Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Nickel-catalyzed chelation-assisted direct arylation of unactivated $C(sp^3)$ -H bonds with aryl halides

Mingliang Li, Jiaxing Dong, Xiaolei Huang, Kaizhi Li, Qian Wu, Feijie Song and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical
School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn

Table of Contents

I. General remarks	S3
II. Synthesis of nickel(II) trifluoromethanesulfonate	S3
III. Optimization of the coupling of aliphatic amide 1a with aryl iodide 2a	S3
IV. General procedure for the coupling of aliphatic amides with aryl iodides	S4
V. General procedure for the coupling of aliphatic amides with aryl bromides	S5
VI. Plausible mechanism.	S5
VII. Experimental data for the described substances	S6
VIII. References	S19
IX. Copy of ¹ H- ¹ H NOESY spectrum of 4	S20
X. Copies of ¹ H and ¹³ C NMR spectra	S21

I. General remarks

NMR spectra were obtained on a Bruker AV II-400 MHz spectrometer. The 1 H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or TMS as the internal reference (CDCl₃: $\delta = 7.26$ ppm; TMS: $\delta = 0.00$ ppm). The 13 C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: $\delta = 77.16$ ppm). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Ni(OAc)₂ and NiCl₂ were purchased from Chengdu Kelong Chemical Engineering Reagent (China) CO., Ltd. 8-Aminoquinoline was purchased from Sichuan Xieli Biological & Chemical Reagent (China) CO., Ltd. The solvents were dried over CaH₂ (for DMF) or sodium (for 1,4-dioxane, toluene, and *t*-AmylOH). Starting materials **1** were prepared according to the literature procedure.^{1,2}

II. Synthesis of nickel(II) trifluoromethanesulfonate³

Trifluoromethanesulfonic acid (1.18 mL, 13.3 mmol) was added dropwise to the solution of Ni(OAc)₂ (0.72 g, 4.4 mmol) in CH₃CN (60 mL). The resulting mixture was stirred at room temperature for 2 h. Then the solvent was evaporated until around 15 mL solution was left. Diethyl ether (100 mL) was added. The suspension was decanted, and the residual powder was washed successively with diethyl ether and hexane, and dried under vacuum at 70 °C to afford Ni(OTf)₂ as a light green solid (0.94 g, 60% yield).

III. Optimization of the coupling of aliphatic amide 1a with aryl iodide 2a

An oven-dried Schlenk tube with a magnetic stir bar was charged with 2-benzyl-3-(4-methoxyphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide **1a** (82.1 mg, 0.2 mmol), 4-iodoanisole **2a** (93.6 mg, 0.4 mmol), Ni catalyst (0.02 mmol, 10 mol%), PPh₃ (10.4 mg, 0.04 mmol, if required), base (0.4 mmol), additive and 1,4-dioxane (1

mL) under an argon atmosphere. The tube was sealed with a teflon-coated cap and the mixture was stirred at $160\,^{\circ}$ C for 24 h. After being cooled to ambient temperature, the solution was diluted with 20 mL of EtOAc, filtered through a celite pad, and washed with 10-20 mL of EtOAc. The combined organic phases were concentrated and the residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10, v/v) to give the desired product 3a.

Table S1. Optimization of the nickel-catalyzed arylation of aliphatic amide 1a with 1-iodo-4-methoxybenzene $2a^a$

MeO	1a +	OMe 2a	[Ni] (10 mol%)/PPh ₃ (20 mol%) base (2.0 equiv)/additive 1,4-dioxane, 160 °C, 24 h	MeO N N N N N N N N N N N N N N N N N N N
Entry	Ni cat.	Base	Additive (equiv)	Yield ^b
1 ^c	Ni(OTf) ₂	K_2CO_3	none	24%
2^c	$Ni(OTf)_2$	K_3PO_4	none	trace
3^c	$Ni(OTf)_2$	Li ₂ CO ₃	none	15%
4 ^c	$Ni(OTf)_2$	Na_2CO_3	none	35%
5 ^c	$Ni(OTf)_2$	Na_2CO_3	DMSO (7.0)	48%
6	$Ni(OTf)_2$	Na_2CO_3	DMSO (7.0)	57%
7	$Ni(OTf)_2$	Na_2CO_3	DMSO (3.5)	68%

PivOH (0.2)

DMSO (3.5)/PivOH (0.2)

DMSO (3.5)/PivOH (0.2)

DMSO (3.5)/PivOH (0.1)

DMSO (3.5)/PivOH (0.4)

DMSO (3.5)/PivOH (0.2)

DMSO (3.5)/PivOH (0.2)

DMSO (3.5)/PivOH (0.2)

DMSO (3.5)/PivOH (0.2)

52%

83%

54%

76%

80%

61%

61%

62%

50%

Na₂CO₃

Na₂CO₃

 Na_2CO_3

Na₂CO₃

Na₂CO₃

Na₂CO₃

Na₂CO₃

 Na_2CO_3

Na₂CO₃

8

9

 10^d

11

12

13

14

15 ^e

16

Ni(OTf)₂

Ni(OTf)₂

Ni(OTf)₂

Ni(OTf)₂

 $Ni(OTf)_2$

Ni(OAc)₂

 $Ni(cod)_2$

Ni(cod)₂

NiCl₂

IV. General procedure for the coupling of aliphatic amides with aryl iodides

^a Reactions were carried out using nickel catalyst (10 mol%), PPh₃ (20 mol%), additive, base (2.0 equiv), amide **1a** (0.2 mmol) and 1-iodio-4-methoxybenzene **2a** (2.0 equiv) in dry 1,4-dioxane (1 mL) at 160 °C for 24 h. ^b Isolated yields. ^c 140 °C. ^d In the absence of PPh₃. ^e PPh₃ (40 mol%). ^f 1-Iodo-4-methoxybenzene **2a** (3.0 equiv).

An oven-dried Schlenk tube with a magnetic stir bar was charged with aliphatic amide 1 (0.2 mmol, 1 equiv), aryl iodide 2 (0.4 mmol or 0.6 mmol), Ni(OTf)₂ (7.2 mg, 0.02 mmol), PPh₃ (10.4 mg, 0.04 mmol), Na₂CO₃ (42 mg, 0.4 mmol), and PivOH (4.2 mg, 0.04 mmol). The tube was then taken to a Schlenk line and DMSO (50 μL, 0.7 mmol) and 1,4-dioxane (1 mL) were added under an argon atmosphere. The tube was sealed with a teflon-coated cap and the resulting mixture was stirred at 160 °C for 36 h. After being cooled to ambient temperature, the solution was diluted with 20 mL of EtOAc, filtered through a celite pad, and washed with 10-20 mL of EtOAc. The combined organic phases were concentrated and the residue was purified by column chromatography on silica gel using hexane/ethyl acetate as the eluent to give the desired product.

V. General procedure for the coupling of aliphatic amides with aryl bromides

An oven-dried Schlenk tube with a magnetic stir bar was charged with aliphatic amide 1 (0.2 mmol, 1 equiv), aryl bromide (0.8 mmol), Ni(OTf)₂ (7.2 mg, 0.02 mmol), PPh₃ (10.4 mg, 0.04 mmol), Na₂CO₃ (42 mg, 0.4 mmol), and PivOH (4.2 mg, 0.04 mmol) (6.7 mg, 0.04 mmol). The tube was then taken to a Schlenk line and DMSO (50 μL, 0.7 mmol) and 1,4-dioxane (1 mL) were added under an argon atmosphere. The tube was sealed with a teflon-coated cap and the resulting mixture was stirred at 160 °C for 36 h. After being cooled to ambient temperature, the solution was diluted with 20 mL of EtOAc, filtered through a celite pad, and washed with 10-20 mL of EtOAc. The combined organic phases were concentrated and the residue was purified by column chromatography on silica gel using hexane/ethyl acetate as the eluent to give the desired product.

VI. Plausible mechanism

Although the detailed mechanism is not clear at this stage, a plausible catalytic cycle is proposed in Scheme S1. First, aliphatic amide 1 coordinates with nickel(II) complex via a chelation of an 8-aminoquinoline residue to generate the intermediate $\mathbf{IM1}$, which then undergoes an intramolecular $C(sp^3)$ -H activation with the

assistance of Na₂CO₃ to form the metallocycle **IM2**. Subsequently, oxidative addition of **IM2** with aryl halide affords the key intermediate **IM3**.^{3,5} Upon reductive elimination of **IM3**, the desired product **3** is obtained and the nickel catalyst is regenerated. When nickel(0) catalyst is used, we suspected that the oxidative addition of aryl iodide with Ni(0) might form Ar–Ni–I complex. The resulting Ni(II) species further reacts with the amide **1** to generate the intermediate **IM1**.⁵

Scheme S1 Plausible mechanism.

VII. Experimental data for the described substances

$\begin{tabular}{ll} 2-Benzyl-2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-N-(quinolin-8-yl)propanami\\ de~(3a) \end{tabular}$

Following the general procedure except that the reaction time was 24 h. 2-Benzyl-3-(4-methoxyphenyl)-2-methyl-N-(quinolin-8-yl)propanamide (82.1 mg, 0.2 mmol) and 4-iodoanisole (93.6 mg, 0.4 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10, v/v) afforded **3a**

as a white solid (85 mg, 83% yield). When 4-bromoanisole (100 μ L, 0.8 mmol) was used as the coupling partner, **3a** was obtained in 76% yield (79 mg). M.p.: 43-47 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.17 (s, 4H), 3.23 (s, 2H), 3.68 (s, 6H), 6.68-6.71 (m, 4H), 7.08-7.10 (m, 4H), 7.13-7.21 (m, 5H), 7.34 (dd, J = 8.4 Hz, 4.0 Hz, 1H), 7.48 (dd, J = 8.4 Hz, 0.8 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 8.09 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 8.47 (dd, J = 4.0 Hz, 1.6 Hz, 1H), 8.84 (dd, J = 7.6 Hz, 0.8 Hz, 1H), 9.95 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 41.0, 41.5, 52.4, 55.2, 113.6, 116.3, 121.4, 121.5, 126.4, 127.5, 127.8, 128.2, 129.3, 130.7, 131.6, 134.3, 136.0, 137.6, 138.7, 147.9, 158.2, 174.2 ppm. HRMS (ESI⁺): calcd for C₃₄H₃₂N₂NaO₃ [M+Na]⁺ 539.2311, found 539.2313.

2-Benzyl-2-(3-methoxybenzyl)-3-(4-methoxyphenyl)-*N*-(quinolin-8-yl)propanami de (3b)

Following the general procedure. 2-Benzyl-3-(4-methoxyphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (82.1 mg, 0.2 mmol) and 3-iodoanisole (71.4 μ L, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10, v/v) afforded **3b** as an off-white solid (75 mg, 73% yield). When 3-bromoanisole (100.4 μ L, 0.8 mmol) was used as the coupling partner, **3b** was obtained in 50% yield (51 mg). M.p.: 38-40 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.21 (s, 2H), 3.23 (s, 2H), 3.26 (s, 2H), 3.53 (s, 3H), 3.69 (s, 3H), 6.66-6.72 (m, 4H), 6.82 (d, J = 7.6 Hz, 1H), 7.09-7.12 (m, 3H), 7.15-7.23 (m, 5H), 7.34 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 7.49 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 8.09 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 8.48 (dd, J = 4.0 Hz, 1.6 Hz, 1H), 8.87 (d, J = 7.6 Hz, 1H), 9.99 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 41.1, 41.5, 41.9, 52.4, 55.0, 55.2, 112.5, 113.6, 115.8, 116.3, 121.4, 121.5, 123.0, 126.5, 127.4, 127.8, 128.2, 129.0, 129.2, 130.6, 131.6, 134.3, 136.0, 137.5, 138.6, 139.0, 148.0, 158.3, 159.3, 174.1 ppm.

HRMS (ESI⁺): calcd for $C_{34}H_{32}N_2NaO_3$ [M+Na]⁺ 539.2311, found 539.2317.

$\begin{tabular}{ll} 2-Benzyl-2-(2-methoxybenzyl)-3-(4-methoxyphenyl)-N-(quinolin-8-yl)propanami \\ de~(3c) \end{tabular}$

Following the general procedure. 2-Benzyl-3-(4-methoxyphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (82.1 mg, 0.2 mmol) and 2-iodoanisole (78.0 μ L, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/15, v/v) afforded **3c** as an off-white solid (36 mg, 35% yield). M.p.: 44-47 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.14-3.33 (m, 6H), 3.50 (s, 3H), 3.69 (s, 3H), 6.58 (d, J = 8.4 Hz, 1H), 6.68-6.71 (m, 2H), 6.78 (td, J = 7.6 Hz, 1.2 Hz, 1H), 7.04-7.09 (m, 3H), 7.11-7.19 (m, 6H), 7.31 (dd, J = 8.4 Hz, 4.4 Hz, 1H), 7.45 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 8.07 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 8.42 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.85 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.90 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.9, 40.7, 41.2, 52.0, 55.15, 55.23, 110.1, 113.5, 116.2, 120.1, 121.1, 121.4, 125.9, 126.3, 127.5, 127.7, 128.1, 129.8, 130.8, 131.5, 131.7, 134.6, 135.9, 138.0, 138.6, 147.8, 158.15, 158.22, 174.4 ppm. HRMS (ESI⁺): calcd for C₃₄H₃₂N₂NaO₃ [M+Na]⁺ 539.2311, found 539.2321.

2-(4-Aminobenzyl)-2-benzyl-3-(4-methoxyphenyl)-N-(quinolin-8-yl)propanamide (3d)

Following the general procedure. 2-Benzyl-3-(4-methoxyphenyl)-2-methyl-N-(quinolin-8-yl)propanamide (82.1 mg, 0.2 mmol) and 4-iodoaniline (131.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/3, v/v) afforded **3d** as an off-white solid (55 mg, 55%)

yield). When 4-bromoaniline (137.6 mg, 0.8 mmol) was used as the coupling partner, **3d** was obtained in 46% yield (46 mg). M.p.: 70-74 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.14$ (s, 2H), 3.16 (s, 2H), 3.22 (s, 2H), 3.53 (br. s, 2H), 3.68 (s, 3H), 6.50-6.52 (m, 2H), 6.68-6.71 (m, 2H), 6.96-6.98 (m, 2H), 7.08-7.11 (m, 2H), 7.13-7.21 (m, 5H), 7.33 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 7.48 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 8.08 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 8.50 (dd, J = 4.0 Hz, 1.6 Hz, 1H), 8.86 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.99 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 40.8$, 41.1, 41.6, 52.4, 55.2, 113.5, 115.0, 116.3, 121.3, 121.4, 126.4, 127.1, 127.5, 127.8, 128.1, 129.4, 130.7, 131.5, 131.6, 134.4, 136.0, 137.7, 138.7, 144.8, 147.9, 158.2, 174.4 ppm. HRMS (ESI⁺): calcd for C₃₃H₃₁N₃NaO₂ [M+Na]⁺ 524.2314, found 524.2314.

$\hbox{$2$-(4-Acetamidobenzyl)-2-benzyl-3-(4-methoxyphenyl)-N-(quinolin-8-yl)propana \\ \hbox{mide (3e)}$

Following the general procedure. 2-Benzyl-3-(4-methoxyphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (82.1 mg, 0.2 mmol) and *N*-(4-iodophenyl)acetamide (156.6 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/1, v/v) afforded **3e** as an off-white solid (75 mg, 69% yield). M.p.: 82-88 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.06 (s, 3H), 3.15 (s, 2H), 3.18 (s, 2H), 3.21 (s, 2H), 3.66 (s, 3H), 6.67-6.69 (m, 2H), 7.05-7.10 (m, 4H), 7.12-7.17 (m, 5H), 7.30-7.33 (m, 3H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.70-7.72 (m, 1H), 8.06 (dd, *J* = 8.4 Hz, 1.2 Hz, 1H), 8.48 (dd, *J* = 4.4 Hz, 1.6 Hz, 1H), 8.81 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 10.01 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 24.5, 41.0, 41.1, 41.6, 52.3, 55.2, 113.5, 116.3, 119.5, 121.47, 121.51, 126.5, 127.4, 127.8, 128.2, 129.1, 130.6, 131.0, 131.6, 133.1, 134.1, 136.0, 136.6, 137.3, 138.6, 148.0, 158.2, 168.6, 174.1 ppm. HRMS (ESI⁺): calcd for C₃₅H₃₃N₃NaO₃ [M+Na]⁺ 566.2420, found 566.2428.

$\hbox{$2$-(4-Acetylbenzyl)-2-benzyl-3-(4-methoxyphenyl)-N-(quinolin-8-yl) propanamide \\ \hbox{$(3f)$}$

Following the general procedure. 2-Benzyl-3-(4-methoxyphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (82.1 mg, 0.2 mmol) and 1-(4-iodophenyl)ethanone (147.6 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/8, v/v) afforded **3f** as a white solid (58 mg, 55%) yield). When 2-(4-acetylbenzyl)-2-methyl-3-phenyl-N-(quinolin-8-yl)propanamide (84.5 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used as the starting materials, **3f** was obtained in 71% yield (75 mg). M.p.: 65-68 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.48$ (s, 3H), 3.19 (s, 2H), 3.25 (s, 4H), 3.69 (s, 3H), 6.68-6.72 (m, 2H), 7.06-7.09 (m, 2H), 7.14-7.19 (m, 5H), 7.26 (d, J = 8.4 Hz, 2H), 7.33 (dd, J = 8.4 Hz, 4.0 Hz, 1H), 7.50 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.57 (t, J = 8.0Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 8.09 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 8.45 (dd, J = 4.4Hz, 1.6 Hz, 1H), 8.83 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.95 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.6, 41.1, 41.6, 42.0, 52.4, 55.2, 113.7, 116.4, 121.5, 121.6, 126.7, 127.5, 127.8, 128.2, 128.3, 128.8, 130.6, 130.8, 131.6, 134.1, 135.4, 136.1, 137.1, 138.6, 143.6, 148.0, 158.4, 173.7, 198.0 ppm. HRMS (ESI⁺): calcd for C₃₅H₃₃N₂O₃ [M+H]⁺ 529.2491, found 529.2485.

Methyl 4-(2-benzyl-2-(4-methoxybenzyl)-3-oxo-3-(quinolin-8-ylamino)propyl) benzoate (3g)

Following the general procedure. 2-Benzyl-3-(4-methoxyphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (82.1 mg, 0.2 mmol) and methyl 4-iodobenzoate (157.0

mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10, v/v) afforded $3\mathbf{g}$ as a white solid (65 mg, 60% yield). When methyl 4-(2-benzyl-2-methyl-3-oxo-3-(quinolin-8-ylamino)propyl) benzoate (87.7 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used as the starting materials, $3\mathbf{g}$ was obtained in 50% yield (54 mg). M.p.: 55-59 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.19 (s, 2H), 3.24-3.26 (m, 4H), 3.68 (s, 3H), 3.86 (s, 3H), 6.70 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 7.13-7.18 (m, 5H), 7.25 (d, J = 8.8 Hz, 2H), 7.33 (dd, J = 8.4 Hz, 4.4 Hz, 1H), 7.49 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.83 (d, J = 8.4 Hz, 2H), 8.09 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 8.46 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.84 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.96 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 41.2, 41.7, 41.8, 52.1, 52.4, 55.2, 113.7, 116.4, 121.5, 121.6, 126.6, 127.5, 127.9, 128.3, 128.4, 128.9, 129.4, 130.6, 130.7, 131.6, 134.1, 136.1, 137.2, 138.7, 143.3, 148.0, 158.4, 167.1, 173.7 ppm. HRMS (ESI⁺): calcd for $C_{35}H_{33}N_2O_4$ [M+H]⁺ 545.2440, found 545.2433.

4-(2-Benzyl-2-(4-methoxybenzyl)-3-oxo-3-(quinolin-8-ylamino)propyl)-*N,N*-dieth ylbenzamide (3h)

Following the general procedure. 2-Benzyl-3-(4-methoxyphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (82.1 mg, 0.2 mmol) and *N*,*N*-diethyl-4-iodobenzamide (181.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/1, v/v) afforded **3h** as a white solid (72 mg, 62% yield). When 4-(2-benzyl-2-methyl-3-oxo-3-(quinolin-8-ylamino)propyl)-*N*,*N*-diethylbenzamide (95.9 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used as the starting materials, **3h** was obtained in 73% yield (85 mg). M.p.: 39-40 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.97 (m, 3H), 1.19 (m, 3H), 3.09 (m, 2H), 3.18 (s, 2H), 3.23-3.28 (m, 4H), 3.49 (m, 2H), 3.67 (s, 3H), 6.67-6.70 (m, 2H), 7.05-7.09 (m, 2H), 7.13-7.18 (m, 5H), 7.21 (m, 4H), 7.34 (dd, *J* = 8.4 Hz, 4.4 Hz, 1H), 7.48 (dd, *J* = 8.4 Hz, 4.4 Hz, 1H),

8.4 Hz, 1.6 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 8.08 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 8.49 (dd, J = 4.0 Hz, 1.6 Hz, 1H), 8.84 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 9.99 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.0$, 14.2, 41.2, 41.3, 41.6, 52.3, 55.2, 113.6, 116.3, 121.48, 121.53, 126.3, 126.5, 127.4, 127.8, 128.2, 129.0, 130.58, 130.60, 131.6, 134.2, 135.3, 136.0, 137.3, 138.6, 138.9, 148.1, 158.3, 171.3, 173.9 ppm. HRMS (ESI⁺): calcd for $C_{38}H_{40}N_3O_3$ [M+H]⁺ 586.3070, found 586.3074.

$\begin{tabular}{ll} 2-Benzyl-2-(4-cyanobenzyl)-3-(4-methoxyphenyl)-N-(quinolin-8-yl)propanamide \\ (3i) \end{tabular}$

Following the general procedure. 2-Benzyl-3-(4-cyanophenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (81.1 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/8, v/v) afforded 3i as a white solid (60 mg, 59% yield). M.p.: 57-60 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.18 (s, 2H), 3.228 (s, 2H), 3.234 (s, 2H), 3.69 (s, 3H), 6.69-6.73 (m, 2H), 7.05-7.07 (m, 2H), 7.14-7.22 (m, 5H), 7.25-7.27 (m, 2H), 7.38 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.51 (dd, J = 8.0Hz, 1.2 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 8.12 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 8.49 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.81 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.94 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 41.2, 41.7, 42.3, 52.5, 55.2, 110.3, 113.7, 116.4, 119.0,$ 121.7, 121.8, 126.8, 127.5, 127.9, 128.4, 128.6, 130.5, 131.4, 131.6, 131.8, 133.9, 136.2, 136.9, 138.6, 143.7, 148.1, 158.5, 173.4 ppm. HRMS (ESI⁺): calcd for $C_{34}H_{30}N_3O_2 [M+H]^+$ 512.2338, found 512.2336.

2-Benzyl-2-(4-formylbenzyl)-3-(4-methoxyphenyl)-N-(quinolin-8-yl)propanamide

(3j)

Following the procedure. 2-Benzyl-3-(4-formylphenyl)-2-methyl-*N*general (quinolin-8-yl)propanamide (81.7 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/8, v/v) afforded 3j as a white solid (56 mg, 55% yield). M.p.: 50-52 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.20$ (s, 2H), 3.26 (s, 2H), 3.27 (s, 2H), 3.69 (s, 3H), 6.69-6.72 (m, 2H), 7.06-7.08 (m, 2H), 7.14-7.21 (m, 5H), 7.32-7.35 (m, 3H), 7.50 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0Hz, 2H), 8.10 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 8.45 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.83 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.87 (s, 1H), 9.96 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 41.2, 41.7, 42.3, 52.5, 55.2, 113.7, 116.4, 121.6, 121.7, 126.7, 127.5, 127.9, 128.3,$ 128.8, 129.6, 130.6, 131.3, 131.6, 134.1, 134.9, 136.1, 137.0, 138.6, 145.4, 148.0, 158.5, 173.6, 192.1 ppm. HRMS (ESI⁺): calcd for $C_{34}H_{31}N_2O_3$ [M+H]⁺ 515.2335, found 515.2338.

$\hbox{$2$-Benzyl-2-(3-formylbenzyl)-3-(4-methoxyphenyl)-N-(quinolin-8-yl) propanamide \\ \hbox{$(3k)$}$

Following the general procedure. 2-Benzyl-3-(3-formylphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (81.7 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/8, v/v) afforded **3k** as a white solid (60 mg, 59% yield). M.p.: 48-50 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.19 (s, 2H), 3.24-3.27 (m, 4H), 3.69 (s, 3H), 6.69-6.73 (m, 2H), 7.07-7.10 (m, 2H), 7.13-7.21 (m, 5H), 7.30 (t, J = 7.6 Hz, 1H), 7.35 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.50 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.61-7.64 (m, 2H), 8.10 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 8.45 (dd, J = 4.0 Hz, 1.6 Hz, 1H), 8.83 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.76 (s,

1H), 9.97 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 41.2, 41.6, 41.9, 52.5, 55.3, 113.7, 116.4, 121.6, 121.7, 126.7, 127.4, 127.5, 127.9, 128.4, 128.8, 130.6, 131.6, 132.8, 134.1, 136.1, 136.3, 136.8, 137.1, 138.6, 138.8, 148.0, 158.4, 173.7, 192.4 ppm. HRMS (ESI⁺): calcd for C₃₄H₃₁N₂O₃ [M+H]⁺ 515.2335, found 515.2327.

2,2-Dibenzyl-3-(4-methoxyphenyl)-*N*-(quinolin-8-yl)propanamide (3l)

Following the general procedure. 2-Benzyl-2-methyl-3-phenyl-*N*-(quinolin-8-yl) propanamide (76.1 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10, v/v) afforded **3l** as an off-white solid (66 mg, 68% yield). M.p.: 39-42 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.19$ (s, 2H), 3.25 (s, 4H), 3.68 (s, 3H), 6.67-6.71 (m, 2H), 7.08-7.10 (m, 2H), 7.12-7.20 (m, 10H), 7.33 (dd, J = 8.4 Hz, 4.0 Hz, 1H), 7.49 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 8.09 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 8.47 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.86 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.97 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 41.2$, 41.6, 52.3, 55.2, 113.6, 116.3, 121.4, 121.5, 126.5, 127.5, 127.8, 128.2, 129.2, 130.7, 131.6, 134.3, 136.0, 137.5, 138.7, 147.9, 158.3, 174.1 ppm. HRMS (ESI⁺): calcd for C₃₃H₃₀N₂NaO₂ [M+Na]⁺ 509.2205, found 509.2206.

2-Benzyl-2-(4-methoxybenzyl)-3-(naphthalen-1-yl)-*N*-(quinolin-8-yl)propanami de (3m)

Following the general procedure. 2-Benzyl-2-methyl-3-(naphthalen-1-yl)-*N*-(quinolin-8-yl)propanamide (86.1 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl

acetate/petroleum ether = 1/8, v/v) afforded **3m** as an off-white solid (84 mg, 79% yield). M.p.: 63-66 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.34 (s, 2H), 3.40 (d, J = 3.2 Hz, 2H), 3.59 (s, 2H), 3.67 (s, 3H), 6.66-6.69 (m, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.12-7.29 (m, 8H), 7.32 (t, J = 7.6 Hz, 1H), 7.40 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.59 (t, J = 8.0 Hz, 2H), 7.95 (d, J = 8.4 Hz, 1H), 7.98 (dd, J = 8.0 Hz, 1H), 8.22 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.78 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.74 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 37.7, 41.0, 41.6, 51.9, 55.2, 113.6, 116.1, 121.2, 123.8, 125.11, 125.13, 125.8, 126.5, 127.27, 127.29, 127.5, 127.6, 128.2, 128.4, 129.3, 130.8, 131.7, 133.3, 133.4, 133.9, 134.2, 135.7, 137.6, 138.4, 147.6, 158.3, 174.3 ppm. HRMS (ESI⁺): calcd for C₃₇H₃₂N₂NaO₂ [M+Na] + 559.2361, found 559.2364.

2-(4-Methoxybenzyl)-3-phenyl-N-(quinolin-8-yl)acrylamide (4)

Following the general procedure. 2-Methyl-3-phenyl-*N*-(quinolin-8-yl)acrylamide (57.7 mg, 0.2 mmol), and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10, v/v) afforded **4** as a mixture of (*E*)- and (*Z*)-isomers (46 mg, 58% yield). The ratio of (*E*)-**4**/(*Z*)-**4** was 8:1 as determined by 1 H NMR. 1 H NMR (400 MHz, CDCl₃, a mixture of two isomers) : $\delta = 3.77$ (s, OCH₃, major isomer), 3.83 (s, OCH₃, minor isomer), 4.12 (s, major isomer), 4.21 (s, minor isomer), 6.60 (d, J = 8.8 Hz, minor isomer), 6.88 (d, J = 8.8 Hz, major isomer), 6.92 (d, J = 8.8 Hz, minor isomer), 7.18-7.23 (m), 7.28-7.44 (m), 7.48 (d, J = 8.4 Hz, major isomer), 7.53 (t, J = 7.6 Hz, major isomer), 7.91 (s, minor isomer), 7.93 (s, major isomer), 8.06 (dd, J = 8.4 Hz, 1.6 Hz, minor isomer), 8.12 (dd, J = 8.4 Hz, 1.6 Hz, major isomer), 8.53 (dd, J = 4.4 Hz, 1.6 Hz, minor isomer), 8.68 (dd, J = 4.0 Hz, 1.6 Hz, major isomer), 8.75 (d, J = 7.6 Hz, minor isomer), 8.83 (dd, J = 7.6 Hz, 1.2 Hz, major isomer), 9.58 (s, minor isomer), 10.40 (s,

major isomer) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 32.9, 33.8, 55.4, 55.5, 113.6, 114.2, 114.3, 116.7, 121.6, 121.7, 126.7, 127.5, 128.0, 128.3, 128.5, 128.7, 129.2, 129.5, 130.0, 130.2, 130.8, 130.9, 134.9, 135.4, 135.9, 136.3, 137.19, 137.23, 138.8, 148.1, 158.5, 167.0 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₂N₂NaO₂ [M+Na]⁺ 417.1579, found 417.1575.

2-Benzyl-3-(4-methoxyphenyl)-2-methyl-N-(quinolin-8-yl)propanamide (5)

Following the general procedure except that the reaction temperature was 150 °C and 2-nitrobenzoic acid (6.7 mg, 0.04 mmol) instead of PivOH was added. 2,2-Dimethyl-3-phenyl-*N*-(quinolin-8-yl)propanamide (60.9 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/20, v/v) afforded **5** as a white solid (49 mg, 60% yield). M.p.: 80-82 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.31 (s, 3H), 2.74 (d, J = 13.2 Hz, 1H), 2.78 (d, J = 13.2 Hz, 1H), 3.43 (d, J = 13.6 Hz, 1H), 3.49 (d, J = 13.2 Hz, 1H), 3.67 (s, 3H), 6.69-6.71 (m, 2H), 7.10-7.23 (m, 7H), 7.36 (dd, J = 8.4 Hz, 4.4 Hz, 1H), 7.48 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 8.09 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 8.62 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.88 (d, J = 7.6 Hz, 1H), 9.92 (s, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 19.7, 45.9, 46.6, 50.2, 55.2, 113.5, 116.4, 121.49, 121.52, 126.5, 127.4, 127.9, 128.1, 129.7, 130.5, 131.4, 134.4, 136.2, 137.8, 138.8, 148.2, 158.3, 174.8 ppm. HRMS (ESI⁺): calcd for $C_{27}H_{26}N_2NaO_2$ [M+Nal⁺ 433.1892, found 433.1891.

2-(4-Methoxybenzyl)-2-methyl-N-(quinolin-8-yl)butanamide (6)

Following the general procedure except that the reaction temperature was 150 °C. 2,2-Dimethyl-*N*-(quinolin-8-yl)butanamide (48.5 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica

gel (ethyl acetate/petroleum ether = 1/20, v/v) afforded **6** as colourless oil (45 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.99$ (t, J = 7.6 Hz, 3H), 1.34 (s, 3H), 1.54-1.63 (m, 1H), 2.00-2.09 (m, 1H), 2.77 (d, J = 13.2 Hz, 1H), 3.20 (d, J = 13.6 Hz, 1H), 3.68 (s, 3H), 6.69-6.73 (m, 2H), 7.09-7.11 (m, 2H), 7.41 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 7.49 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 8.13 (dd, J = 8.0 Hz, 0.8 Hz, 1H), 8.74 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.85 (d, J = 7.6 Hz, 1H), 10.12 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 9.3$, 20.3, 32.8, 45.3, 49.2, 55.2, 113.5, 116.3, 121.4, 121.6, 127.5, 128.0, 130.0, 131.3, 134.6, 136.3, 138.9, 148.3, 158.2, 175.5 ppm. HRMS (ESI⁺): calcd for C₂₂H₂₄N₂NaO₂ [M+Na]⁺ 371.1735, found 371.1732.

MeO
$$C_8H_{17}$$

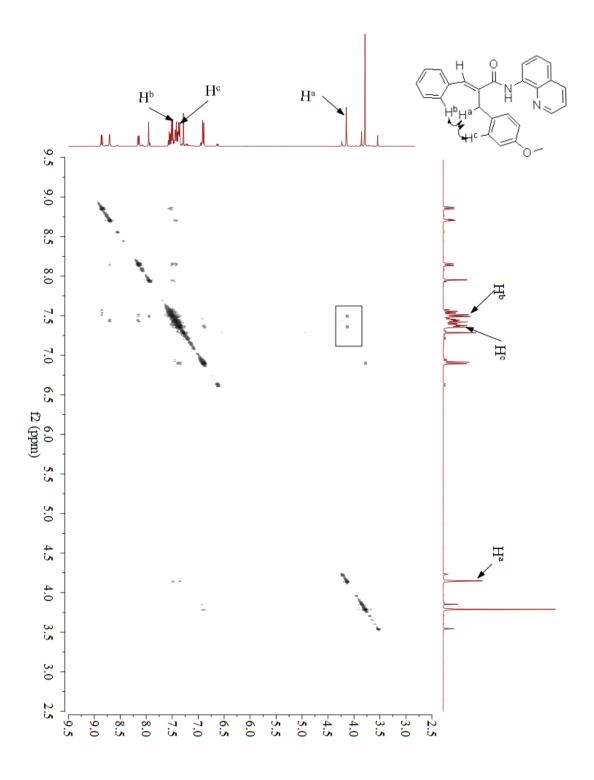
2,2-Bis(4-methoxybenzyl)-*N*-(quinolin-8-yl)undecanamide (7)

Following the general procedure. 2,2-Dimethyl-*N*-(quinolin-8-yl)undecanamide (68.1 mg, 0.2 mmol) and 4-iodoanisole (187.2 mg, 0.8 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/20, v/v) afforded **7** as colourless oil (64 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): δ = 0.89 (t, J = 6.8 Hz, 3H), 1.27-1.35 (m, 12H), 1.66 (m, 4H), 2.95 (d, J = 14.0 Hz, 2H), 3.23 (d, J = 14.0 Hz, 2H), 3.67 (s, 6H), 6.70 (d, J = 8.4 Hz, 4H), 7.12 (d, J = 8.4 Hz, 4H), 7.37 (dd, J = 8.4 Hz, 4.4 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 8.63 (d, J = 3.2 Hz, 1H), 8.87 (d, J = 7.2 Hz, 1H), 9.99 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.3, 22.8, 24.2, 29.4, 29.6, 29.7, 30.2, 32.0, 32.1, 41.3, 53.1, 55.1, 113.5, 116.3, 121.3, 121.5, 127.5, 127.9, 129.8, 131.2, 134.4, 136.1, 138.8, 148.1, 158.1, 174.8 ppm. HRMS (ESI⁺): calcd for C₃₆H₄₄N₂NaO₃ [M+Na]⁺ 575.3250, found 575.3242.

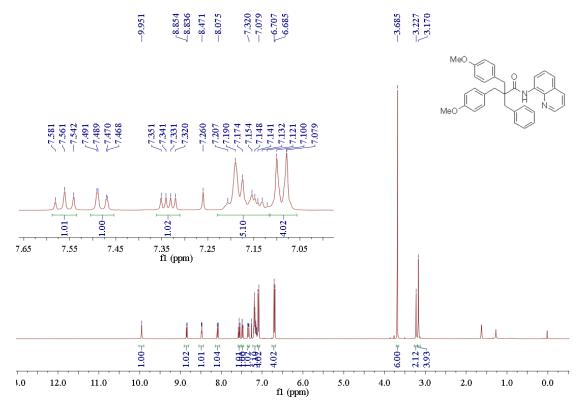
2-(4-Methoxybenzyl)-3-(4-methoxyphenyl)-2-phenyl-*N*-(quinolin-8-yl)propanami de (8)

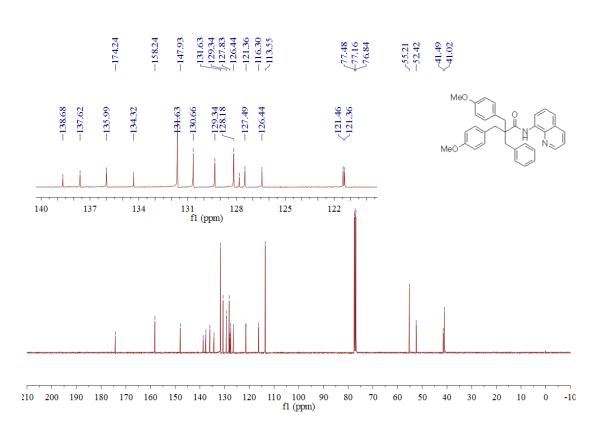
Following the general procedure. 2-Methyl-2-phenyl-*N*-(quinolin-8-yl)propanamide (58.1 mg, 0.2 mmol) and 4-iodoanisole (187.2 mg, 0.8 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10, v/v) afforded **8** as a white solid (57 mg, 57% yield). M.p.: 146-148 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.38-3.47 (m, 4H), 3.71 (s, 6H), 6.63-6.67 (m, 4H), 6.85-6.88 (m, 4H), 7.28-7.39 (m, 6H), 7.47 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 8.09 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 8.54 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.74 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 9.87 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 41.1, 55.2, 58.4, 113.3, 116.2, 121.3, 121.6, 127.3, 127.5, 128.0, 128.3, 128.6, 129.3, 131.7, 134.6, 136.1, 138.7, 142.6, 148.2, 158.2, 174.0 ppm. HRMS (ESI⁺): calcd for C₃₃H₃₀N₂NaO₃ [M+Na]⁺ 525.2154, found 525.2154.

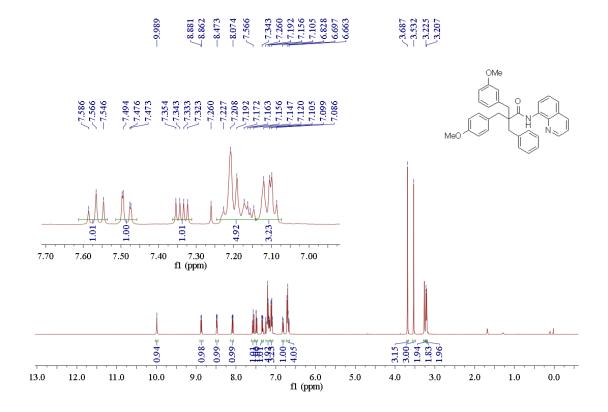
3-(4-Methoxyphenyl)-2-methyl-*N*-(quinolin-8-yl)propanamide (9)

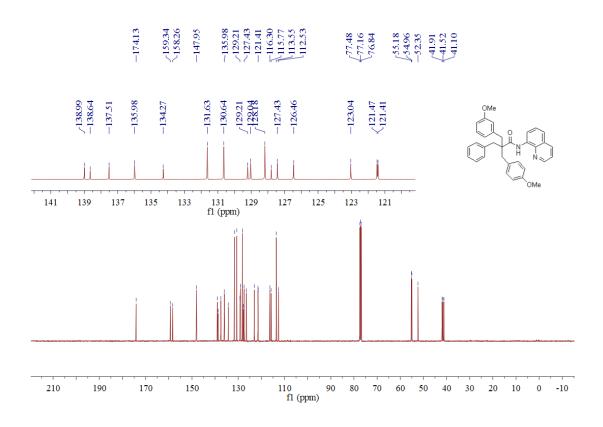

Following the general procedure. *N*-(Quinolin-8-yl)isobutyramide (42.9 mg, 0.2 mmol) and 4-iodoanisole (140.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (ethyl acetate/petroleum ether = 1/20, v/v) afforded **9** as colourless oil (32 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ = 1.33 (d, J = 6.4 Hz, 3H), 2.74-2.79 (m, 1H), 2.81-2.90 (m, 1H), 3.14 (dd, J = 13.2 Hz, 7.2 Hz, 1H), 3.72 (s, 3H), 6.77-6.80 (m, 2H), 7.16-7.19 (m, 2H), 7.43 (dd, J = 8.4 Hz, 4.4 Hz, 1H), 7.48 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 8.14 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 8.75 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 8.79 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 9.75 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 17.8, 39.6, 45.2, 55.3, 113.9, 116.6, 121.5, 121.6, 127.5, 128.0, 130.1, 131.8, 134.6, 136.4, 138.5, 148.2, 158.2, 174.7 ppm.

 $HRMS \; (ESI^{^{+}}): calcd \; for \; C_{20}H_{20}N_{2}NaO_{2} \; [M+Na]^{^{+}} \; 343.1422, \; found \; 343.1427.$

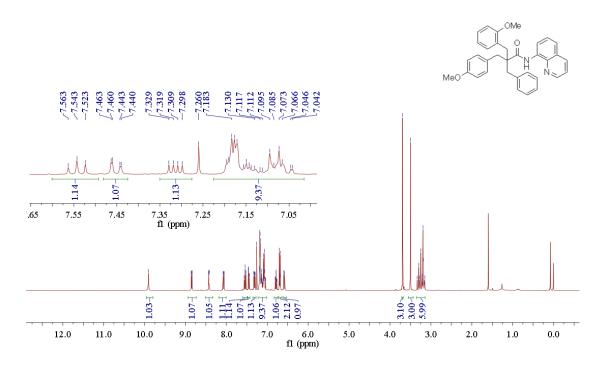

VIII. References

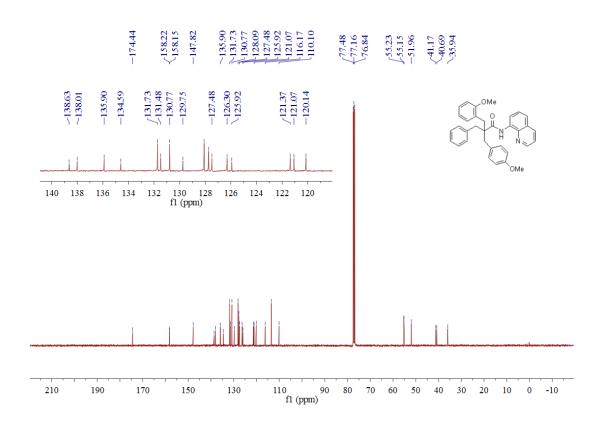

- 1. R. Shang, L. Ilies, A. Matsumoto and E. Nakamura, *J. Am. Chem. Soc.*, 2013, **135**, 6030.
- 2. E. T. Nadres and O. Daugulis, J. Am. Chem. Soc., 2012, 134, 7.
- 3. Y. Aihara and N. Chatani, J. Am. Chem. Soc., 2013, 135, 5308.
- 4. H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto and N. Chatani, *J. Am. Chem. Soc.*, 2011, **133**, 14952.
- 5. Y. Aihara and N. Chatani, J. Am. Chem. Soc., 2014, 136, 898.

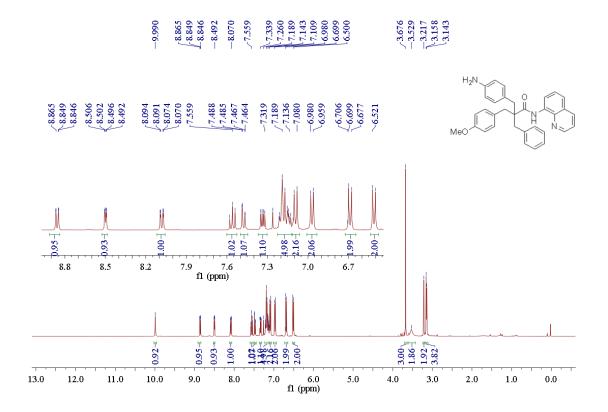

IX. Copy of ¹H-¹H NOESY spectrum of 4

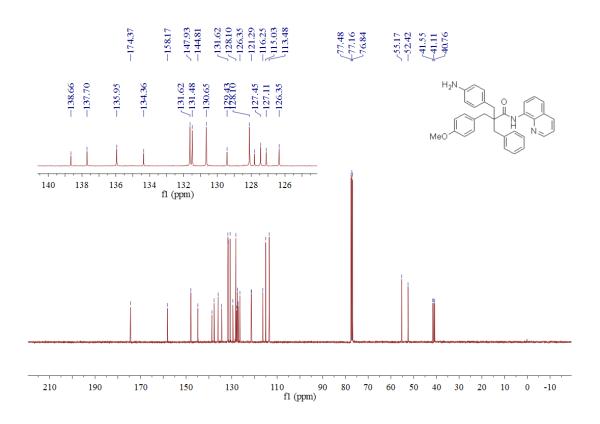


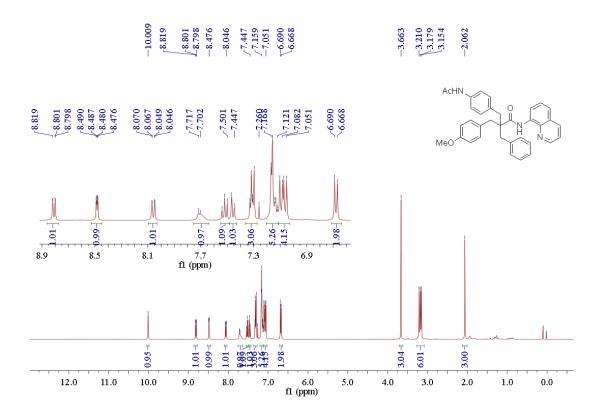
X. Copies of ^{1}H and ^{13}C NMR spectra

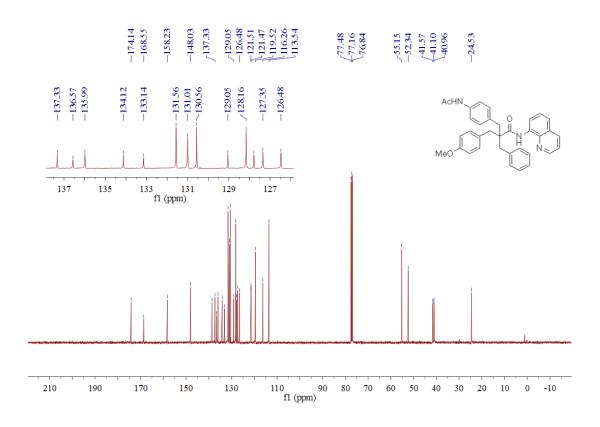


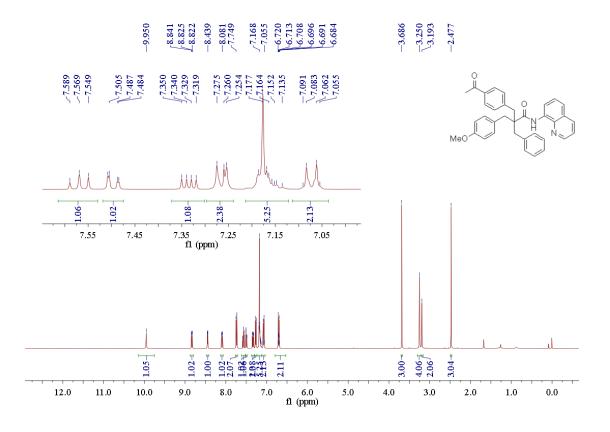


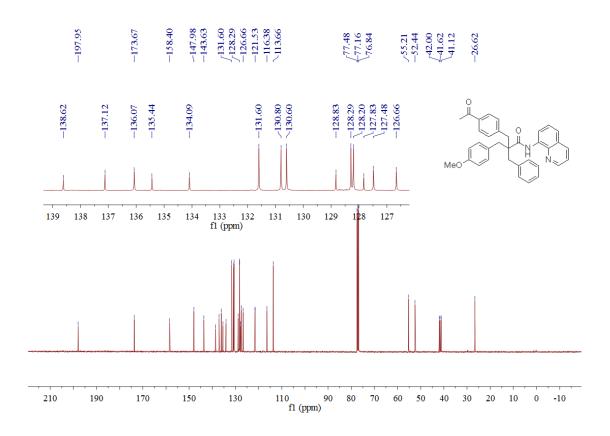


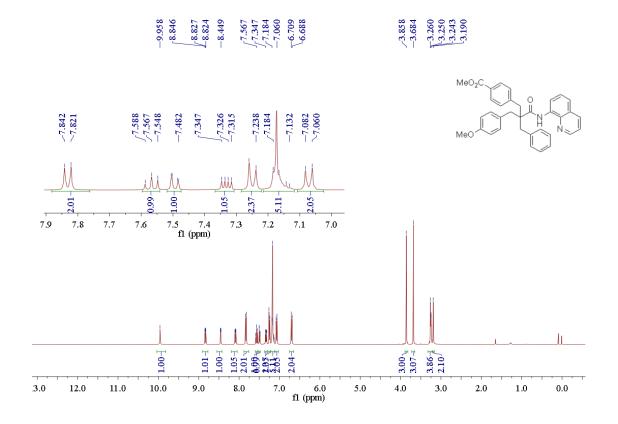


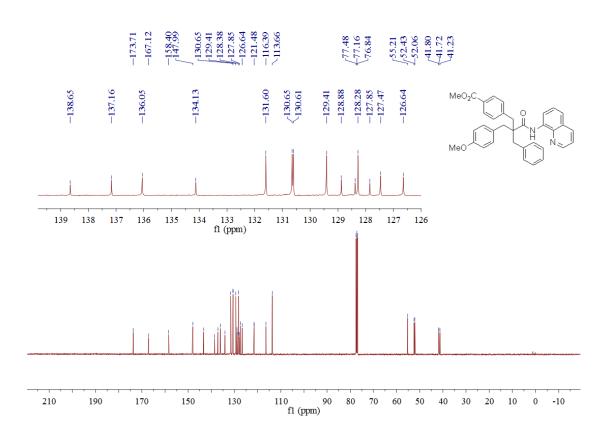

8.838 8.839 -8.420 -8.056 -8.056 -8.056 7.149 7.112 7.112 7.113 7.113 7.113 7.113 7.1149

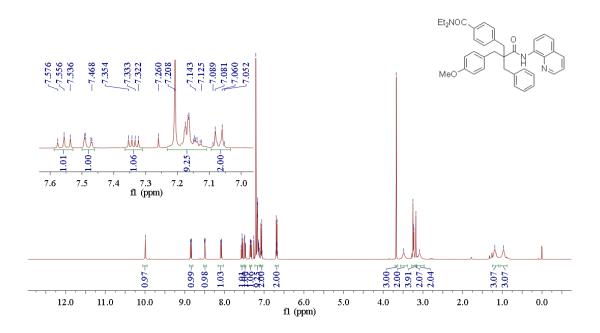


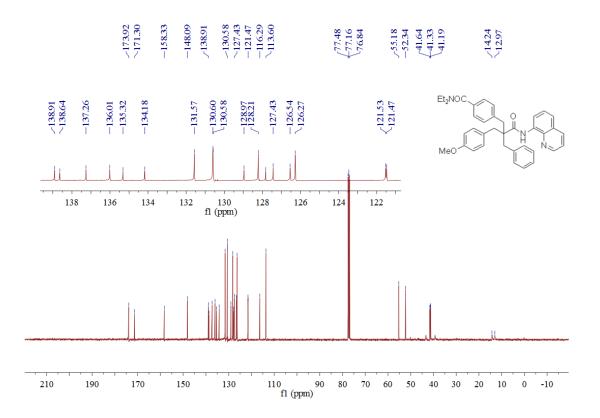


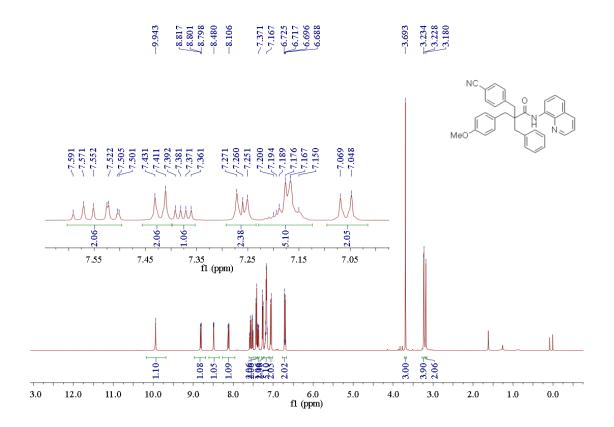


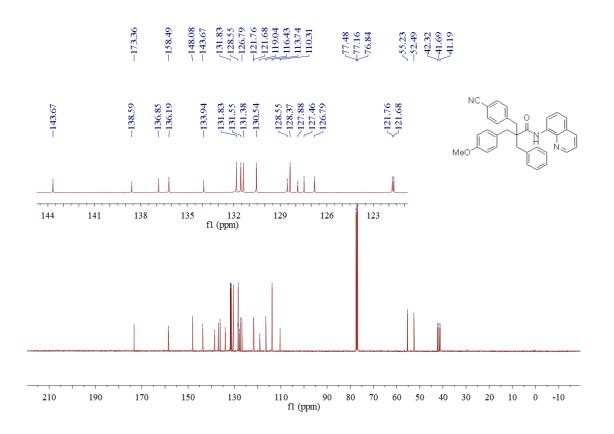


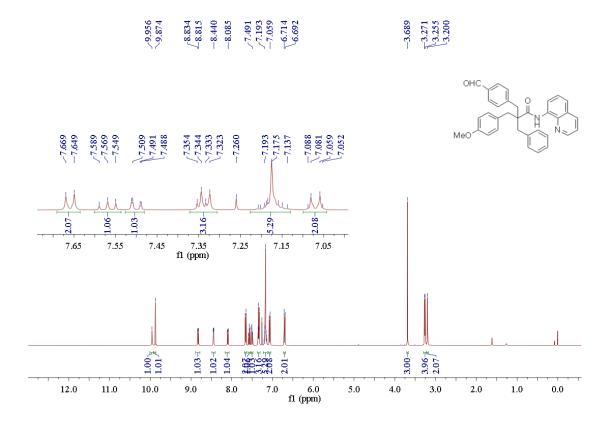


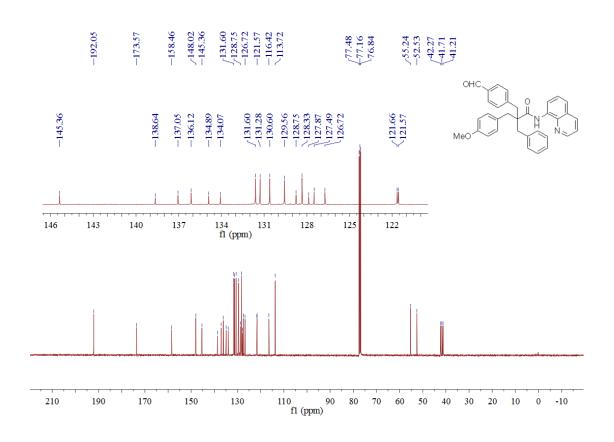


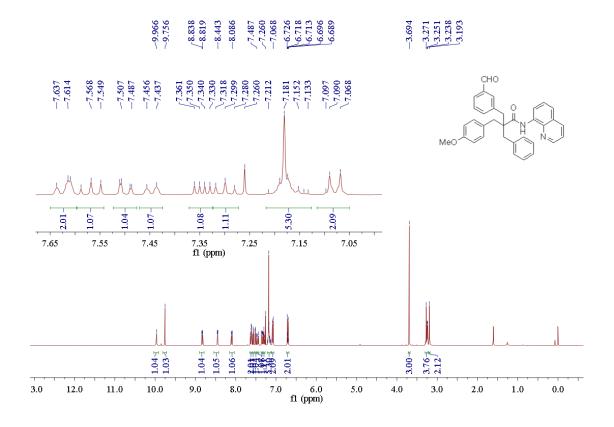


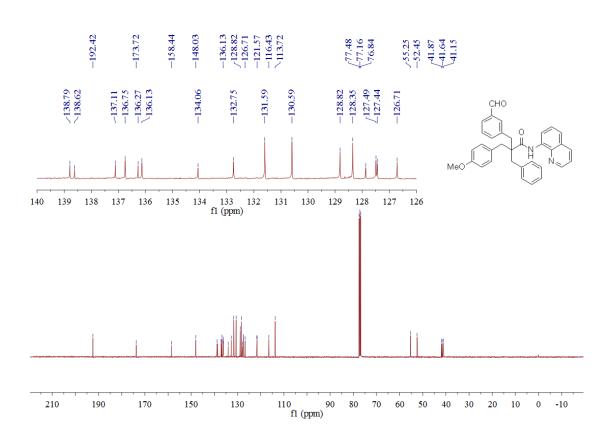


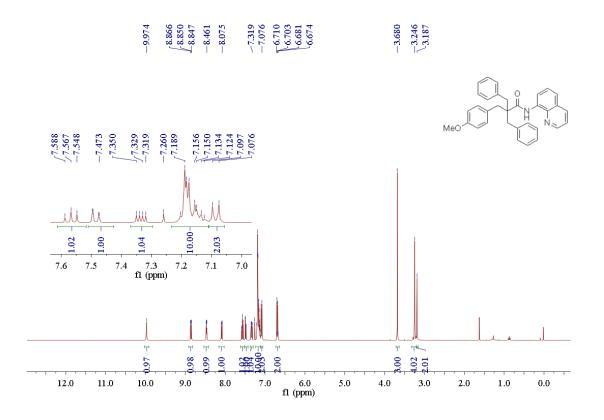


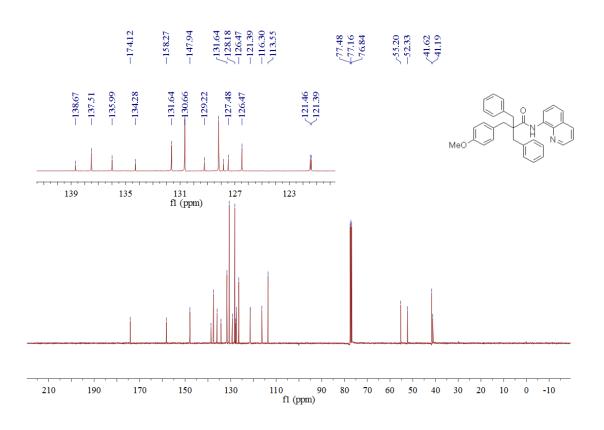


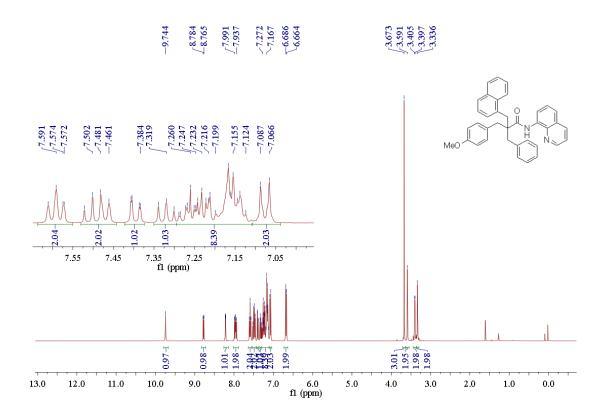


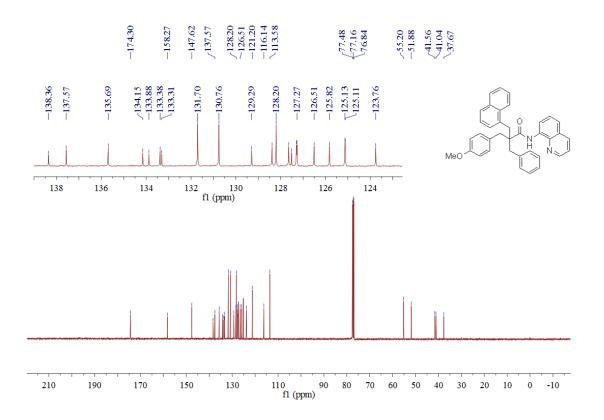


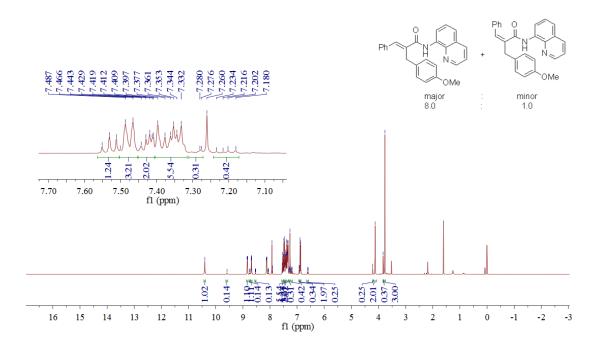


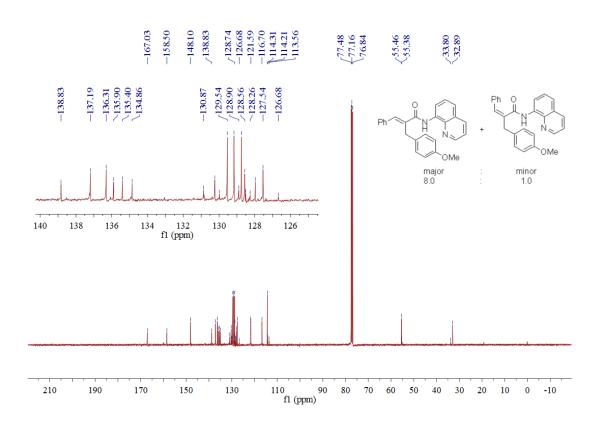


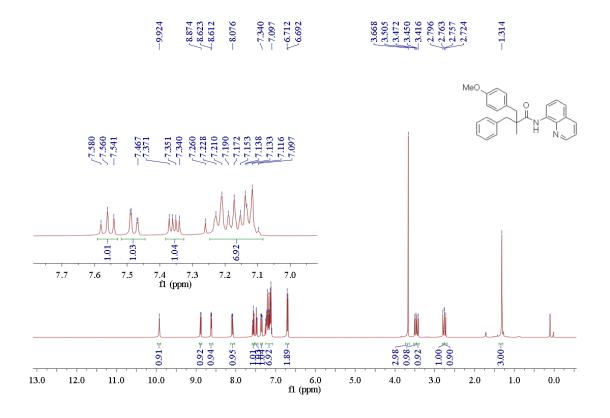


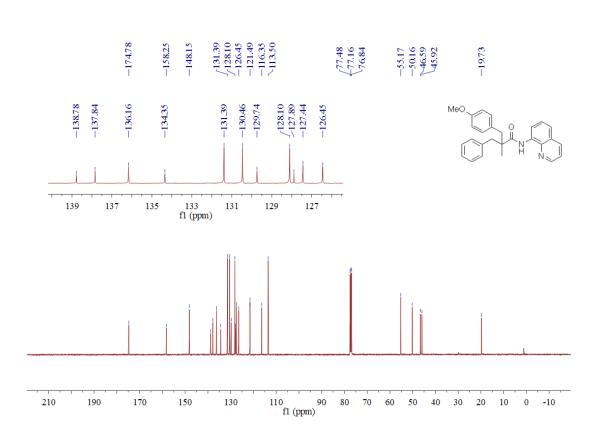


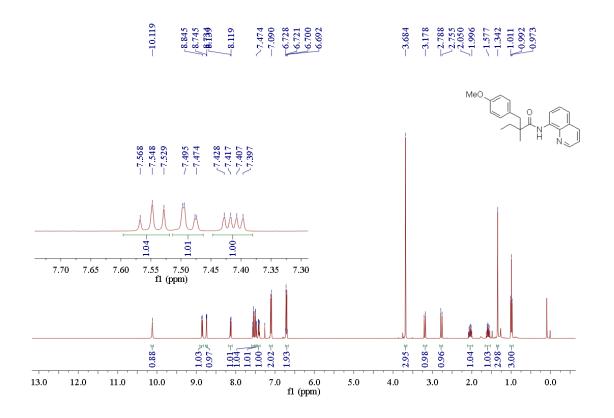


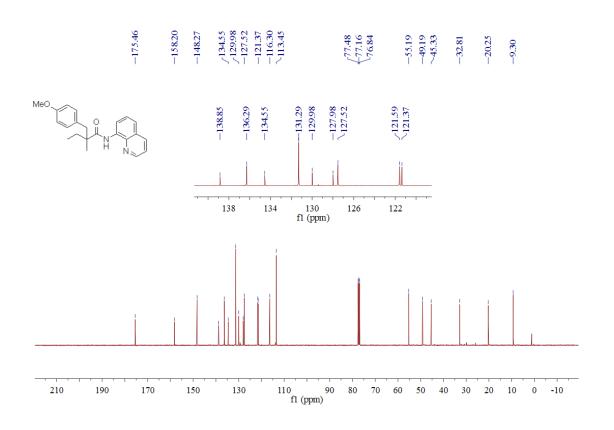


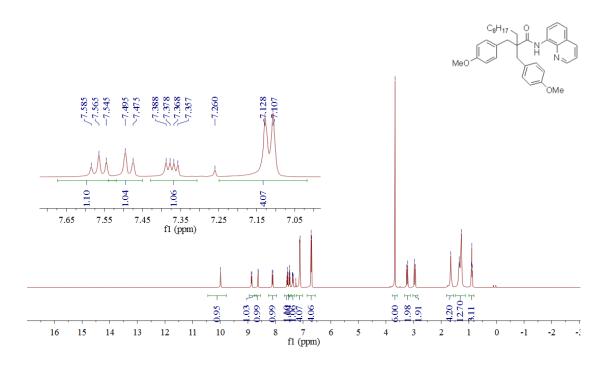


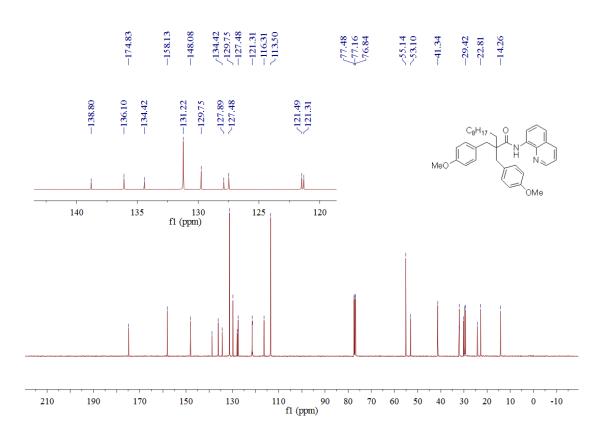


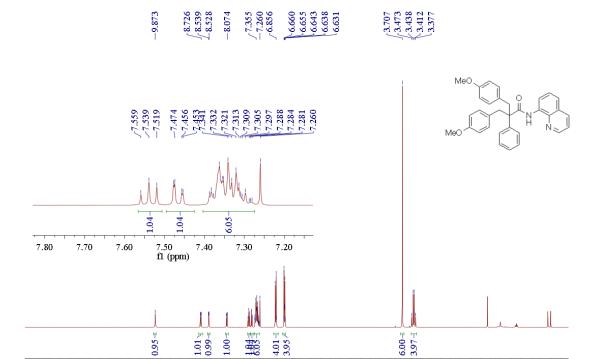



-0.0402 -0.581 -8.826 -8.826 -7.551 -7.337 -7.337 -7.180 -6.614 -4.209 -4.124 -3.829 -3.829 -3.829









6.5 fl (ppm)

5.5

4.5

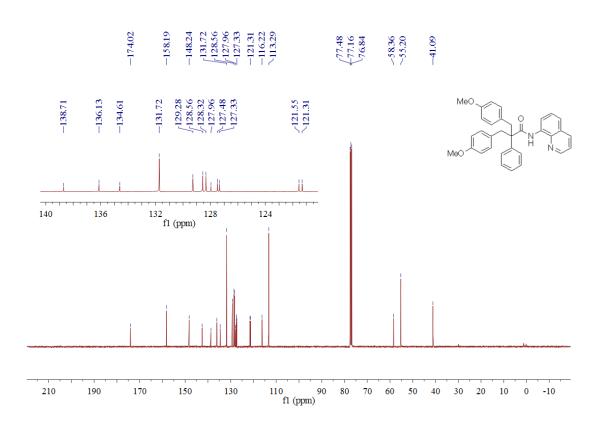
7.5

8.5

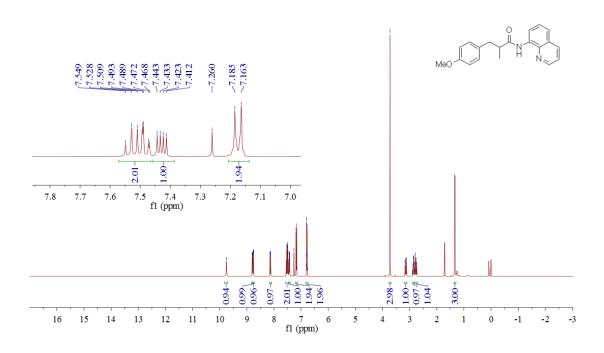
12.5

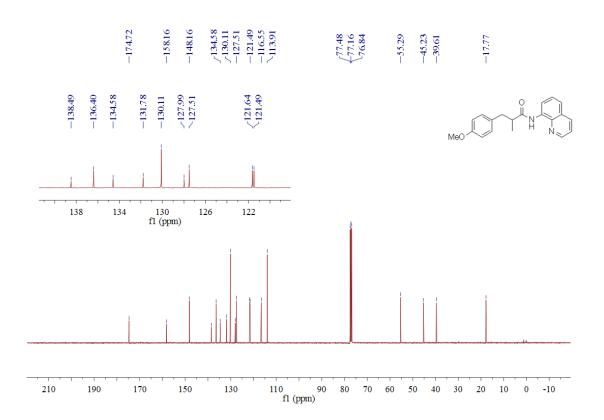
11.5

10.5


9.5

3.5


2.5


1.5

0.5

