Supplementary Information

Triangular Triplatinum(0) Complex with Bridging Germylene Ligands.

Insertion of Alkyne into the Pt–Ge Bond Rather Than the Pt–Pt Bond

Makoto Tanabe, Kimiya Tanaka, Shumpei Omine and Kohtaro Osakada*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan E-mail: kosakada@res.titech.ac.jp

Contents

General procedu	ires	S2
Preparation of 2	-5	S2-5
Figure S1-S2	ORTEP drawings of 2 and 3	S6
Table S1	Crystallographic data of 2-5	S 7
Figure S3	¹ H, ¹³ C{ ¹ H} NMR spectra of 2	S 8
Figure S4-S6	${}^{1}H {}^{13}C{}^{1}H$, ${}^{31}P{}^{1}H$, and ${}^{195}Pt{}^{1}H$ NMR spectra of 3	S9-S10
Figure S7-S8	^{1}H $^{13}C\{^{1}H\},$ $^{31}P\{^{1}H\},$ and $^{195}Pt\{^{1}H\}$ NMR spectra of 4	S11-S12
Figure S9	Variable-temperature ¹ H NMR spectra of 4	S13
Figure S10-S11	¹ H, ¹³ C{ ¹ H}, and ³¹ P{ ¹ H} NMR spectra of 5	S14-S15
Figure S12. LUN	$AOs of 3 and [{Pt(PMe_3)}_3(\mu-CO)_3],$	S16
Table S2	Selected bond parameters of 3 and $[{Pt(PMe_3)}_3(\mu-CO)_3]$	S16
Table S3	Optimized geometry of 3 and $[{Pt(PMe_3)}_3(\mu-CO)_3]$	S17-S18

General Procedures. All manipulations were carried out using standard Schlenk techniques under an argon or nitrogen atmosphere or in a nitrogen-filled glovebox (Miwa MFG). Hexane, toluene, and THF were purified by using a Grubbs-type solvent purification system (Glass The ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded on a Bruker Biospin Contour).^[1] Avance III 400 MHz NMR spectrometer. Chemical shifts in ¹H and ¹³C{¹H} NMR spectra were referenced to the residual peaks of the solvents used.^[2] The peak position of the ${}^{31}P{}^{1}H$ NMR spectra was referenced to external 85% H₃PO₄ (δ 0) in deuterated solvents. All deuterated solvents ([D₆]benzene, [D₈]toluene, [D₂]dichloromethane) were carefully deoxygenated by three freeze-thaw-pump cycles before use. The signals of 4 and 5 in the ¹H and ¹³C{¹H} NMR spectra were assigned by 2D HMQC NMR experiments. IR spectra were recorded on a JASCO FTIR-4100 spectrometer. Elemental analyses were performed using a LECO CHNS-932 or Yanaco MT-5 CHN autorecorder at the Center for Advanced Materials Analysis, Technical Department, Tokyo Institute of Technology. The compounds, cis-[PtMe₂(PMe₃)₂]^[3] and [Pt(PCy₃)₂]^[4], were prepared according to the literature. H₂GePh₂ was synthesized from reduction of Cl₂GePh₂ (Sigma-Aldrich) Dimethyl acetylenedicarboxylate (DMAD) and methyl propiolate were purchased by LiAlH₄. from Sigma-Aldrich and used as received.

Preparation of *trans*-[**Pt(GeHPh₂)₂(PMe₃)₂] (2)**. To a hexane solution (3 mL) of *cis*-[PtMe₂(PMe₃)₂] (752 mg, 1.99 mmol) was added H₂GePh₂ (750 μL, 4.00 mmol) in 1:2 ratio. The reaction mixture was stirred for 1.5 h at room temperature, giving a white precipitate. The white solid was collected by filtration, washed with hexane (1 mL × 3), and then dried *in vacuo* to afford **2** (1.29 g, 81%). Colorless crystals of **2** suitable for X-ray crystallography were obtained from recrystallization from THF/hexane (1:5). Anal. Calcd for C₃₀H₄₀Ge₂P₂Pt: C, 44.87; H, 5.02; Found: C, 44.71; H, 4.98; ¹H NMR (400 MHz, [D₆]benzene, rt): *δ*=7.93 (d, *J*(H,H)=7.2 Hz, 8H; C₆H₅ *ortho*), 7.29 (t, *J*(H,H)=7.2 Hz, 8H; C₆H₅ *meta*), 7.20 (t, *J*(H,H)=7.2 Hz, 4H; C₆H₅ *para*), 5.32 (apparent triplet, *J*(P,H) = 12 Hz, *J*(Pt,H) = 67 Hz, 2H; GeH), 1.19 ppm (s, *J*(Pt, H) = 30 Hz, 18H; PCH₃); ¹³C {¹H} NMR (400 MHz, [D₆]benzene, rt): *δ*=147.6 (*J*(Pt,C)=37 Hz; *C*₆H₅ *ipso*), 136.9 (*J*(Pt,C)=14 Hz; *C*₆H₅ *ortho*), 128.1 (*C*₆H₅ *meta*), 127.8 (*C*₆H₅ *para*), 17.3 ppm (br; PCH₃); ³¹P {¹H} NMR (162 MHz, [D₆]benzene, rt): *δ*=-24.5 ppm (*J*(Pt,P)=2362 Hz); IR (KBr): ν⁻= 1915 cm⁻¹ (s; ν(GeH)).

Preparation of [{Pt(PMe₃)}₃(µ-GePh₂)₃] (3). Trans-[Pt(GeHPh₂)₂(PMe₃)₂] (1.00 g, 1.25

mmol) and [Pt(PCy₃)₂] (0.94 g, 1.24 mmol) in 1:1 ratio were dissolved in toluene (3 mL). The reaction mixture was stirred for 12 h at 100 °C, giving a dark red solution. The solvent was removed under reduced pressure. The resulting material was washed with hexane (1 mL × 3) and dried *in vacuo* to afford **3** (836 mg, 67%). Orange crystals of **3** suitable for X-ray crystallography were obtained from recrystallization from THF/hexane (1:10). Anal. Calcd for C₄₅H₅₇Ge₃P₃Pt₃: C, 36.18; H, 3.85; Found: C, 36.54; H, 3.94; ¹H NMR (400 MHz, [D₂]dichloromethane, rt): δ =7.96 (m, 12H; C₆H₅ *ortho*), 7.36 (m, 18H; C₆H₅ *meta* and *para*), 1.16 ppm (m, *J*(Pt,H)=35 Hz, 27H; PCH₃); ¹³C{¹H} NMR (101 MHz, [D₂]dichloromethane, rt): δ =158.6 (*J*(Pt,C)=58 Hz; C₆H₅ *ipso*), 135.5 (C₆H₅ *ortho*), 128.6 (C₆H₅ *meta*), 128.3 (C₆H₅ *para*), 22.4 ppm (m; PCH₃); ³¹P{¹H} NMR (162 MHz, [D₂]dichloromethane, rt): δ =27.5 ppm (*J*(Pt,P) = 2900 Hz, ²*J*(Pt,P) = 410 Hz, ³*J*(P,P) = 94 Hz); ¹⁹⁵Pt{¹H} NMR (86 MHz, [D₂] dichloromethane, rt): δ –4195 ppm (*J*(Pt,Pt)=2633 Hz, *J*(P,Pt)=2900 Hz, ²*J*(P,Pt)=410 Hz).

Preparation of $[{Pt(PMe_3)}_3(\mu_3-\eta^2(||)-CZ=CZ-GePh_2)(\mu-GePh_2)_2]$ (4: Z = COOMe). To a THF (2 mL) solution of $[{Pt(PMe_3)}_3(\mu-GePh_2)_3]$ (50 mg, 0.033 mmol) was added DMAD (4.1 μ L, 0.033 mmol) in an equimolar ratio. The reaction mixture was stirred for 1 h at 50 °C, giving a dark red solution. The solvent was removed under reduced pressure to give the resulting material, which was washed with hexane $(1 \text{ mL} \times 3)$ and dried *in vacuo* to afford 4 (43 mg, 78%). Red crystals of 4 suitable for X-ray crystallography were obtained from recrystallization from THF/hexane (1:10). Anal. Calcd for $C_{51}H_{63}Ge_{3}O_{4}P_{3}Pt_{3}\bullet 1/2$ $C_{6}H_{14}$: C, 38.62; H, 4.20; Found: C, 38.25; H, 4.00; ¹H NMR (400 MHz, [D₈]toluene, 27 °C): δ =8.27 (d, J(H,H) = 6.4 Hz, 4H; C₆H₅ ortho), 8.18 (br, 4H; C_6H_5 ortho), 7.80 (br, 4H; C_6H_5 ortho), 7.29–7.23 (m, 12H; C_6H_5 meta and para), 7.13 (m, 6H; C₆H₅ meta and para), 3.55 (s, 3H; OCH₃), 3.19 (s, 3H; OCH₃), 1.30 (m, 18H; PCH₃), 0.34 ppm (d, J(P,H)=10 Hz, 9H; PCH₃); ¹H NMR (400 MHz, [D₈]toluene, -50 °C): $\delta=8.52$ (d, *J*(H,H)=6.8 Hz, 2H; C₆*H*₅ ortho), 8.39 (m, 4H; C₆*H*₅ ortho), 8.13 (m, 2H; C₆*H*₅ ortho), 7.72 (br, 2H; C₆H₅ ortho), 7.44 (t, J(H,H)=14.8 Hz, 2H; C₆H₅ meta), 7.34–7.07 (m, 16H; C₆H₅ meta and para), 3.54 (s, 3H; OCH₃), 3.20 (s, 3H; OCH₃), 1.38 (d, J(H,H)=9.2 Hz, 9H; PCH₃), 1.13 (d, J(H,H)=9.6 Hz, 9H; PCH₃), 0.34 ppm (d, J(H,H)=10 Hz, 9H; PCH₃), One of C₆H₅ ortho hydrogen signals was buried in the baseline at this temperature; ${}^{13}C{}^{1}H$ NMR (101 MHz, [D₆]benzene, rt): δ =193.3 (*J*(Pt,C)=394 Hz; PtCZ=), 174.9 (CO), 173.8 (CO), 151.1 (C₆H₅ ipso), 147.7 (C₆H₅ ipso), 143.7 (C₆H₅ ipso), 136.3 (C₆H₅ ortho), 135.8 (br; C₆H₅ ortho), 127.7 (C₆H₅ meta or para), 127.5 $(C_6H_5 \text{ meta or para})$, 119.0 (GeCZ=), 50.7 (OCH₃), 50.5 (OCH₃), 19.2 (m, J(P,H) = 32 Hz, J(Pt,H) = 50 Hz; PCH₃), 15.6 ppm (d, J(P,H) = 32 Hz; J(Pt,H) = 58 Hz; PCH₃); ³¹P{¹H} NMR (162 MHz, [D₆]benzene, rt): δ =-12.8 (J(P,Pt)=4012 Hz, ²J(P,Pt)=348 Hz, ³J(P,P)=63 Hz, 1P), -17.7 ppm (J(P,Pt)=3667 Hz, ²J(P,Pt)=304 Hz, ³J(P,P)=63 Hz, 2P); ¹⁹⁵Pt{¹H} NMR (86 MHz, [D₆]benzene, rt): δ =-4102 (dt, J(Pt,Pt)=1543 Hz, J(PPt)=3997 Hz, ²J(PPt)=307 Hz, 1Pt), -4466 ppm (br d, J(P,Pt)=ca. 3600 Hz, 2Pt); IR (KBr): v~=1692 (s; v(C=O)), 1675 (s; v(C=O)), 1213 cm⁻¹ (s; v(C=O)).

Preparation of $[{Pt(PMe_3)}_3(\mu_3 - \eta^2(\parallel) - CZ = CH - GePh_2)(\mu_3 - \eta^2(\parallel) - GePh_2 - CZ = CH - GePh_2)]$ To a toluene (5 mL) solution of $[{Pt(PMe_3)}_3(\mu-GePh_2)_3]$ (100 mg, 0.066 (5: $\mathbf{Z} = \mathbf{COOMe}$). mmol) was added methyl propiolate (12 μ L, 0.13 mmol) in 1:2 ratio. The reaction mixture was stirred for 2 h at room temperature, giving a dark red solution. The solvent was removed under reduced pressure to give the resulting material, which was washed with hexane $(1 \text{ mL} \times 3)$ and dried *in vacuo* to afford 5 (72 mg, 65%). Red crystals of 5 suitable for X-ray crystallography were obtained from recrystallization from THF/hexane (1:10). Anal. Calcd for C₅₃H₆₅Ge₃O₄P₃Pt₃: C, 38.30; H, 3.94; Found: C, 37.91; H, 3.86; ¹H NMR (400 MHz, [D₈]toluene, rt): δ=8.42 (m, 2H; C_6H_5 ortho), 8.37 (d, J(H,H)=7.2 Hz, 2H; C_6H_5 ortho), 8.23 (m, 4H; C_6H_5 ortho), 8.03 (m, 3H; C_6H_5 ortho and =CH), 7.96 (d, J(H,H)=7.2 Hz, 2H; C_6H_5 ortho), 7.27-7.03 (m, 18H; C_6H_5 meta and para), 6.90 (d, J(H,H)=7.2 Hz, 1H; =CH), 3.45 (s, 3H; OCH₃), 2.94 (s, 3H; OCH₃), 1.24 (d, *J*(P,H)=10 Hz, *J*(Pt,H)=38 Hz, 9H; PCH₃), 1.01 (d, *J*(P,H)=10 Hz, *J*(Pt,H)=33 Hz, 9H; PCH₃), 0.84 ppm (d, J(P,H)=9.6 Hz, J(Pt,H)=30 Hz, 9H; PCH₃); ${}^{13}C{}^{1}H$ NMR (101 MHz, [D₆]benzene, rt): δ=185.8 (J(Pt,C)=658 Hz; PtCZ=), 175.1 (CO), 173.8 (CO), 150.5, 148.4, 145.6, 144.8, 144.4, 142.3 (C₆H₅ ipso), 138.7, 136.8, 136.3 (overlapped), 136.0, 135.3 (C₆H₅ ortho), 126.2 (C₆H₅ meta or para), 116.3 (GeCH=), 113.1 (GeCH=), 50.8 (OCH₃, overlapped), 19.3 (d, J(P,H)=34 Hz, *J*(Pt,H)=53 Hz; PCH₃), 18.2 (d, *J*(P,H)=32 Hz, *J*(Pt,H)=51 Hz; PCH₃), 16.5 ppm (d, *J*(P,H)=31 Hz, J(Pt,H)=47 Hz; PCH₃), The GeCZ= carbon signal could not be assigned; ³¹P{¹H} NMR (162 MHz, [D₆]benzene, rt): δ =-17.1 (apparent triplet, J(Pt,P)=3733 Hz, ²J(Pt,P)=270, 443 Hz, ³J(P,P)=82, 85 Hz), -23.2 (dd, J(Pt,P)=3609 Hz, ${}^{2}J(Pt,P)=211$, 230 Hz, ${}^{3}J(P,P)=61$, 82 Hz), -26.2 ppm (dd, J(Pt,P)=3772 Hz, ${}^{2}J(Pt,P)=281$, 411 Hz, ${}^{3}J(P,P)=61$, 85 Hz). IR (KBr): v~= 1708 (s; v(C=O)), 1687 (s; v(C=O)), 1197 cm⁻¹ (s; v(C=O)).

X-ray Crystal Structure Analyses. Single crystals of **2-5** suitable for X-ray diffraction study were mounted on MicroMountsTM (MiTeGen). The crystallographic data were collected on a Rigaku Saturn CCD area detector or Bruker SMART APEXII ULTRA/CCD diffractometer equipped with monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 113 K or 90 K. Calculations were carried out using the program package, respectively. The positional and thermal parameters of non-hydrogen atoms were refined anisotropically on F^2 by the full-matrix least-squares method using SHELXL-97.^[5] Hydrogen atoms, except for the Ge–H hydrogens of **2**, were placed at calculated positions and refined with a riding mode on their corresponding carbon atoms. The GeH hydrogens of **2** were found from the Fourier-difference electron-density and refined isotropically. Figures S1 and S2 show the molecular structures of **2** and **3**. Crystallographic data of **2-5** are listed in Table S1.

Molecular Orbital Calculations. Calculation of **3** and $[\{Pt(PMe_3)\}_3(\mu-CO)_3]$ has been performed with *Gaussian 09*, *revision B.01.*^[6] Geometry optimization was performed by MPWB95 functional conjunction with 6-31G(d,p) basis set (for H, C, O, P, Ge) and SDD basis set (for Pt). The geometry of the complex **3** was optimized using the actual atom positions obtained by X-ray crystallography. For accretion of the DFT calculations, the density fitting was applied with the W06 auxiliary basis set that implemented in *Gaussian 09*. All optimized structures were verified to be local minima by hessian calculation. NBO analysis was also performed by same level of theory. The HOMO-LUMO energy gaps of **3** and $[\{Pt(PMe_3)\}_3(\mu-CO)_3]$ were calculated as 2.07 and 2.07 eV, respectively.

Figure S1. Thermal ellipsoidal plot of **2** (50% probability level). Hydrogen atoms, except GeH hydrogens, are omitted for clarity. Selected bond distances [Å] and angles [°]: Pt–Ge 2.4576(8), Pt–P 2.294(2), Ge–Pt–P 87.63(5).

Figure S2. Thermal ellipsoidal plot (50% probability level) of **3** viewed from (a) the above and (b) in the plane of the Pt_3Ge_3 core. All hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles [°]: Pt1–Pt2 2.7194(6), Pt1–Pt3 2.7081(6), Pt2–Pt3 2.7150(6), Pt1–Ge2 2.423(1), Pt1–Ge3 2.423(1), Pt2–Ge1 2.412(1), Pt2–Ge3 2.416(1), Pt3–Ge1 2.4209(9), Pt3–Ge2 2.4131(9), Pt1–P1 2.243(2), Pt2–P2 2.247(3), Pt3–P3 2.242(3), Pt2–Ge1–Pt3 68.36(3), Pt1–Ge2–Pt3 68.10(3), Pt1–Ge3–Pt2 68.38(3).

	2	3	4	5
formula	$C_{30}H_{40}Ge_2P_2Pt$	$C_{45}H_{57}Ge_3P_3Pt_3$	$\begin{array}{c} 2(C_{51}H_{63}Ge_{3}O_{4}P_{3}Pt_{3})\\ \cdot C_{6}H_{14} \end{array}$	$C_{53}H_{65}Ge_{3}O_{4}P_{3}Pt_{3}$
formula wt	802.86	1493.91	3358.09	1662.00
cryst size/mm	0.28×0.41×0.56	0.18×0.15×0.15	0.20×0.20×0.10	0.13×0.15×0.23
cryst syst	monoclinic	triclinic	monoclinic	monoclinic
cryst color	colorless	red	red	red
space group	C2/c (No. 15)	<i>P</i> -1 (<i>No</i> . 2)	<i>P</i> 2 ₁ (<i>No</i> . 4)	<i>P</i> 2 ₁ /c (<i>No</i> . 14)
a/Å	22.985(6)	12.539(2)	12.053(3)	21.046(6)
$b/{ m \AA}$	8.962(2)	13.863(2)	23.593(6)	12.804(4)
$c/{ m \AA}$	15.656(4)	15.866(3)	20.308(5)	20.027(5)
lpha/deg		66.820(8)		
β/deg	107.227(3)	79.027(9)	91.905(4)	93.534(3)
γ/deg		66.814(9)		
V/Å ³	3080(2)	2328.9(8)	5772(3)	5387(3)
Ζ	4	2	2	4
$D_{ m calcd}/ m g~ m cm^{-3}$	1.731	2.130	1.932	2.049
<i>F</i> (000)	1568	1404	3204	3160
μ /mm ⁻¹	6.571	10.983	8.910	9.546
no. of reflns measd	11909	19101	23758	25119
no. of unique reflns	3517	10239	15612	9504
R _{int}	0.0295	0.0351	0.0768	0.4150
no. of obsed reflns	2102	7170	11907	7075
$(I > 2\sigma(I))$	5185	/1/9	11800	/065
no. of variables	167	496	1231	608
$R, R_{\rm w} (I > 2\sigma(I))$	0.0475, 0.0507	0.0310, 0.0869	0.0655, 0.1313	0.0921, 0.2482
$R, R_{\rm w}$ (all data)	0.1223, 0.1242	0.0460, 0.0925	0.0977, 0.1404	0.1060, 0.2617
GOF on F^2	1.081	1.026	1.336	0.981

 Table S1.
 Crystallographic Data and Details of Refinement of 2-5

Figure S3 (a) 1 H and (b) $^{13}C{^{1}H}$ NMR spectra of 2 in C₆D₆.

Figure S5 (a) Simulated and (b) experimental ${}^{31}P{}^{1}H$ NMR spectra of 3 in CD₂Cl₂.

Figure S6 (a) Simulated and (b) experimental $^{195}Pt\{^{1}H\}$ NMR spectra of 3 in CD_2Cl_2 .

Figure S8 (a) ${}^{31}P{}^{1}H$ and (b) ${}^{195}Pt{}^{1}H$ NMR spectra of 4 in C₆D₆.

Figure S9 Variable-temperature ¹H NMR spectra of 4 in C_7D_8 from -50 to 50 °C.

Figure S10 (a) 1 H and (b) ${}^{13}C{}^{1}$ H} NMR spectra of 5 in C₆D₆.

Figure S11 ³¹P{¹H} NMR spectrum of 5 in C_6D_6 .

Figure S12. LUMOs of (a) **3** and (b) [{Pt(PMe₃)}₃(μ -CO)₃], optimized by DFT calculations.

[°] of 3 and $[{Pt(PMe_3)}_3(\mu-CO)_3]^{a}$.					
	3 (E = Ge)		[{Pt(PMe ₃)} ₃ (µ-CO) ₃] (E = CO)		
	Exp.	Calc.	Calc.		
Pt–Pt	2.7142(6)	2.7585	2.7159		
Pt–E	2.418(2)	2.450	2.0830		
Pt–P	2.244(3)	2.288	2.282		
Pt-Pt-Pt	60.00(6)	60.00	60		
Pt-E-Pt	68.28(3)	68.52	81.37		
Ph-E-Ph	108.8(4)	109.13	_		

Table S2. Experimental and calculated bond distances [Å] and angles

a) All bond distances and angles are averaged.

(a) Complex 3

atom	х	У	Z				
Pt	-1.46225357	0.57556076	-0.04653155	. н	5.72875452	-1.50806169	-0.16343708
Pt	0.23396876	-1.60083087	-0.07181168	Н	7.19346814	-1.95692831	-2.114339
Pt	1.25852808	0.96932947	-0.04669669	Н	6.20895821	-2.20761965	-4.39441725
Ge	2.61439998	-1.06336837	0.13900471	Н	3.73975562	-1.98571604	-4.71213998
Ge	-0.39262852	2.77756485	0.04341392	н	2.267748	-1.5252508	-2.74413614
Ge	-2.21020268	-1.75236828	0.07159498	H	2.28528331	0.18208061	2.78234162
Р	-3.57339984	1.40693471	-0.34221934	H	3.22862333	-0.13179462	5.07586887
Р	0.56005382	-3.85080312	-0.32244036	н	4,95933738	-1.88885315	5,48214596
Р	3.08661732	2.3204496	-0.3044485	H	5.72971122	-3.33045894	3.59490736
С	3.88347189	-1.51384821	-1.30831354	Н	4,79190561	-3.01645308	1.32191588
С	5.28015373	-1.62508346	-1.15466007	H	0.32027329	2.4862354	-2.79288086
С	6.11250444	-1.87389557	-2.25589079	H	0.11204539	3.84636593	-4.88107584
С	5.56108661	-2.01240845	-3.53627441	н	-0.91322651	6.12356726	-4.7868369
С	4.1745205	-1.89084752	-3.71333164	H	-1.73558797	7.02452439	-2.60873288
C	3.34975492	-1.64103242	-2.60980431	Н	-1.52325179	5.67387418	-0.53862278
С	3.48350238	-1.37577714	1.88290285	H	0.24247884	5.7011783	0.99466428
С	3.04998898	-0.58168616	2.96636008	Н	-0 01010434	6 88005292	3 16242313
C	3.57680496	-0.75957994	4.25118389	н	-0 98734377	5 69428709	5 13032932
C	4.54639713	-1.7466967	4,48028282	н	-1 70090037	3 30939392	4 9138289
Č	4.97987632	-2.55401873	3.42061471	н	-1 44324567	2 12436491	2 72654587
C	4,45044601	-2.36887739	2.13551041	н	-5 03687906	-3 0996451	-0 42873158
C	-0.56160572	3.98785776	-1.51188896	н	-6 18258661	-3 90966257	-2 47402716
C	-0.11696126	3.49120357	-2.75702166	н	-5 04472818	-3 77033063	-4 69141058
C	-0.23870297	4.25035671	-3.92739998	н	-2 74862914	-2 79527236	-4 84967848
Č	-0.81679667	5.52763219	-3.87585614	н	-1 59685623	-1 98040965	-2 78481324
Č	-1.27614341	6.0333544	-2.65278209	н	-2 41769444	-0 51511678	2 73561391
C	-1.14979682	5,26830109	-1.48400108	н	-3 37480474	-1 13131745	4 96204303
Č	-0.60281124	3.82955509	1.69892064	н	-4 54406922	-3 32065332	5 25286137
C	-0.19561879	5.17038111	1.84571304	н	-4 73935916	-4 88821697	3 31937896
Č	-0.3318209	5.8391364	3.07052791	н	-3 78840002	-4 27462411	1 11502345
C	-0.87822574	5.17371791	4.17562144	н	-3 27074538	2 14908437	-2 63950128
C	-1.28023759	3.83574068	4.05264651	Н	-5 01778025	1 89956291	-2 2849149
C	-1.13849328	3.17290491	2.8274856	н	-3 93051435	0 49244838	-2 56735917
C	-3.21724272	-2.50630561	-1.45453436	н	-5 01049457	3 37611645	0.04710669
Č	-4.51895552	-3.04295658	-1.39093494	н	-3 3041679	3 83468514	-0 27616357
C	-5.17297947	-3,49622273	-2.54609051	н	-3 75468468	3 19051019	1 32080315
Ċ	-4.53605449	-3.41632688	-3.79129714	н	-5 95756579	1 00936746	0 15794676
Č	-3.24591171	-2.87185601	-3.87883565	н	-4 87834445	0.35383831	1 43856077
C	-2.59909741	-2.42092336	-2.72178708	н	-5 05465163	-0 52147722	-0 10085512
Ċ	-3.05066348	-2.33596331	1.75935821	н	-0 22963702	-4 1350366	-2 61303854
C	-2.93771034	-1.47126119	2.86915846	н	0.82963645	-5 50310884	-2 1293843
Č	-3.47182578	-1.8173469	4.11616329	н	1 54279215	-3 91069293	-2 55549591
C	-4.12620017	-3.04676974	4.28089598	н	-0.93650257	-4 77658951	1 38055744
C	-4.23714076	-3.92498848	3,19527691	н	-0 44920359	-6 04645	0 20112937
Č	-3.70226965	-3.57082561	1.94855923	н	-1 67477864	-4 8083622	-0 24045095
C	-4.00199551	1.50103905	-2.13555029	н	2 10032308	-5 68720606	0 28483054
Ċ	-3.95753655	3.11882296	0.24301417	н	2 15343075	-4 33540897	1 47261829
Ċ	-5.01295487	0.47819949	0.35497336	н	2 96437263	-4 15999251	-0 10324322
C	0.68944469	-4.41180802	-2.07829757	н	2 93148973	2 72849049	-2 70168325
Ċ	-0.74542111	-4.99215673	0.32012651	н	3,96657671	1.3183192	-2.34438205
C	2.08964742	-4.59242002	0.40612935	н	4,61299583	2.98418241	-2.12422504
Ċ	3.72009165	2.34500361	-2.03925359	н	2 60354485	4 25967563	1 10257395
Ċ	2.91432642	4.12634744	0.05661224	н	2 13148099	4 54715322	-0 5921121
č	4.61795658	1.9180114	0.65184199	н	3 86219165	4 66017053	-0 11713504
-				н	5 4015103	2 67202888	0 47662414
				н	4 98643661	0.92872833	0 3436923
				н	4,38056384	1.87247502	1.72374729

(b) [{Pt(PMe₃)}₃(*µ*-CO)₃].

atom	Х	У	Z
Pt	-1.07821383	1.13823713	0.00338738
Pt	1.53642546	0.41948784	0.0061117
Pt	-0.39116257	-1.49380325	0.00500865
Р	-2.7445334	2.69542139	0.08562992
Р	3.76667413	0.89824234	0.0924222
Р	-1.09574583	-3.66256448	0.07436591
С	4.27536089	2.66978592	0.16965041
Н	3.85413553	3.1240823	1.07745781
С	4.72945129	0.25333555	-1.34484022
Н	4.36942689	0.7318692	-2.26598269
С	4.66813912	0.15073584	1.521515
Н	4.52384488	-0.9387162	1.4932647
С	-2.19451059	-4.07940514	1.49992894
Н	-1.6526259	-3.91175144	2.44082832
С	0.18048986	-4.992674	0.13844633
Н	0.77882979	-4.87083474	1.05226523
С	-2.13871996	-4.15386299	-1.36744485
Н	-2.98091739	-3.45053963	-1.43734887
С	-2.26763641	4.47656506	0.13300487
Н	-1.65797294	4.65997463	1.02890384
С	-3.91869114	2.6166396	-1.3367839
Н	-4.31678718	1.59368088	-1.39749098
С	-3.88435319	2.53729528	1.53107475
H	-4.32213771	1.52893757	1.5212067
С	0.64860089	2.29173673	-0.19891407
C	-2.25157988	-0.57049276	-0.16110216
C	1.6700704	-1.65930265	-0.17395747
0	0.95916803	3.41035953	-0.47491566
0	2.50628411	-2.47604424	-0.42320009
0	-3.38845601	-0.86519056	-0.39310363
Ĥ	5,74425296	0.38068625	1.48395913
н	4.24370637	0.53089449	2.46088122
н	5.80756007	0.44343611	-1.22755728
Н	4.54786163	-0.82803372	-1.42320526
н	5.37083829	2.7765487	0.1771927
Н	3.85493496	3.20070866	-0.69547453
н	-0.27703563	-5.99367626	0.12764004
Н	0.85642901	-4.88209877	-0.72064314
Н	-3.06433835	-3.40753904	1.4777012
Н	-2 53598734	-5 12508814	1 4529377
Н	-2.5182922	-5.18185544	-1.26091778
н	-1.54476714	-4.07434709	-2.28831635
н	-3.31296039	2.65639337	2.46186728
н	-4 68880545	3 28814643	1 49410021
н	-4 74622283	3 33325425	-1 21906811
н	-3 37544855	2 8315704	-2 26727446
н	-3 15145701	5 1324332	0 14630508
н	-1 64751079	4 70434406	-0 74481531
	1.04/010/0	7.70707700	0.7 440 100 1

References

- A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics 1996, 15, 1518.
- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics* 2010, 29, 2176.
- 3 C. M. Haar, S. P. Nolan, W. J. Marshall, K. G. Moloy, A. Prock and W. P. Giering, *Organometallics* 1999, **18**, 474.
- M. Tanabe, M. Itazaki, O. Kitami, Y. Nishihara and K. Osakada, *Bull. Chem. Soc. Jpn.* 2005, 78, 1288.
- G. M. Sheldrick, *SHELXL-97*: Program for Crystal Structure Refinement. University of Gottingen, Germany, 1997.
- Complete reference: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.