## **Electronic supplementary information**

## Ratiometric luminescence thermometry based on crystal-field alternation at the extremely narrow ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of europium(III)

Junpei Yuasa,\* Ryusuke Mukai, Yasuchika Hasegawa and Tsuyoshi Kawai\*

Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan,

\* To whom correspondence should be addressed.

E-mail: tkawai@ms.naist.jp

## **Experimental Section (S1)**

**Synthesis.** Diglycolic acid (ODA) and 6,6'-dimethyl-2,2'-bipyridine were purchased from Tokyo Chemical Industry Co., Lid. Distilled water and D<sub>2</sub>O used as solvent were obtained from Wako Pure Chemicals. Europium(III) triflate [Eu(OTf)<sub>3</sub>; OTf = OSO<sub>2</sub>CF<sub>3</sub>] was purchased from Aldrich. 2,2'-Bipyridine-6,6'-dicarboxylic acid bis(*N*-hydroxy-succinimide) ester (BP) was synthesized as follows: the dicarboxylic acid (514 mg, 2.10 mmol) was added to 20 mL of SOCl<sub>2</sub> and the resulting mixture was refluxed for 21 h. The excess SOCl<sub>2</sub> was removed in vacuo and 20 mL of freshly distilled acetonitrile was added. Then 532 mg (2.2 equiv) of N-hydroxysuccinimide was added and after this 700 *m*L (1.9 equiv) of Et<sub>3</sub>N via a syringe. The reaction mixture became turbid and after 6 h an off-white precipitate was isolated which was washed with acetonitrile. Recrystallization from acetonitrile gave white crystals of BP. Yield: 506 mg (1.15 mmol, 55%). <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>): *d* = 2.93 (s, 8H), 8.37 (m, 4H), 8.75 (m, 2H). ESI-MS (positive): *m*/*z* calcd. for C<sub>20</sub>H<sub>14</sub>NaN<sub>4</sub>O<sub>8</sub> ([M+Na]<sup>+</sup>), 461.07; found 461.07.

Preparation of  $[BP-(Eu^{III})_2-(ODA)_3]$ : BP (43.8 mg, 0.10 mmol), ODA (40.2 mg, 0.30 mmol), and Eu(OTf)<sub>3</sub> (120 mg, 0.20 mmol) were dissolved in acetonitrile (20 mL) and refluxed under stirring for 6 h. Then, the solution was filtrated and dried to obtain yellow solid. <sup>1</sup>H NMR (600 MHz, D<sub>2</sub>O, 293 K): d = 1.08 (d, 2H), 2.78 (s, 8H), 3.05–3.45 (br. s, 12H), 4.87 (d, 2H), 5.55 (t, 2H). ESI-MS (positive): m/z calcd. for  $C_{32}H_{35}Eu_2N_4O_{27}([M+4H_2O+H]^+)$ , 1208.9; found 1208.9. Formation of  $[BP-(Eu^{III})_2-(ODA)_3]$  in acetonitrile was confirmed by UV-vis spectral titration of BP by ODA in the presence of 2 equiv of Eu(OTf)<sub>3</sub> in acetonitrile (Fig. S2, ESI<sup>†</sup>), where one BP ligand reacts with 3 equiv of ODA ligand to provide absorption bands due to  $[BP-(Eu^{III})_2-(ODA)_3]$ . This spectral change has a clear isosbestic point at  $\lambda = 296$  nm (Fig. S2, ESI<sup>†</sup>), suggesting perfect conversion of BP to the  $[BP-(Eu^{III})_2-(ODA)_3]$  complex. The isosbestic point (296 nm) indicates conversion of a BP-(Eu<sup>III</sup>) complex to  $[BP-(Eu^{III})_2-(ODA)_3]$  in acetonitrile.

**Measurements.** Emission spectra of the Eu<sup>III</sup> complexes were recorded by a JASCO FP-6500 fluorescence spectrophotometer at various temperatures. Emission quantum yields of the Eu<sup>III</sup> complexes were measured using a calibrated integrating sphere system in H<sub>2</sub>O and D<sub>2</sub>O at 293 K. Emission lifetimes of the Eu<sup>III</sup> complexes (in H<sub>2</sub>O and D<sub>2</sub>O) were measured with the third harmonics (355 nm) of a Q-swiched Nd:YAG laser (Spectra Physics, INDI-50, fwhm = 5 ns,  $\lambda = 1064$  nm) and a photomultiplier (Hamamatsu photonics, R5108, response time  $\leq 1.1$  ns). The Nd:YAG laser response was monitored with a digital oscilloscope (Sony Tektronix, TDS3052, 500 MHz) synchronized to the single-pulse excitation. Monochromator was used to select the desired emission wavelength. In the time-resolved emission spectra of the Eu<sup>III</sup> complexes (in D<sub>2</sub>O), the samples were excited by a N<sub>2</sub> laser (Usho KEC-160; wavelength, 337 nm; pulse width, 600 ps; 10 Hz). The emission profiles were recorded using a streak camera (Hamamatsu, picosecond fluorescence measurement system, C4780).



**Fig. S2** UV-vis absorption spectra of BP  $(2.5 \times 10^{-5} \text{ M})$  in the presence of Eu<sup>3+</sup>  $(5.0 \times 10^{-5} \text{ M})$  and ODA [0 M (green line) to  $3.0 \times 10^{-4}$  M (blue line)] in MeCN at 298 K. Inset shows plot of absorbance at  $\lambda = 309$  nm versus [ODA]/[BP]<sub>0</sub>, where [BP]<sub>0</sub> denotes the initial concentration of BP  $(2.5 \times 10^{-5} \text{ M})$ .



Fig. S3 UV-vis absorption spectra of  $[BP-(Eu^{III})_2-(ODA)_3]$  in H<sub>2</sub>O at 298–333 K.



**Fig. S4** Emission spectra of  $[BP-(Eu^{III})_2-(ODA)_3]$  (3.9 × 10<sup>-5</sup> M) in (a)  ${}^5D_0 \rightarrow {}^7F_1$  (b)  ${}^5D_0 \rightarrow {}^7F_3$  (c)  ${}^5D_0 \rightarrow {}^7F_4$  transition bands in H<sub>2</sub>O at 283 K (blue line)-333 K (red line). Excitation wavelength  $\lambda = 320$  nm. Emission intensity at  $\lambda = 589$  nm (red circles), 649 nm (blue triangles) and 697 nm (green squares) in H<sub>2</sub>O at 283–333 K.



**Fig. S5** Temperature dependence of emission intensity (*I*) of  $[BP-(Eu^{III})_2-(ODA)_3]$  (3.9 × 10<sup>-5</sup> M) at 613 nm in H<sub>2</sub>O at 283–333 K. Excitation wavelength  $\lambda = 320$  nm. The solid line shows a fitting curve using eqn (1).



**Fig. S6** Emission decay profile at  $\lambda = 615$  nm of [BP-(Eu<sup>III</sup>)<sub>2</sub>-(ODA)<sub>3</sub>] in D<sub>2</sub>O at 293 K.



Fig. S7 Emission decay profile at  $\lambda = 615$  nm of [BP-(Eu<sup>III</sup>)<sub>2</sub>-(ODA)<sub>3</sub>] in H<sub>2</sub>O at (a) 283K, (b) 293 K, (c) 303 K, (d) 313 K, (e) 323 K, and (f) 333 K.



**Fig. S8** Time-resolved emission spectra of  $[BP-(Eu^{III})_2-(ODA)_3]$  monitored at 0.5–6.5 ms after laser excitation at  $\lambda = 337$  nm in D<sub>2</sub>O at 293 K.



**Fig. S9** Emission spectra of [BP-(Eu<sup>III</sup>)<sub>2</sub>-(ODA)<sub>3</sub>] in H<sub>2</sub>O at 298 K upon excitation at  $\lambda = 320$  nm (red solid line) and at  $\lambda = 395$  nm (green dashed line).



**Fig. S10** Emission spectra of  $[BP-(Eu^{III})_2-(ODA)_3]$  in acetonitrile at 293–343 K. Excitation wavelength  $\lambda = 329$  nm.