Calcd. For C₁₄H₁₀F₃NS₂: [M]⁺: 313.0207; Found: 313.0201.

2-(5-Eethylthiophen-2-yl)-1-methyl-1*H***-benzo**[*d*]**imidazole**: As brown oil which solidified at room temperature (PE:EA = 8:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ 7.81–7.75 (m, 1 H), 7.39 (d, *J* = 3.7 Hz, 1 H), 7.37–7.32 (m,

1 H), 7.32–7.26 (m, 2 H), 6.88 (dt, *J* = 3.7, 0.8 Hz, 1 H), 3.98 (s, 3 H), 2.92 (qd, *J* = 7.5, 0.8 Hz, 2

H), 1.37 (t, J = 7.5 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 151.17, 148.17, 142.85, 136.51, 129.69, 127.78, 124.29, 122.59, 122.42, 119.53, 109.19, 31.58, 23.50, 15.80; HRMS (EI): m/z Calcd. For C₁₄H₁₄N₂S: [M]⁺: 242.0878; Found: 242.0885.

2-(5-Ethylthiophen-2-yl)benzo[*d*]**oxazole:** As brown oil which solidified at room temperature (PE:EA = 30:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J* = 3.7 Hz, 1 H), 7.72–7.68 (m, 1 H), 7.55–7.49 (m, 1 H),

7.34–7.29 (m, 2 H), 6.88 (d, J = 3.7 Hz, 1 H), 2.93 (q, J = 7.4 Hz, 2 H), 1.37 (t, J = 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 159.20, 153.43, 150.34, 142.08, 130.06, 126.61, 124.87, 124.71, 124.54, 119.56, 110.25, 23.71, 15.66; HRMS (EI): m/z Calcd. For C₁₃H₁₁NS: [M]⁺: 229.0561; Found: 229.0558.

2-(5-Ethylthiophen-2-yl)-4,5-dimethylthiazole: As brown oil which solidified at room temperature (PE:EA = 40:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ 7.19 (d, *J* = 3.6 Hz, 1 H), 6.71 (dt, *J* = 3.6, 1.0 Hz, 1 H), 2.84 (qd, *J*

= 7.5, 1.1 Hz, 2 H), 2.34 (s, 3 H), 2.32 (s, 3 H), 1.31 (t, J = 7.5 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 157.53, 149.36, 148.51, 134.96, 125.40, 125.06, 124.09, 23.60, 15.77, 14.69, 11.37. HRMS (EI): m/z Calcd. For C₁₁H₁₃NS₂: [M]⁺: 223.0489; Found: 223.0480.

2-(2-Isobutylthiazol-5-yl)-6-methoxybenzo[*d*]**thiazole:** As pale yellow oil which solidified at room temperature (PE:EA = 15:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1 H), 7.89 (d, *J* = 8.9 Hz, 1 H),

7.31 (d, J = 2.5 Hz, 1 H), 7.07 (dd, J = 9.0, 2.5 Hz, 1 H), 3.88 (s, 3 H), 2.92 (d, J = 7.2 Hz, 2 H), 2.16 (hept, J = 13.5, 6.8 Hz, 1 H), 1.03 (dd, J = 6.6, 0.7 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 173.01, 158.01, 155.97, 147.90, 142.06, 135.88, 132.35, 123.50, 115.79, 104.03, 55.77, 42.60, 29.83, 22.25; HRMS (EI): m/z Calcd. For C₁₅H₁₆N₂OS₂: [M]⁺: 304.0704; Found: 304.0701.

6-Fluoro-2-(2-isobutylthiazol-5-yl)benzo[*d*]**thiazole:** As a pale yellow powder (PE:EA = 20:1 v:v); m.p. 68–69 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.15 (s, 1 H), 7.96 (dd, *J* = 9.0, 4.8 Hz, 1 H), 7.55 (dd, *J* = 8.0,

2.6 Hz, 1 H), 7.22 (td, J = 9.0, 2.6 Hz, 1 H), 2.93 (d, J = 7.2 Hz, 2 H), 2.17 (hept, J = 13.6, 6.8 Hz, 1 H), 1.03 (d, J = 6.6 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 173.73, 160.59 (d, J = 246.7 Hz), 158.22 (d, J = 3.6 Hz), 150.02, 142.78, 135.45 (d, J = 11.3 Hz), 131.88, 123.91 (d, J = 9.3 Hz), 115.19 (d, J = 24.7 Hz), 107.81 (d, J = 27.0 Hz), 42.62, 29.83, 22.24; HRMS (EI): m/z Calcd. For C₁₄H₁₃FN₂S₂: [M]⁺: 292.0504; Found: 292.0508.

6-Chloro-2-(2-isobutylthiazol-5-yl)benzo[*d*]thiazole: As a pale yellow powder (PE:EA = 20:1 v:v); m.p. 90–91 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.17 (s, 1 H), 7.92 (dd, *J* = 8.7, 0.5 Hz, 1 H), 7.84 (dd,

J = 2.1, 0.5 Hz, 1 H), 7.45 (dd, J = 8.7, 2.1 Hz, 1 H), 2.94 (d, J = 7.2 Hz, 2 H), 2.17 (hept, J = 13.6, 6.7 Hz, 1 H), 1.04 (d, J = 6.6 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ 174.00, 158.91, 151.92, 143.04, 135.57, 131.78, 131.41, 127.35, 123.65, 121.09, 42.63, 29.83, 22.25; HRMS (EI): m/z Calcd. For C₁₄H₁₃ClN₂S₂: [M]⁺: 308.0209; Found: 308.0204.

4,4',5,5'-Tetramethyl-2,2'-bithiazole⁹: As a pale yellow powder (PE:EA = 40:1 v:v); ¹H NMR (300 MHz, CDCl₃) δ 2.39 (q, *J* = 0.8 Hz, 6 H), 2.36 (q, *J* = 0.7 Hz, 6 H); LRMS (ESI): m/z 225 [M+H]⁺.

The H/D exchange experiment for 1a

To a solution of **1a** (1.0 mmol, 1.0 equiv) in DMSO (2.0 mL), $Pd(OAc)_2$ (10 mol%) and D_2O (1.0 mL) was added, and the mixture was heated at 110 °C for 10 h. After cooling, the reaction solution was washed with saturated brine and extracted with ethyl acetate three times. The combined organic fractions were dried over anhydrous Na_2SO_4 and concentrated under vacuum to yield the crude product. **1a-[D₁]** was detected by LC-MS, and the ratio of **1a** and **1a-[D₁]** was determined by ¹H NMR analysis of the crude product.

Print of window 80: MS Spectrum

Copy of low-resolution mass spectrum (ESI) of 1a

Print of window 80: MS Spectrum

H¹ NMR spectrum of the crude product

Kinetic isotope experiments

Preparation of 2-deutero-benzothiazole (1a-[D₁])¹⁰: A stirred solution of benzothiazole **1a** (10 mmol) in dry THF (10 mL) under nitrogen was cooled to -78 °C and 12 mmol *n*BuLi in hexane was added dropwise. 2-Lithiobenzothiazole was immediately formed. This orange-colored anion solution was quickly quenched at -78 °C with CD₃OD (1.0 mL) after the addition of *n*BuLi. The suspension was extracted with water and ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated in vacuum. After purification by column chromatography on silica gel with petroleum ether /ethyl acetate (PE:EA = 20:1 v:v), the desired products were obtained in 95% yield as pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 8.15 (ddd, J = 7.9, 1.3, 0.7 Hz, 1 H), 7.97 (ddd, J = 7.9, 1.4, 0.7 Hz, 1 H), 7.57–7.49 (m, 1 H), 7.48–7.41 (m, 1 H); MS (ESI): m/z 137 [M+H]⁺.

Preparation of 2-deutero-benzothiophene (2j-[D₁])¹¹: A stirred solution of benzothiophene **2j** (10 mmol) in dry THF (10 mL) under nitrogen was cooled to -78 °C and 12 mmol *n*BuLi in hexane was added dropwise. CD₃OD (1.0 mL) was added to the reaction system after reacting for 1 h. The suspension was extracted with water extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated in vacuum. After purification by column chromatography on silica gel with petroleum ether /ethyl acetate (PE:EA = 20:1 v:v), the desired products were obtained in 97% yield as colorless oil which solidified at room temperature; ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.79 (m, 2 H), 7.41–7.30 (m, 3 H); MS (EI): m/z 135 [M]⁺.

Two sets of reactions were carried out in a parallel manner. In each case benzothiophene 2j (4.0 mmol) was allowed to react with benzothiazole 1a (1.0 mmol) and 2-deuterio-benzothiazole 1a- $[D_1]$ (1.0 mmol), respectively. The sealed tubes were screw capped and heated to 110 °C. After being stirred for 8 h, the reaction mixture was cooled to room temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, washed with 80 mL of CH₂Cl₂. The combined organic extracts were concentrated. The yield of **3aj** was determined by LC-MS.

Two sets of reactions were carried out in a parallel manner. In each case benzothiazole **1a** (4.0 mmol) was allowed to react with benzothiophene **2j** (1.0 mmol) and 2-deuterio-benzothiophene **2j-[D₁]** (1.0 mmol), respectively. The sealed tubes were screw capped and heated to 110 °C. After being stirred for 8 h, the reaction mixture was cooled to room temperature, diluted with 20 mL of CH_2Cl_2 , filtered through a celite pad, washed with 80 mL of CH_2Cl_2 . The combined organic extracts were concentrated. The yield of **3aj** was determined by LC-MS.

References

1. S. P. Costa, A. M. Oliveira-Campos, J. A. Ferreira and G. Kirsch, J. Chem. Res. (S), 1997, 314.

- 2. F. Derridj, A. L. Gottumukkala, S. Djebbar and H. Doucet, *Eur. J. Inorg. Chem.*, 2008, 2008, 2550.
- C. Siddappa, V. Kambappa, M. Umashankara and K. S. Rangappa, *Tetrahedron Lett.*, 2011, 52, 5474.
- 4. A. A. Aleksandrov and M. M. El'chaninov, *Russ. J. Appl. Chem.*, 2010, **83**, 1602.
- 5. A. E. Siegrist, E. Maeder, P. Liechti and L. Guglielmetti, **1966**, *US3268543*.
- 6. M. A. Oberli and S. L. Buchwald, *Org. Lett.*, 2012, **14**, 4606.
- 7. V. M. Zubarovskii, Zh. Obshch. Khim., 1959, 29, 2018.
- L. C. Bencze, C. Paizs, M. I. Tosa, M. Trif and F. D. Irimie, *Tetrahedron: Asymmetry*, 2010, 21, 1999.
- 9. W. Han, P. Mayer and A. R. Ofial, Angew. Chem. Int. Edit., 2011, 50, 2178.
- 10. Q. Liu, P. Wu, Y. Yang, Z. Zeng, J. Liu, H. Yi and A. Lei, *Angew. Chem. Int. Edit.*, 2012, **51**, 4666.
- 11. N. Kuhl, M. N. Hopkinson and F. Glorius, Angew. Chem. Int. Edit., 2012, 51, 8230.

¹H NMR, ¹³C NMR and HSQC spectra

3ab

3ad

3ae

3af

3ag

3ah

18.64 18.78 18.78 19.78 19.78 19.74 19.78 19

3ai

3ak

3al

3bb

S40

1a-[D₁]

