Supporting Information

Solvatochromic Probes for Detecting Hydrogen-Bond-Donating Solvents

Ryan F. Landis^a, Mahdieh Yazdani^a, Brian Creran^a, Xi Yu^a, Vikas Nandwana^a, Graeme Cooke^b, and Vincent M. Rotello*^a

^a Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, United States ^b WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, UK G12 8QQ

S1. AMADA1 emission in various solvents. Concentration = 0.15mM in DCM, 0.41mM in ethyl acetate and acetonitrile, 4.1 mM in methanol. A large concentration of AMADAT was used for methanol due to the large quenching of the fluorescence.

400

450

Wavelength (nm)

500

550

0

S3. Linear correlation between concentration of thymine **1** and fluorescence intensity of MADAT (0.12 mM) in dichloromethane, showing efficient binding at sub-stoichiometric levels of thymine **1**.

S4. Addition of N-Me thymine **2** to MADAT in dichloromethane. Concentration = 0.12mM. Excitation = 330

S5. Linear relation between water concentration and fluorescence intensity.

S7. Linear relation between concentration and intensity of AMADAT in ethyl acetate indicating no dimerization.

S6. Linear relation between concentration and intensity of MADAT in ethyl acetate indicating no dimerization.

S8. Quantum Yield of MADAT: Dichloromethane = 0.88, Methanol = 0.0068 using anthracene (QY 0.27) as reference.