Supporting information

Tryptoline-3-hydroxypyridinaldoxime conjugates as efficientreactivators of phosphorylated human acetyl andbutyrylcholinesterases
Julien Renou, Mélanie Loiodice, Mélanie Arboléas, Rachid Baati, Ludovic Jean ${ }^{*}$, Florian
Nachon and Pierre-Yves Renard*
Table of contents

1. Chemistry 2
2. Biological assays 9
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 15

1. Chemistry

General. Column chromatography purifications were performed on Merck silica gel (40-63 $\mu \mathrm{m}$). Thin-layer chromatography (TLC) was carried out on Merck DC Kieselgel 60 F-254 aluminium sheets. Compounds were visualized by illumination with a short wavelength UV lamp $(\lambda=254 \mathrm{~nm})$. All solvents were dried following standard procedures $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}\right.$: distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$, DMF: distillation over BaO under reduced pressure, THF: distillation over $\mathrm{Na} /$ benzophenone). Triethylamine was distilled from CaH_{2} and stored over BaO or KOH . ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DPX 300 spectrometer (Bruker, Wissembourg, France). Chemical shifts are expressed in parts per million (ppm) from CDCl_{3} $\left(\delta_{\mathrm{H}}=7.26, \delta_{\mathrm{C}}=77.16\right), \mathrm{MeOD}\left(\delta_{\mathrm{H}}=3.31, \delta_{\mathrm{C}}=49.00\right)$ or DMSO ($\left.\delta_{\mathrm{H}}=2.50, \delta_{\mathrm{C}}=39.52\right) .{ }^{1} \mathrm{~J}$ values are expressed in Hz. Residual solvents contained in NMR sample were indicated on spectra. Mass spectra were obtained with a Finnigan LCQ Advantage MAX (ion trap) apparatus equipped with an electrospray source. All analyses were performed in the positive mode.

All final oximes were confirmed to be $\geq 95 \%$ purity based on HPLC analysis. Analytical HPLC was performed on a Thermo Electron Surveyor instrument equipped with a PDA detector under the following conditions: Thermo Hypersil GOLD C18 column ($5 \mu \mathrm{~m}, 4.6 \mathrm{x}$ 100 mm) with MeOH and 0.1% aq. trifluoroacetic acid (TFA) as eluents $[0.1 \%$ aq. TFA/MeOH ($90 / 10$) (5 min), followed by linear gradient from 10% to 100% of $\mathrm{MeOH}(45$ min)] at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ and UV detection Max Plot 220-360 nm.

Methyl 3-benzyloxy-6-bromopicolinate 6

6
$\mathrm{H}_{2} \mathrm{SO}_{4}$ ($1.8 \mathrm{~mL}, 31.5 \mathrm{mmol}, 3$ equiv.) was added dropwise to a suspension of 3hydroxypicolinic acid $(1.5 \mathrm{~g}, 10.5 \mathrm{mmol})$ in $\mathrm{MeOH}(24 \mathrm{~mL})$. The mixture was refluxed for 24 h. Then, the mixture was neutralized with an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{pH} 8.5)$. The aqueous layer was extracted with EtOAc (thrice). The organic layer was dried over MgSO_{4} and concentrated under reduced pressure to give methyl 3-hydroxypicolinate ($1.28 \mathrm{~g}, 80 \%$) as a white solid. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in agreement with those given in the literature. ${ }^{1}$

At $0^{\circ} \mathrm{C}, \mathrm{Br}_{2}(335 \mu \mathrm{~L}, 6.5 \mathrm{mmol})$ was added portionwise $(4 \times 84 \mu \mathrm{~L}$ in 2 h$)$ to a suspension of previous methyl ester $(1 \mathrm{~g}, 6.5 \mathrm{mmol})$ in water $(40 \mathrm{~mL})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h then 15 h at rt . The solution was extracted with dichloromethane (thrice). The organic layer was washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by chromatography on silica gel (cylohexane/EtOAc 8/2, v/v) afforded methyl 6-bromo-3-hydroxypicolinate ($796 \mathrm{mg}, 53 \%$) as a white powder. $\mathrm{R} f=0.45$ (cylohexane/EtOAc $8 / 2, \mathrm{v} / \mathrm{v}) .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 4.07(\mathrm{~s}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (dd, $J=0.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 10.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.5\left(\mathrm{CH}_{3}\right), 129.5$ (CH), 130.0 (C), 130.7 (C), $134.5(\mathrm{CH}), 158.5(\mathrm{C}), 169.1$ (C). MS (ESI+): $m / z(\%): 234$ (85) and 232 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

Benzyl bromide ($770 \mu \mathrm{~L}, 6.3 \mathrm{mmol}, 3$ equiv.) was slowly added to a mixture of previous compound ($500 \mathrm{mg}, 2.1 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g}, 10.8 \mathrm{mmol}, 4.5$ equiv.) in acetone (30 mL). The solution was refluxed for 15 h . The resulting mixture was filtered and concentrated under reduced pressure. Purification by chromatography on silica gel (cyclohexane/EtOAc 9/1, v/v) gave $6(631 \mathrm{mg}, 93 \%)$ as a white solid. $\mathrm{R} f=0.3$ (cyclohexane/EtOAc 8/2, v/v). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.98(\mathrm{~s}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 5 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 52.9\left(\mathrm{CH}_{3}\right), 71.2\left(\mathrm{CH}_{2}\right), 125.0(\mathrm{CH})$, $126.9(2 \times \mathrm{CH}), 128.4(\mathrm{CH}), 128.8(2 \times \mathrm{CH}), 131.2(\mathrm{C}), 131.4(\mathrm{CH}), 135.2(\mathrm{C}), 139.8(\mathrm{C})$, 154.0 (C), 164.0 (C). MS (ESI+): $m / z(\%): 324$ (85) and $322(100)[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 3-(benzyloxy)-6-(4-hydroxybut-1-ynyl)picolinate 9

9

To a solution of methyl 3-(benzyloxy)-6-bromopicolinate 6 ($800 \mathrm{mg}, 2.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(13 \mathrm{~mL})$ was added 3-butyn-1-ol ($174 \mathrm{mg}, 2.48 \mathrm{mmol}$). The resulting mixture was degassed for 15 min . $\mathrm{CuI}\left(47 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.1\right.$ equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(143$ $\mathrm{mg}, 0.12 \mathrm{mmol}, 0.05$ equiv.) were then poured and the solution was stirred under argon at rt overnight. The reaction mixture was concentrated under reduced pressure. Purification by chromatography on silica gel (cyclohexane/EtOAc $4 / 6$ to $3 / 7, \mathrm{v} / \mathrm{v}$) afforded the desired

[^0]product 9 as a yellow solid ($770 \mathrm{mg}, 99 \%$). $\mathrm{R} f=0.15$ (cyclohexane/EtOAc 4/6, v/v). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 2.66(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 4.29-4.35(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.44(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.8\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{CH}_{2}\right), 70.9\left(\mathrm{CH}_{2}\right), 80.6(\mathrm{C}), 87.4(\mathrm{C}), 121.9(\mathrm{CH}), 126.9(2 \mathrm{x}$ CH), 128.3 (CH), 128.8 ($2 \times \mathrm{CH}$), 130.1 (CH), 135.0 (C), 135.5 (C), 139.9 (C), 153.2 (C), 164.8 (C). MS (ESI+): $m / z(\%): 312(100)[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 3-(benzyloxy)-6-(5-hydroxypent-1-ynyl)picolinate 10

10

To a solution of methyl 3-(benzyloxy)-6-bromopicolinate 6 ($800 \mathrm{mg}, 2.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(13 \mathrm{~mL})$ was added 4-pentyn-1-ol ($208 \mathrm{mg}, 2.48 \mathrm{mmol}$). The resulting mixture was degassed for 15 min . $\mathrm{CuI}\left(47 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.1\right.$ equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(143$ $\mathrm{mg}, 0.12 \mathrm{mmol}, 0.05$ equiv.) were then poured and the solution was stirred under argon at rt overnight. The reaction mixture was concentrated under reduced pressure. Purification by flash chromatography (cyclohexane/EtOAc $5 / 5$ to $4 / 6, \mathrm{v} / \mathrm{v}$) afforded the desired product $\mathbf{1 0}$ as a yellow solid ($800 \mathrm{mg}, 99 \%$). $\mathrm{R} f=0.16$ (cyclohexane/EtOAc 4/6, v/v). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.86(\mathrm{qt}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.54(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.96(\mathrm{~s}, 3 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.9$ $\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right), 61.4\left(\mathrm{CH}_{2}\right), 70.9\left(\mathrm{CH}_{2}\right), 79.6(\mathrm{C}), 89.8(\mathrm{C}), 121.9(\mathrm{CH}), 127.0$ $(2 \times \mathrm{CH}), 128.3(\mathrm{CH}), 128.8(2 \mathrm{x} \mathrm{CH}), 130.1(\mathrm{CH}), 135.4(\mathrm{C}), 135.6(\mathrm{C}), 140.0(\mathrm{C}), 153.0$ (C), 164.9 (C). MS (ESI+): $m / z(\%): 326(100)[\mathrm{M}+\mathrm{H}]^{+}, 348(95)[\mathrm{M}+\mathrm{Na}]^{+}$and 673 (100) $[2 \mathrm{M}+\mathrm{Na}]^{+}$.

Methyl 3-(benzyloxy)-6-(4-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)but-1ynyl)picolinate 11

To a mixture of methyl 3-(benzyloxy)-6-(4-hydroxybut-1-ynyl)picolinate 9 ($771 \mathrm{mg}, 2.5$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL}, 7.5 \mathrm{mmol}, 3$ equiv.) and $\mathrm{MsCl}(290 \mu \mathrm{~L}$, $3.8 \mathrm{mmol}, 1.5$ equiv.). The mixture was stirred at reflux for 4 h . The resulting solution was cooled to rt and filtrated under Celite.

The crude product was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ with 2,3,4,9-tetrahydro- 1 H -pyrido[3,4b]indole 5 ($430 \mathrm{mg}, 2.5 \mathrm{mmol}, 1$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g}, 7.5 \mathrm{mmol}, 3$ equiv.). The solution was heated under reflux for 24 h and then cooled at rt . Salts were filtrated. Concentration under reduced pressure and purification by flash chromatography (cyclohexane/EtOAc 1/9, v / v) afforded the desired product 11 as a brown solid ($389 \mathrm{mg}, 34 \%$). $\mathrm{R} f=0.21$ (cyclohexane/EtOAc 1/9, v/v). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 2.71(\mathrm{t}, \mathrm{J}=14.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.81-2.84 (m, 2H), 2.91-2.95 (m, 4H), $3.82(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.15(\mathrm{~m}$, 2H), 7.25-7.48 (m, 9H), 8.00 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.6\left(\mathrm{CH}_{2}\right), 21.2$ $\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{2}\right), 51.1\left(\mathrm{CH}_{2}\right), 52.8\left(\mathrm{CH}_{3}\right), 55.6\left(\mathrm{CH}_{2}\right), 71.0\left(\mathrm{CH}_{2}\right), 80.3(\mathrm{C}), 88.7(\mathrm{C}), 108.2$ $(\mathrm{C}), 110.9(\mathrm{CH}), 118.0(\mathrm{CH}), 119.3(\mathrm{CH}), 121.4(\mathrm{CH}), 121.9(\mathrm{CH}), 127.0(2 \times \mathrm{CH}), 127.3(\mathrm{C})$, $128.4(\mathrm{CH}), 128.9(2 \mathrm{x} \mathrm{CH}), 130.1(\mathrm{CH}), 131.7(\mathrm{C}), 135.4(\mathrm{C}), 135.6(\mathrm{C}), 136.2(\mathrm{C}), 140.0$ (C), 153.2 (C), 165.0 (C). MS (ESI+): $m / z(\%): 466(100)[M+H]^{+}, 931(33)[2 \mathrm{M}+\mathrm{H}]^{+}$.

Methyl 3-(benzyloxy)-6-(5-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)pent-1ynyl)picolinate 12

12

To a mixture of methyl 3-(benzyloxy)-6-(5-hydroxypent-1-ynyl)picolinate 10 ($800 \mathrm{mg}, 2.5$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL}, 7.5 \mathrm{mmol}, 3$ equiv.) and $\mathrm{MsCl}(290 \mu \mathrm{~L}$, $3.8 \mathrm{mmol}, 1.5$ equiv.). The mixture was stirred at reflux for 4 h . The resulting solution was cooled to rt and filtrated under Celite.

The crude product was placed in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ with $2,3,4,9$-tetrahydro- 1 H -pyrido[3,4b]indole 5 ($430 \mathrm{mg}, 2.5 \mathrm{mmol}$, 1 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g}, 7.5 \mathrm{mmol}, 3$ equiv.). The solution was heated under reflux for 24 h and then cooled at rt . Salts were removed by filtration. Concentration under reduced pressure and purification by flash chromatography (cyclohexane/EtOAc 1/9, v/v to 100% EtOAc) afforded the desired product 12 as orange oil ($458 \mathrm{mg}, 38 \%$). $\mathrm{R} f=0.14$ (cyclohexane/EtOAc $1 / 9, \mathrm{v} / \mathrm{v}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 1.81 (qt, J = 6.9 Hz, 2H), $2.45(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.63 (t, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.81$ $(\mathrm{m}, 4 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.43(\mathrm{~m}, 9 \mathrm{H}), 8.62$ (br s, 1 H$).{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.4\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right)$, $51.2\left(\mathrm{CH}_{2}\right), 52.8\left(\mathrm{CH}_{3}\right), 56.7\left(\mathrm{CH}_{2}\right), 70.7\left(\mathrm{CH}_{2}\right), 77.6(\mathrm{C}), 90.3(\mathrm{C}), 107.9(\mathrm{C}), 110.9(\mathrm{CH})$, $117.9(\mathrm{CH}), 118.6(\mathrm{CH}), 119.0(\mathrm{CH}), 121.1(\mathrm{CH}), 121.9(\mathrm{CH}), 126.9(2 \times \mathrm{CH}), 127.2(\mathrm{C})$, $128.3(\mathrm{CH}), 128.8(2 \times \mathrm{CH}), 130.2(\mathrm{CH}), 132.2$ (C), 135.4 (C), 135.5 (C), 136.2 (C), 139.8 (C), 153.0 (C), 165.0 (C). MS (ESI+): $m / z(\%): 480$ (100) [M+H] ${ }^{+}$.

6-(4-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)butyl)-3-hydroxypicolinaldehyde 13

13

Methyl 3-(benzyloxy)-6-(4-(3,4-dihydro-1 H -pyrido[3,4-b]indol-2(9H)-yl)but-1ynyl)picolinate 11 ($389 \mathrm{mg}, 0.84 \mathrm{mmol}$) was dissolved in degassed mixture of MeOH (40 mL) and EtOAc (20 mL). Pearlman's catalyst ($480 \mathrm{mg}, 0.19 \mathrm{mmol}, 0.4$ equiv., $20 \% \mathrm{Pd}$, moisture 50%) was added and the solution was bubbled with H_{2} and the reaction was stirred at rt under H_{2} atmosphere (1 atm) for 24 h . The mixture was filtrated through Celite and concentrated under reduced pressure.

To a solution of crude product in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ were successively added 2,6-lutidine ($209 \mu \mathrm{~L}, 1.8 \mathrm{mmol}, 3$ equiv.) and TBDMSOTf ($413 \mu \mathrm{~L}, 1.8 \mathrm{mmol}, 3$ equiv.). The mixture was stirred at rt for 4 h under argon atmosphere. The mixture was washed with NaCl sat., dried over MgSO_{4} and concentrated under reduced pressure.

To a solution of the resulting residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added dropwise DIBAL-H ($1.8 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.8 \mathrm{mmol}, 3$ equiv.) at $-78^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred
at this temperature for 12 min . The reaction was quenched with $\mathrm{MeOH}(1.8 \mathrm{~mL})$ and the mixture was allowed to warm at rt. The organic layer was washed with an aqueous solution of $\mathrm{NaOH}(1 \mathrm{M})$, dried over MgSO_{4} and concentrated under reduced pressure.

Then, TBAF ($650 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF, $0.65 \mathrm{mmol}, 1.1$ equiv.) was added at $0^{\circ} \mathrm{C}$ to the residue in dry THF (6 mL) and the mixture was stirred for 2 h at this temperature. After concentration under reduced pressure, a chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{MeOH} 9 / 1$, v/v) afforded 13 as a yellow solid ($60 \mathrm{mg}, 29 \%$). $\mathrm{R} f=0.58$ ($\mathrm{EtOAc} / \mathrm{MeOH} 9 / 1$, v/v). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 1.61-1.66 (m, 2H), 1.75-1.80(m, 2H), $2.57(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.87(\mathrm{~m}$, $6 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.26(\mathrm{~s}, 3 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 10.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 37.1$ $\left(\mathrm{CH}_{2}\right), 50.3\left(\mathrm{CH}_{2}\right), 51.0\left(\mathrm{CH}_{2}\right), 57.4\left(\mathrm{CH}_{2}\right), 108.2(\mathrm{C}), 110.8(\mathrm{CH}), 118.0(\mathrm{CH}), 119.3(\mathrm{CH})$, $121.3(\mathrm{CH}), 126.5(\mathrm{CH}), 127.2(\mathrm{C}), 129.8(\mathrm{CH}), 131.7(\mathrm{C}), 135.7(\mathrm{C}), 136.2(\mathrm{C}), 154.7(\mathrm{C})$, 157.1 (C), 198.7 (C). MS (ESI+): $m / z(\%): 350(100)[\mathrm{M}+\mathrm{H}]^{+}$.

6-(5-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)pentyl)-3-hydroxypicolinaldehyde 14

14
Methyl 3-(benzyloxy)-6-(5-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)pent-1ynyl)picolinate 12 ($458 \mathrm{mg}, 0.96 \mathrm{mmol}$) was dissolved in degassed mixture of MeOH (50 mL) and EtOAc (25 mL). Pearlman's catalyst ($270 \mathrm{mg}, 0.19 \mathrm{mmol}, 0.2$ equiv., $20 \% \mathrm{Pd}$, moisture 50%) was added and the solution was bubbled with H_{2} and the reaction was stirred at rt under H_{2} atmosphere (1 atm) for 2 h . The mixture was filtrated through Celite and concentrated under reduced pressure.

To a solution of crude product in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were successively added 2,6 -lutidine ($334 \mu \mathrm{~L}, 2.9 \mathrm{mmol}, 3$ equiv.) and TBDMSOTf ($666 \mu \mathrm{~L}, 2.9 \mathrm{mmol}, 3$ equiv.). The mixture was stirred at rt for 4 h under argon atmosphere. The mixture was washed with NaCl sat., dried over MgSO_{4} and concentrated under reduced pressure.

To a solution of the resulting residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise DIBAL-H ($2.9 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.9 \mathrm{mmol}, 3$ equiv.) at $-78^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred at this temperature for 12 min . The reaction was quenched with $\mathrm{MeOH}(2.9 \mathrm{~mL})$ and the mixture was allowed to warm at room temperature. The organic layer was washed with an
aqueous solution of $\mathrm{NaOH}(1 \mathrm{M})$, dried over MgSO_{4} and concentrated under reduced pressure. Then, TBAF ($1.1 \mathrm{~mL}, 1 \mathrm{M}$ in THF, $1.1 \mathrm{mmol}, 1.1$ equiv.) was added at $0^{\circ} \mathrm{C}$ to the residue in dry THF (10 mL) and the mixture was stirred for 16 h at this temperature. After concentration under reduced pressure, a chromatography on silica gel (EtOAc/MeOH 95/5, v / v) afforded access to $\mathbf{1 4}$ as a yellow solid ($119 \mathrm{mg}, 34 \%$). $\mathrm{R} f=0.68$ ($\mathrm{EtOAc} / \mathrm{MeOH} 8 / 2$, $\mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.35-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.77$ (m, 2H), 2.48 (t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.76-2.83 (m, 6H), 3.48 (s, 2H), 7.04-7.12 (m, 2H), 7.20$7.26(\mathrm{~m} 3 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 1 \mathrm{H}), 8.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $21.2\left(\mathrm{CH}_{2}\right)$, $22.7\left(\mathrm{CH}_{2}\right)$, $27.0\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 50.3\left(\mathrm{CH}_{2}\right), 50.9$ $\left(\mathrm{CH}_{2}\right), 57.6\left(\mathrm{CH}_{2}\right), 108.1(\mathrm{C}), 110.8(\mathrm{CH}), 117.9(\mathrm{CH}), 119.2(\mathrm{CH}), 121.2(\mathrm{CH}), 126.5(\mathrm{CH})$, 127.2 (C), 129.8 (CH), 131.7 (C), 135.7 (C), 136.1 (C), 154.9 (C), 157.1 (C), 198.7 (C). MS (ESI+): $m / z(\%): 364(100)[M+H]^{+}$.

6-(4-(3,4-dihydro-1 H-pyrido[3,4-b]indol-2(9H)-yl)butyl)-3-hydroxypicolinaldehyde oxime 3

3

To a solution of 6-(4-(3,4-dihydro-1 H -pyrido[3,4-b]indol-2(9H)-yl)butyl)-3hydroxypicolinaldehyde $13(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ in dry $\mathrm{EtOH}(5 \mathrm{~mL})$ were successively added $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}(15 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{NaOAc}(19 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.3$ equiv.). The mixture was stirred at rt for 3 h under argon atmosphere. After concentration under reduced pressure, a chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{MeOH} 95 / 5, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{3}$ as a white solid ($14 \mathrm{mg}, 22 \%$). $\mathrm{Rf}=0.49(\mathrm{EtOAc} / \mathrm{MeOH} 9 / 1, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta(\mathrm{ppm}) 1.55-$ $1.59(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.76(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.72(\mathrm{~m}, 6 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 6.90-$ 7.02 (m, 2H), 7.15 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (s, 1H), 10.11 (br s, 1H), 11.82 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 21.2\left(\mathrm{CH}_{2}\right), 26.4$ $\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right), 50.9\left(\mathrm{CH}_{2}\right), 57.1\left(\mathrm{CH}_{2}\right), 106.5(\mathrm{C}), 110.8(\mathrm{CH})$, $117.3(\mathrm{CH}), 118.2(\mathrm{CH}), 120.2(\mathrm{CH}), 123.8(\mathrm{CH}), 124.1(\mathrm{CH}), 126.7(\mathrm{C}), 132.9(\mathrm{C}), 135.4$ (C), 135.8 (C), 151.1 (C), 151.4 (C), $152.9(\mathrm{CH}) . \mathrm{MS}(\mathrm{ESI}+): m / z(\%): 365(100)[\mathrm{M}+\mathrm{H}]^{+}$. HPLC: $t_{\mathrm{R}}=23.02 \mathrm{~min}$ (purity $=97.4 \%$). HRMS (ESI +): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2} 365.1978$; found: 365.1970 .

6-(5-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)pentyl)-3-hydroxypicolinaldehyde oxime 4

4
To a solution of 6-(5-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)pentyl)-3hydroxypicolinaldehyde $\mathbf{1 4}(119 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dry EtOH (5 mL) were successively added $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}(27 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{NaOAc}(35 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.3$ equiv.). The mixture was stirred at rt for 1 h under argon atmosphere. After concentration under reduced pressure, chromatography on silica gel (EtOAc/MeOH 9/1, v/v) afforded 4 as a white solid ($31 \mathrm{mg}, 25 \%$). $\mathrm{R} f=0.68$ (EtOAc/MeOH 9/1 v/v). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$) δ (ppm) $1.43(\mathrm{dt}, \mathrm{J}=7.4,15.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.82(\mathrm{~m}, 4 \mathrm{H}), 2.71-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.91(\mathrm{t}, \mathrm{J}=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 6.95-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28 (dd, J = 3.1, 8.2 Hz, 2H), 7.40 (d, J = 7.6 Hz, 1H), 8.30 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 21.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right)$, $51.0\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{2}\right), 58.4\left(\mathrm{CH}_{2}\right), 107.6(\mathrm{C}), 112.0(\mathrm{CH}), 118.6(\mathrm{CH}), 119.9(\mathrm{CH}), 122.3$ $(\mathrm{CH}), 125.4(\mathrm{CH}), 126.1(\mathrm{CH}), 127.9(\mathrm{C}), 130.8(\mathrm{C}), 136.2(\mathrm{C}), 138.0(\mathrm{C}), 152.7(2 \times \mathrm{C})$, $154.5(\mathrm{CH})$. MS (ESI+): $m / z(\%): 379(100)[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{HPLC}: t_{\mathrm{R}}=24.88 \mathrm{~min}($ purity $=96.0 \%)$. HRMS (ESI+): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} 379.2134$; found: 379.2133.

2. Biological assays

Inhibition of $\boldsymbol{h} \boldsymbol{A C h E}$ and $\boldsymbol{h B C h E}$ by OPNAs. Recombinant $h \mathrm{AChE}$ and $h \mathrm{BChE}$ were produced and purified as previously described. ${ }^{2,3}$ VX and tabun were from DGA maîtrise NRBC (Vert le Petit, France). Paraoxon-ethyl was purchased from Sigma-Aldrich. HI-6 was from Pharmacie Centrale des Armées (Orléans, France). All other chemicals including paraoxon were from Sigma. Stock solution of VX and tabun were 5 mM in isopropanol. The inhibition of $120 \mu \mathrm{M} h \mathrm{AChE}$ or $100 \mu \mathrm{M}$ of $h \mathrm{BChE}$ is realized with a 5-fold excess of OPNAs

[^1]and was performed in tris buffer ($20 \mathrm{mM}, \mathrm{pH} 7.4,0.1 \% \mathrm{BSA}$) at $25^{\circ} \mathrm{C}$. After a 20 -minute incubation, inhibited $h \mathrm{AChE}$ or $h \mathrm{BChE}$ was desalted on PD-10 column (GE Healthcare).

Reactivation of $\boldsymbol{h} \mathbf{A C h E}$ and $\boldsymbol{h B C h E}$ inhibited by OPNAs. OPNA-inhibited $h \mathrm{AChE}$ was incubated at $37^{\circ} \mathrm{C}$ with different concentrations of oxime in 0.1 M phosphate buffer, pH 7.4 , 0.1% BSA, 5% methanol (See table below). Methanol was used for complete dissolution of the oximes. $50-\mu \mathrm{l}$ aliquots of mix was transferred to $1-\mathrm{mL}$ cuvettes at time intervals ranging from 1 to 10 minutes depending on the reactivation rate, for measurement of $h \mathrm{AChE}$ activity (1 mM acetylthiocholine) or $h \mathrm{BChE}$ activity (1 mM butyrylthiocholine), in Ellman's buffer (phosphate $0.1 \mathrm{M}, \mathrm{pH} 7.4,0.1 \% \mathrm{BSA}, 0.5 \mathrm{mM}$ DTNB, $25^{\circ} \mathrm{C}$). The increase in absorbance at 412 nm was followed on a Uvikon 943 spectrophotometer.

The enzyme activity in the control remained constant during the experiment. The percentage of reactivated enzyme ($\% \mathrm{E}_{\text {react }}$) was calculated as the ratio of the recovered enzyme activity and activity in the control. The apparent reactivation rate $\mathrm{k}_{\text {obs }}$ for each oxime concentration, the dissociation constant K_{D} of inhibited enzyme-oxime complex (E-POx) and the maximal reactivation rate constant k_{r}, were calculated by non-linear fit using the standard oxime concentration-dependent reactivation equation derived from the following scheme:

$$
\begin{gathered}
\mathrm{E}-\mathrm{P}+\mathrm{Ox} \underset{\mathrm{D}}{\stackrel{\mathrm{~K}_{\mathrm{D}}}{\rightleftarrows}} \mathrm{E}-\mathrm{POx} \xrightarrow[\mathrm{r}]{\stackrel{\mathrm{k}_{\mathrm{r}}}{\rightleftarrows}+\mathrm{POx}} \\
\% \mathrm{E}_{\text {react }}=100 \cdot\left(1-\mathrm{e}^{\mathrm{k}_{\mathrm{obs}} \cdot \mathrm{t}}\right) \quad \text { and } \quad \mathrm{k}_{\mathrm{obs}}=\frac{\mathrm{k}_{\mathrm{r}}[\mathrm{Ox}]}{\mathrm{K}_{\mathrm{D}}+[\mathrm{Ox}]}
\end{gathered}
$$

Concentration of oximes 2-4 $(\mu \mathrm{M})$ used to determine the concentration dependence of the reactivation rate $\mathrm{k}_{\mathrm{obs}}$ for reactivation of VX- $h \mathrm{BChE}$ and VX-, tabun- and paraoxon-inhibited $h \mathrm{AChE}$.

	VX- h BChE	VX- h AChE	tabun- $h \mathrm{AChE}$	paraoxon- $h \mathrm{AChE}$
$\mathbf{2}$	$10-25-50-75$	-	-	-
	$100-150$			
$\mathbf{3}$	$10-25-50-75$	$10-25-50-75-100$	$15-35-50-75-100$	$10-25-50-75-100$
	$100-150$	$120-150-200-250$	$150-200$	$150-200$
	$10-30-50-70$	$10-25-35-50-100$		$10-25-50-80-100$
	100	$150-200-300$		$120-150$

Reactivation of VX-inhibited hBChE ; Plot of $\mathrm{k}_{\text {obs }}$ vs [2] or [3] or [4]

Reactivation of VX-inhibited hAChE ; Plot of $\mathrm{k}_{\text {obs }}$ vs [3] or [4]

Reactivation of tabun-inhibited hAChE ; Plot of $\mathrm{k}_{\text {obs }}$ vs [3] or [4]

Reactivation of Paraoxon-inhibited hAChE ; Plot of $\mathrm{k}_{\text {obs }}$ vs [3] or [4]

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

[^0]: ${ }^{1}$ Louise-Leriche, L.; Paunescu, E.; Saint-André, G.; Baati, R.; Romieu, A.; Wagner, A.; Renard, P.-Y., Chem. Eur. J. 2010, 16, 3510-3523.

[^1]: ${ }^{2}$ Carletti, E.; Li, H.; Li, B.; Ekström, F.; Nicolet, Y.; Loiodice, M.; Gillon, E.; Froment, M. T.; Lockridge, O.; Schopfer, L. M.; Masson, P.; Nachon, F., J. Am. Chem. Soc. 2008, 130, 16011-16020.
 ${ }^{3}$ Brazzolotto, X.; Wandhammer, M.; Ronco, C.; Trovaslet, M.; Jean, L.; Lockridge, O.; Renard, P.-Y.; Nachon, F., FEBS J. 2012, 279, 2905-2916.

