Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Synthesis of Polycyclic Substituted Vinylarenes via a One-Pot Intramolecular Aryl Alkylation/*N*-Tosylhydrazone Insertion Reaction

Xin-Xing Wu, Ping-Xin Zhou, Li-Jing Wang, Peng-Fei Xu* and Yong-Min Liang*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P.R. China. Email: liangym@lzu.edu.cn; xupf@lzu.edu.cn

Supporting Information

Table of contents

1	General Remarks	S2
2	Optimization of the reaction conditions	S2
3	Preparation of Starting Materials	\$3-\$5
4	General procedure for the preparation of the products 3	S6-S12
5	General procedure for the preparation of the products 5	S13-S14
6	General procedure for the preparation of the product 6aa	S14
7	References	S14
8	Crystallographic data of 30	815
9	¹ H NMR, ¹³ C NMR Spectra for products 3a-3x, 5a-5d and 6aa	S16-S44

1. General Remarks

For product purification by flash column chromatography, silica gel (200~300 mesh) and light petroleum ether (bp. 60~90) are used. ¹H NMR spectra were recorded on 400 MHz in CDCl₃ and ¹³C NMR spectra were recorded on 100 MHz in CDCl₃ using TMS as internal standard. IR spectra were recorded on a FT-IR spectrometer and only major peaks were reported in cm⁻¹. Melting points were determined on a microscopic apparatus and were uncorrected. All products were further characterized by HRMS (high resolution mass spectra). Copies of their ¹H NMR and ¹³C NMR spectra were provided. dioxane were dried over Na. Commercially available reagents and solvents were used without further purification.

	a +	NNHTs	Pd(OAc) ₂ / L norbornene base, solvent 80 °C, 16 h	
Entry	Base	Solvent	Ligand	Yield, % ^b
1	K ₂ CO ₃	DME	PPh ₃	67
2	K ₂ CO ₃	dioxane	PPh ₃	71
3	K ₂ CO ₃	THF	PPh ₃	60
4	K_2CO_3	CH ₃ CN	PPh ₃	53
5	t-BuOLi	dioxane	PPh ₃	0
6	Cs ₂ CO ₃	DME	PPh ₃	70
7	Cs_2CO_3	dioxane	PPh ₃	74
8	Cs ₂ CO ₃	dioxane	Xphos	23
9	Cs ₂ CO ₃	dioxane	TFP	55
10	Cs_2CO_3	dioxane	dppe	0
11	Cs_2CO_3	dioxane	dppb	0
12	Cs_2CO_3	dioxane	-	0
13°	Cs_2CO_3	dioxane	PPh ₃	89
14°	K_2CO_3	dioxane	PPh ₃	80
15 ^d	Cs ₂ CO ₃	dioxane	PPh ₃	84
16 ^e	Cs ₂ CO ₃	dioxane	PPh ₃	61
17 ^f	Cs ₂ CO ₃	dioxane	PPh ₃	0

2. Optimization of the reaction conditions

^aReaction conditions : **1a** (0.2 mmol), **2a** (0.4 mmol), Pd(OAc)₂ (10 % mmol), ligand (20 % mmol), base (5.0 equiv.), norbornene (1.0 equiv.), solvent (2 ml), 80 °C, 16 h. ^bYield of the isolated product. ^cThe reaction was carried out with 5.0 equivalents of H₂O. ^dThe reaction was carried out with 0.5 equivalents of norbornene and 5.0 equivalents of H₂O. ^cThe reaction was carried out with 0.25 equivalents of norbornene and 5.0 equivalents of H₂O. ^fThe reaction was carried out 5.0 equivalents of H₂O and without norbornene.

3. Preparation of Starting Materials

N-tosylhydrazones **2a-2s** were prepared according to a previously reported literature¹. **1a-1i**, **4a-4d**, **4t** were prepared by literature procedure 2 .

2-iodo-4-(2-iodoethoxy)-1-methylbenzene (1a): ¹H NMR (CDCl₃, 400MHz) δ: 7.36 (d, *J* = 2.8 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 1H), 6.81 (dd, *J* = 2.8 Hz, *J* = 8.4 Hz, 1H), 4.19 (t, *J* = 6.8 Hz, 2H), 3.39 (t, *J* = 6.8 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 156.1, 134.2, 129.8, 125.0, 114.9, 100.8, 68.9, 26.9, 1.2.

2-bromo-4-(2-iodoethoxy)-1-methylbenzene (1b): ¹H NMR (CDCl₃, 400MHz) δ : 7.13-7.09 (m, 2H), 6.79-6.75 (m, 1H), 4.25-4.17 (m, 2H), 3.61 (t, *J* = 6.4 Hz, 1H), 3.38 (t, *J* = 6.4 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 156.5, 131.1, 130.5, 124.9, 118.6, 114.0, 68.9, 21.9, 0.9.

2-iodo-4-(3-iodopropoxy)-1-methylbenzene (1c): ¹H NMR (CDCl₃, 400MHz) δ: 7.37 (d, *J* = 2.4 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 1H), 6.81 (dd, *J* = 2.4 Hz, *J* = 8.4 Hz, 1H), 3.99 (t, *J* = 6.4 Hz, 2H), 3.35 (t, *J* = 6.8 Hz, 2H), 2.36 (s, 3H). 2.28-2.22 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 156.2, 133.6, 1297, 124.7, 114.7, 100.8, 67.5, 32.8 26.9, 2.4.

2-bromo-4-(3-iodopropoxy)-1-methylbenzene (1d): ¹H NMR (CDCl₃, 400MHz) δ: 7.11-7.09 (m, 2H), 6.76-6.73 (m, 1H), 3.96 (t, *J* = 6.0 Hz, 2H), 3.33 (t, *J* = 6.0 Hz, 1H), 2.31 (s, 3H), 2.25-2.19 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.1, 130.9, 129.9, 124.8, 118.2, 113.7, 67.5, 32.7, 21.8, 2.4.

2-iodo-4-(4-iodobutoxy)-1-methylbenzene (1e): ¹H NMR (CDCl₃, 400MHz) δ: 7.33 (d, *J* = 2.4 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 6.77 (dd, *J* = 2.4 Hz, *J* = 8.4 Hz, 1H), 3.93-3.89 (m, 2H), 3.25-3.21 (m, 2H), 2.35 (s, 3H), 2.02-1.95 (m, 2H), 1.90-1.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 156.9, 133.2, 129.6, 124.4, 114.5, 100.8, 66.8, 33.4, 30.0, 26.8, 6.4.

2-bromo-4-(4-iodobutoxy)-1-methylbenzene (1f): ¹H NMR (CDCl₃, 400MHz) δ: 7.12-7.07 (m, 2H), 6.75-6.73 (m, 1H), 3.95-3.91 (m, 2H), 3.25 (t, *J* = 6.0 Hz, 2H), 2.31 (s, 3H), 2.06-1.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.4, 131.0, 129.7, 124.8, 118.1, 113.8, 66.9, 30.1, 30.0, 21.8, 6.3.

4-(2-bromoethoxy)-2-iodo-1-methoxybenzene (1g): ¹H NMR (CDCl₃, 400MHz) δ: 7.36 (d, *J* = 3.2 Hz, 1H), 6.80 (dd, *J* = 3.2 Hz, *J* = 8.8 Hz, 1H), 6.73 (d, *J* = 8.8 Hz, 1H), 4.21 (t, *J* = 6.4 Hz, 2H), 3.82 (s, 3H), 3.60 (d, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.1, 152.4, 126.0, 115.7, 111.2, 85.9, 68.7, 56.8, 29.1.

2-iodo-4-(2-iodoethoxy)-1-methoxybenzene (1h): ¹H NMR (CDCl₃, 400MHz) δ: 7.36-7.35 (m, 1H), 6.90-6.87 (m, 1H), 6.76-6.73 (m, 1H), 4.23-4.15 (m, 2H), 3.83 (s, 3H), 3.60 (d, *J* = 6.0 Hz, 1H), 3.38 (d, *J* = 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.1, 152.3, 126.1, 115.8, 111.3, 85.9, 69.5, 56.8, 1.2.

4-(3-bromopropoxy)-2-iodo-1-methoxybenzene (1i): ¹H NMR (CDCl₃, 400MHz) δ: 7.35 (d, *J* = 2.8 Hz, 1H), 6.87 (dd, *J* = 9.2 Hz, *J* = 2.8 Hz, 1H), 6.75 (d, *J* = 9.2 Hz,1H), 4.03 (t, *J* = 5.6 Hz, 2H), 3.83 (s, 3H), 3.60 (d, *J* = 6.4 Hz, 2H), 2.31-2.25 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.2, 152.8, 125.6, 115.3, 111.4, 85.9, 66.0, 56.9, 32.2, 30.0.

2-iodo-4-(3-iodopropoxy)-1-methoxybenzene (1j): ¹H NMR (CDCl₃, 400MHz) δ: 7.35 (d, *J* = 3.2 Hz, 1H), 6.87 (dd, *J* = 3.2 Hz, *J* = 8.8 Hz, 1H), 6.75 (d, *J* = 8.8 Hz, 1H), 3.96 (t, *J* = 5.6 Hz, 2H), 3.83 (s, 3H), 3.35 (d, *J* = 5.6 Hz, 2H), 2.26-2.20 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.2, 152.8, 125.6, 115.3, 111.4, 86.0, 68.0, 56.9, 32.8, 2.6.

4-(4-bromobutoxy)-2-iodo-1-methoxybenzene (1k): ¹H NMR (CDCl₃, 400MHz) δ : 7.33 (d, J = 2.8 Hz, 1H), 6.84 (dd, J = 2.8 Hz, J = 8.8 Hz, 1H), 6.73 (d, J = 8.8 Hz, 1H), 3.91 (t, J = 6.0 Hz, 2H), 3.81 (s, 3H), 3.47 (d, J = 6.0 Hz, 2H), 2.07-2.00 (m, 2H), 1.93-1.86 (2H). ¹³C NMR (100 MHz, CDCl₃) δ : 153.3, 152.5, 125.4, 115.1, 111.4, 85.9, 67.5, 56.8, 33.4, 29.3, 27.7.

2-iodo-4-(4-iodobutoxy)-1-methoxybenzene (11): ¹H NMR (CDCl₃, 400MHz) δ: 7.33 (d, *J* = 2.8 Hz, 1H), 6.87-6.83 (m, 1H), 6.74 (d, *J* = 8.8 Hz, 1H), 3.93-3.89 (m, 2H), 3.82 (s, 3H), 3.26 (d, *J* = 6.8 Hz, 2H), 2.05-1.97 (m, 2H), 1.90-1.85 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.4, 152.7, 125.4, 115.3, 111.4, 86.0, 67.4, 56.9, 30.1, 30.0, 6.5.

1-iodo-3,5-bis(2-iodoethoxy)benzene (4a): ¹H NMR (CDCl₃, 400MHz) δ : 6.88 (dd, J = 2.4 Hz, J = 6.0 Hz,2H), 6.43 (dd, J = 2.4 Hz, J = 4.4 Hz,1H), 4.25-4.17 (m, 4H), 3.62 (t, J = 6.0 Hz, 2H), 3.39 (t, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 159.5, 117.1, 102.0, 94.1, 68.0, 0.6

1-iodo-3,5-bis(3-iodopropoxy)benzene (4b): ¹H NMR (CDCl₃, 400MHz) δ : 6.86 (d, J = 2.0 Hz, 2H), 6.41 (dd, J = 2.4 Hz, J = 2.0 Hz,1H), 3.98 (t, J = 6.0 Hz, 4H), 3.34 (t, J = 6.0 Hz, 4H), 4.24 (dd, J = 6.0 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 160.0, 116.4, 101.4, 94.1, 67.4, 32.6, 2.4.

1-iodo-3,5-bis(4-iodobutoxy)benzene (4c): ¹H NMR (CDCl₃, 400MHz) δ : 6.83 (d, J = 2.0 Hz, 2H), 6.37 (t, J = 5 Hz,1H), 3.92 (t, J = 6.0 Hz, 4H), 3.24 (t, J = 6.8 Hz, 4H), 2.05-1.96 (m, 4H), 1.90-1.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 160.2, 116.2, 101.3, 94.1, 66.8, 29.9, 29.8, 6.4.

1-iodo-3-(3-iodopropoxy)benzene (11): ¹H NMR (CDCl₃, 400MHz) δ : 7.29-7.25 (m, 2H), 7.00 (t, J = 8.0 Hz, 1H), 6.88-6.85 (m, 1H), 3.99 (t, J = 6.0 Hz, 2H), 3.35 (t, J = 6.8 Hz, 2H), 2.25 (dd, J = 6.0 Hz, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 159.1, 130.8, 130.0, 123.5, 114.1, 94.4, 67.3, 32.7, 2.4.

4. General procedure for the preparation of the products 3

1 (0.2 mmol), 2 (0.4 mmol), Pd(OAc)₂ (4.5 mg,10 mol %), PPh₃ (10.5 mg, 20 mol %), norbornene (18.8 mg, 0.2 mmol, 1 equiv), Cs_2CO_3 (326 mg, 1 mmol, 5 equiv), H_2O (5equiv) were dissolved in 2 mL of degassed dry dioxane. The mixture was flushed with N₂ and stirred at room temperature for 15 minutes, then heated at 80 °C for 16 h. After cooling at room temperature, the mixture was diluted with diethyl ether, washed with water, dried over magnesium sufate, and purified by flash chromatography (silica, petroleum ether/AcOEt).

5-methyl-4-(1-phenylvinyl)-2,3-dihydrobenzofuran (3a): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.32-7.26 (m, 5H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 5.88 (d, *J* = 1.2 Hz, 1H), 5.17 (d, *J* = 1.2 Hz, 1H), 4.48 (t, *J* = 8.8 Hz, 2H), 2.94 (t, *J* = 8.8 Hz, 2H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.8, 146.4, 139.2, 138.4, 133.8, 133.6, 129.2, 128.4, 127.8, 127.7, 126.3, 126.0, 114.5, 107.9, 71.2, 29.4, 18.9. IR (neat) 397, 2951, 2923, 2869, 1594, 1493, 1456, 1233, 986, 807, 706. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₇O: 237.1274; Found, 237.1274.

4-(1-(4-chlorophenyl)vinyl)-5-methyl-2,3-dihydrobenzofuran (3b): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.26-7.19 (m, 4H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 5.87 (s, 1H), 5.18 (s, 1H), 4.49 (t, *J* = 8.8 Hz, 2H), 2.93 (t, *J* = 8.8 Hz, 2H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.9, 145.3, 137.8, 137.7, 133.5, 129.4, 128.6, 127.7, 127.3, 126.2, 115.0, 108.1, 71.2, 29.4, 18.9. IR (neat) 3374, 2954, 2923, 1592, 1490, 1233, 1095, 908, 838, 734. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₆ClO: 271.0884; Found, 271.0883.

4-(1-(4-methoxyphenyl)vinyl)-5-methyl-2,3-dihydrobezofuran (3c): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.21 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.0 Hz, 1H), 6.82 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 8.0 Hz, 1H), 5.78 (d, J = 1.2Hz, 1H), 5.05 (d, J = 1.2Hz, 1H), 4.49 (t, J = 8.8 Hz, 2H), 3.80 (s, 3H), 2.95 (t, J = 8.8 Hz, 2H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 159.3, 157.8, 145.7, 138.7, 131.8, 129.2, 127.8, 127.2, 126.3, 113.8, 112.4, 107.8, 71.2, 55.2, 29.4, 18.9. IR (neat) 3396, 2924, 1604, 1510, 1458, 1295, 1248, 1034, 986, 837, 808. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₉O₂: 267.1380; Found, 267.1382.

4-(1-(4-bromophenyl)vinyl)-5-methyl-2,3-dihydrobenzofuran (3d): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.40 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 1H), 6.69 (d, J = 8.0 Hz, 1H), 5.88 (d, J = 0.8 Hz, 1H), 5.19 (d, J = 0.8 Hz, 1H), 4.50 (t, J = 8.8 Hz, 2H), 2.93 (t, J = 8.8 Hz, 2H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 157.9, 145.4, 138.2, 137.7, 131.6, 129.4, 127.8, 127.6, 126.3, 121.8, 115.1, 108.1, 71.2, 29.4, 18.9. IR (neat) 3370, 2953, 2924, 1737, 1592, 1508, 1456, 1388, 1232, 1009, 835, 734. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₆BrO: 315.0379; Found, 315.0381.

5-methyl-4-(1-(p-tolyl)vinyl)-2,3-dihydrobenzofuran (3e): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.17 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 5.84 (d, *J* = 1.2Hz, 1H), 5.11 (d, *J* = 1.2Hz, 1H), 4.8 (t, *J* = 8.8 Hz, 2H), 2.94 (t, *J* = 8.8 Hz, 2H), 2.33 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.7, 146.2, 138.6, 137.6, 136.3, 129.2, 129.1, 127.8, 126.3, 125.9, 113.5, 107.8, 71.2, 29.4, 21.1, 18.9. IR (neat) 3386, 2952, 1593, 1511, 1457, 1439, 1232, 986, 908, 827, 807, 734. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₉O: 251.1430; Found, 251.1426.

4-(1-(2-chlorophenyl)vinyl)-5-methyl-2,3-dihydrobenzofuran (3f): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.38-7.35 (m, 1H), 7.20-7.18 (m, 3H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 5.80 (d, *J* = 1.2 Hz, 1H), 5.50 (d, *J* = 1.2 Hz, 1H), 4.47 (t, *J* = 8.8 Hz, 2H), 2.94 (t, *J* = 8.8 Hz, 2H), 2.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.9, 144.3, 139.8, 138.4, 132.4, 130.9, 130.3, 129.7, 128.4, 127.7, 126.6, 126.2, 121.8, 108.1, 71.2, 29.9, 19.6. IR (neat) 3391, 2924, 2370, 1590, 1470, 1457, 1259, 1236, 1044, 909, 734. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₆ClO: 271.0884; Found, 271.0883.

4-(1-(2-fluorophenyl)vinyl)-5-methyl-2,3-dihydrobenzofuran (3g): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.24-7.18 (m, 1H), 7.08-7.00 (m, 3H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.66 (d, *J* = 8.0 Hz, 1H), 5.96 (s, 1H), 5.42 (s, 1H), 4.49 (t, *J* = 8.8 Hz, 2H), 2.97 (t, *J* = 8.8 Hz, 2H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 161.7, 159.3, 157.8, 141.2, 138.6, 130.1, 130.0, 129.3, 129.0, 127.6, 127.5, 126.1, 124.0, 123.9, 120.2, 120.1, 116.2, 116.0, 108.0, 71.2, 29.4, 19.0. IR (neat) 3395, 2951, 2924, 1606, 1593, 1487, 1455, 1218, 986, 920, 807, 755. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₆FO: 255.1180; Found, 255.1176.

4-(1-(2-methoxyphenyl)vinyl)-5-methyl-2,3-dihydrobenzofuran (3h): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.24-7.20 (m, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.93-6.84 (m, 3H), 6.62 (d, J = 8.0 Hz, 1H), 5.91 (d, J = 2.0 Hz, 1H), 5.32 (d, J = 2.0 Hz, 1H), 4.47 (t, J = 8.4 Hz, 2H), 3.71 (s, 3H), 2.96 (t, J = 8.4 Hz, 2H), 2.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 157.6, 157.5, 144.0, 139.9, 130.2, 129.5, 129.1, 128.6, 127.6, 126.0, 120.5, 119.2, 111.5, 107.4, 71.2, 55.5, 29.6, 19.1. IR (neat) 3384, 2951, 2870, 1595, 1490, 1457, 1243, 1027, 908, 753. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₉O₂: 267.1380; Found, 267.1385.

4-(1-(3-chlorophenyl)vinyl)-5-methyl-2,3-dihydrobenzofuran (3i): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.28-7.22 (m, 3H), 7.14-7.11 (m, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 5.89 (s, 1H), 5.22 (s, 1H), 4.51 (t, *J* = 8.8 Hz, 2H), 2.94 (t, *J* = 8.8 Hz, 2H), 2.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.9, 145.4, 141.2, 137.6, 134.5, 129.7, 129.4, 127.8, 127.7, 126.3, 126.0, 124.3, 115.9, 108.2, 71.2, 29.4, 19.0. IR (neat) 3383, 2923, 2853, 1738, 1592, 1457, 1233, 1078, 907, 792. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₆ClO: 271.0884; Found, 271.0885.

5-methyl-4-(1-(m-tolyl)vinyl)-2,3-dihydrobenzofuran (3j): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.19-7.15 (m, 1H), 7.11-7.04 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 5.86 (d, *J* = 1.2 Hz, 1H), 5.14 (d, *J* = 1.2 Hz, 1H), 4.49 (t, *J* = 8.8 Hz, 2H), 3.71 (s, 3H), 2.95 (t, *J* = 8.8 Hz, 2H), 2.31 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.7, 146.5, 139.2, 138.5, 138.0, 129.2, 128.5, 128.3, 127.9, 126.5, 126.3, 123.3, 114.4, 107.8, 71.2, 29.4, 21.5, 19.0. IR (neat) 3383, 2953, 2922, 1596, 1456, 1440, 1299, 1234, 986, 906, 796. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₇H₁₉O: 251.1430; Found, 251.1430.

4-(1-(3-bromophenyl)vinyl)-5-methyl-2,3-dihydrobenzofuran (3k): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.46 (s, 1H), 7.39 (s, 1H), 7.16 (s, 2H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 5.89 (s, 1H), 5.22 (s, 1H), 4.51 (t, *J* = 8.8 Hz, 2H), 2.94 (t, *J* = 8.8 Hz, 2H), 2.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 157.9, 145.2, 141.5, 137.5, 130.7, 130.0, 129.4, 128.9, 127.7, 126.3, 124.8, 122.8, 115.9, 108.2, 71.2, 29.4, 19.0. IR (neat) 3385, 2953, 2923,

1590, 1558, 1456, 1295, 1233, 986, 907, 733, 671. HRMS-ESI (m/z) $[M + H]^+$ calcd for C₁₇H₁₆BrO: 315.0379; Found, 315.0382.

4-(1,2-diphenylvinyl)-5-methyl-2,3-dihydrobenzofuran (3): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.34-7.26 (m, 5H), 7.18-7.12 (m, 3H), 7.08 (s, 1H), 7.02-6.99 (m, 3H), 6.73 (d, *J* = 8.0 Hz, 1H), 4.44-4.34 (m, 2H), 2.80-2.64 (m, 2H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 158.3, 141.0, 138.9, 137.1, 136.5, 129.8, 128.5, 128.4, 128.3, 128.2, 128.1, 127.5, 127.2, 126.3, 126.1, 108.2, 71.2, 29.2, 18.8. IR (neat) 3386, 2955, 2922, 2855, 1595, 1492, 1455, 1233, 981, 767, 695. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₃H₂₁O: 313.1587; Found, 313.1589.

5-methyl-4-(1-(naphthalen-2-yl)vinyl)-2,3-dihydrobenzofuran (3m): oil; ¹H NMR (CDCl₃, 400MHz) δ : 8.30 (d, J = 2.0 Hz, 1H), 7.88 (d, J = 2.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.50-7.43 (m, 2H), 7.41-7.35 (m, 1H), 7.25-7.22 (t, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 5.79 (d, J = 1.2 Hz, 1H), 5.64 (d, J = 1.2 Hz, 1H), 4.42 (t, J = 8.8 Hz, 1H), 2.87 (t, J = 8.8 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 158.0, 145.1, 139.2, 134.0, 131.0, 129.9, 128.6, 127.8, 127.6, 126.2, 126.0, 125.6, 125.5, 125.1, 121.3, 108.0, 71.2, 30.0, 19.8. IR (neat) 3049, 2952, 1847, 1590, 1458, 1264, 1232, 1057, 807, 781, 738. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₁H₁₉O: 287.1430; Found, 287.1430.

4-(3,4-dihydronaphthalen-1-yl)-5-methyl-2,3-dihydrobenzofuran (3n): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.20-7.11 (m, 2H), 7.06-7.02 (m, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 5.92 (m, 1H), 4.54-4.44 (m, 2H), 3.11-3.03 (m, 1H), 2.91-2.79 (m, 3H), 2.46-2.41 (m, 2H), 2.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 157.7, 137.0, 136.9, 136.0, 134.2, 129.0, 128.4, 127.5, 127.4, 127.0, 126.7, 126.5, 124.2, 107.7, 71.2, 29.3, 28.1, 23.2, 18.8. IR (neat) 3382, 3018, 2933, 2830, 1594, 1457, 1236, 984, 909, 734. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₁₉O: 263.1430; Found, 263.1429.

5-methyl-4-(1-phenylvinyl)-1-tosylindoline (30): solid; m.p. 64-66 °C; ¹H NMR (CDCl₃, 400MHz) δ: 7.64 (d, J

= 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.26-7.22 (m, 5H), 7.11-7.07 (m, 3H), 5.83 (d, J = 0.8 Hz, 1H), 5.02 (d, J = 0.8 Hz, 1H), 3.84 (t, J = 8.0 Hz, 2H), 2.53 (s, 2H), 2.39 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 143.8, 139.7, 138.7, 138.4, 134.2, 132.0, 131.6, 129.5, 129.3, 128.4, 127.8, 127.3, 125.8, 114.6, 114.5, 50.2, 27.4, 21.6, 19.1. IR(neat) 3378, 2955, 2869, 1618, 1579, 1452, 1353, 1167, 909, 814. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₄H₂₄O₂NS: 390.1522; Found, 390.1521.

4-(1-(4-methoxyphenyl)vinyl)-5-methyl-1-tosylindoline (3p): solid; m.p. 87-89 °C; ¹H NMR (CDCl₃, 400MHz) δ : 7.64 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.26-7.23 (m, 2H), 7.09-7.02 (m, 3H), 6.77-6.73 (m, 2H), 5.72 (d, *J* = 0.8 Hz, 1H), 4.90 (d, *J* = 0.8 Hz, 1H), 3.84 (t, *J* = 8.4 Hz, 2H), 3.78 (s, 3H), 2.53(d, *J* = 11.2 Hz, 2H), 2.40 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 159.3, 145.0, 143.8, 139.7, 138.7, 134.2, 132.0, 131.5, 129.5, 129.3, 127.4, 127.0, 114.4, 113.7, 112.5, 55.2, 50.2, 27.4, 21.6, 19.0. IR (neat) 3385, 2956, 2853, 2055, 1602, 1510, 1455, 1352, 1249, 1164, 1031, 906, 815, 618. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₅H₂₆O₃NS: 420.1628; Found, 420.1626.

5-methyl-4-(1-(m-tolyl)vinyl)-1-tosylindoline (3q): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.65 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.25-7.22 (m, 2H), 7.10-7.04 (m, 3H), 6.98 (s, 1H), 6.84 (d, J = 8.0 Hz, 1H), 5.82 (s, 1H), 5.00 (s, 1H), 3.84 (t, J = 8.0 Hz, 2H), 2.54 (s, 2H), 2.38 (s, 3H), 2.27 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 145.7, 143.8, 139.7, 138.7, 138.6, 138.0, 134.2, 132.0, 131.4, 129.5, 129.3, 128.6, 128.3, 127.3, 126.3, 123.0, 114.5, 114.3, 50.1, 27.4, 21.5, 21.4, 19.1. IR (neat) 3384, 1598, 1454, 1354, 1167, 1092, 674. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₅H₂₆O₂NS: 426.1498; Found, 426.1496.

5-methyl-4-(1-(p-tolyl)vinyl)-1-tosylindoline (3r): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.64 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 1H), 7.26-7.22 (m, 2H), 7.09-6.98 (m, 5H), 5.79 (s, 1H), 4.96 (s, 1H), 3.84 (t, J = 8.0 Hz, 2H), 2.51 (m, 2H), 2.39 (s, 3H), 2.31 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 145.4, 143.8, 139.7, 138.6, 137.7, 135.8, 134.2, 132.0, 131.6, 129.5, 129.4, 129.3, 129.1, 127.3, 125.7, 114.5, 113.6, 50.2, 27.4, 21.6, 21.1, 19.1. IR (neat) 3381, 2953, 2923, 1598, 1511, 1454, 1354, 1166, 1093, 907, 815, 671. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₅H₂₆O₂NS: 404.1679; Found, 404.1677.

4-(1-(4-chlorophenyl)vinyl)-5-methyl-1-tosylindoline (3s): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.64 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.26-7.23 (m, 2H), 7.20-7.18 (m, 2H), 7.08 (d, J = 8.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 5.83 (s, 1H), 5.05 (s, 1H), 3.85 (t, J = 8.0 Hz, 2H), 2.50 (m, 2H), 2.40 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 144.5, 143.9, 139.9, 138.6, 137.9, 137.2, 134.2, 133.7, 131.9, 131.5, 129.6, 129.4, 128.6, 127.3, 127.1, 115.1, 114.7, 50.1, 27.4, 21.6, 19.0. IR (neat) 3383, 2922, 1597, 1491, 1354, 1166, 1092, 815, 587. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₄H₂₃ClO₂NS: 446.0952; Found, 446.0958.

6-methyl-5-(1-phenylvinyl)chroman (3t): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.29-7.25 (m, 5H), 6.98 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.98 (s, 1H), 5.11 (s, 1H), 4.10 (t, J = 5.6 Hz, 2H), 2.77-2.69 (m, 1H), 2.33-2.26 (m, 2H), 2.09-2.07 (m, 4H), 1.92-1.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 152.9, 146.2, 141.4, 139.0, 128.5, 128.3, 127.7, 127.6, 125.7, 120.5, 115.5, 114.5, 65.9, 23.2, 22.5, 19.3. IR (neat) 3379, 2949, 2869, 1593, 1492, 1467, 1379, 1250, 1069, 813, 707. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₉O: 251.1431; Found, 251.1430.

7-methyl-6-(1-phenylvinyl)-2,3,4,5-tetrahydrobenzo[b]oxepine (3u): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.28-7.24 (m, 5H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 5.96 (d, *J* = 0.8 Hz, 1H), 5.07 (d, *J* = 0.8 Hz, 1H), 4.09-3.90 (m, 2H), 2.78-2.66 (m, 2H), 2.08 (s, 3H), 1.92-1.86 (m, 2H), 1.51-1.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 158.9, 146.8, 141.2, 139.5, 134.5, 131.4, 128.4, 128.3, 128.1, 127.7, 125.9, 119.9, 114.4, 73.8, 32.4, 29.8, 25.9, 20,0. IR (neat) 3394, 2925, 2867, 1585, 1493, 1474, 1445, 1238, 1037, 906, 704. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₁O: 265.1587; Found, 265.1588.

5-methoxy-4-(1-phenylvinyl)-2,3-dihydrobenzofuran (3v): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.33-7.24 (m, 5H), 6.71 (s, 1H), 5.88 (d, *J* = 1.2 Hz, 1H), 5.26 (d, *J* = 1.2Hz, 1H), 4.49 (t, *J* = 8.8 Hz, 2H), 3.62 (s, 3H), 2.96 (t, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.8, 151.5, 143.9, 139.7, 128.4, 128.2, 127.9, 127.5, 126.0, 115.4, 111.1, 107.7, 71.7, 56.9, 29.6. IR (neat) 3400, 2926, 1603, 1458, 1326, 1227, 1072, 988, 781. HRMS-ESI (m/z) [M

+ H]⁺ calcd for C₁₇H₁₇O₂: 253.1223; Found, 253.1222.

6-methoxy-5-(1-phenylvinyl)chroman (3w): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.32-7.23 (m, 5H), 6.78 (d, J = 3.2 Hz, 2H), 5.97 (d, J = 0.8 Hz, 1H), 5.16 (d, J = 0.8 Hz, 1H), 4.08 (s, 2H), 3.65 (s, 3H), 2.73 (d, J = 4.0 Hz, 1H), 2.32 (s, 1H), 1.87 (d, J = 4.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 150.8, 149.1, 143.5, 139.4, 130.8, 128.3, 127.5, 125.8, 121.9, 115.8, 115.2, 110.8, 65.9, 56.6, 23.1, 22.3. IR (neat) 3082, 2930, 2869, 1619, 1478, 1441, 1243, 1192, 1086, 1029, 954, 805, 705. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₉O₂: 267.1380; Found, 267.1378.

7-methoxy-6-(1-phenylvinyl)-2,3,4,5-tetrahydrobenzo[b]oxepine (3x): oil; ¹H NMR (CDCl₃, 400MHz) δ: 7.31-7.23 (m, 5H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 5.97 (t, *J* = 0.8 Hz, 1H), 5.11 (t, *J* = 0.8 Hz, 1H), 4.08-3.90 (m, 2H), 3.65 (s, 3H), 2.75-2.71 (m, 2H), 1.93-1.87 (m, 2H), 1.51 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.7, 153.1, 144.1, 140.0, 136.2, 130.6, 128.3, 128.2, 127.4, 126.6, 125.9, 120.3, 115.0, 108.9, 74.0, 56.2, 32.4, 29.5, 25.9. IR (neat) 3384, 2929, 2855, 1618, 1493, 1476, 1265, 1234, 1065, 999, 903, 780. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₉H₂₁O₂: 281.1536; Found, 281.1532.

5. General procedure for the preparation of the products 5

4 (0.2 mmol), **2** (0.4 mmol), Pd(OAc)₂ (4.5 mg,10 mol %), PPh₃ (10.5 mg, 20 mol %), norbornene (37.6 mg, 0.4 mmol, 2 equiv), Cs_2CO_3 (326 mg, 1 mmol, 5 equiv), H_2O (5equiv) were dissolved in 4 mL of degassed dry dioxane. The mixture was flushed with N₂ and stirred at room temperature for 15 minutes, then heated at 80 °C for 16 h. After cooling at room temperature, the mixture was diluted with diethyl ether, washed with water, dried over magnesium sufate, and purified by flash chromatography (silica, petroleum ether/AcOEt).

4-(1-phenylvinyl)-2,3,5,6-tetrahydrobenzo[1,2-b:5,4-b']difuran (5a): solid; m.p. 112-114 °C; ¹H NMR (CDCl₃, 400MHz) δ : 7.31 (s, 5H), 6.30 (s, 1H), 5.78 (d, J = 0.8 Hz, 1H), 5.27 (t, J = 0.8 Hz, 1H), 4.50 (t, J = 8.4 Hz, 4H), 2.83 (t, J = 8.4 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 160.3, 146.2, 139.4, 134.6, 128.4, 127.8, 126.6, 117.4, 115.1, 91.8, 72.1, 28.7. IR (neat) 3378, 2922, 2853, 1598, 1438, 1242, 1156, 1060, 781, 702. HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₈H₁₇O₂: 265.1223; Found, 265.1220.

5-(1-phenylvinyl)-2,3,4,6,7,8-hexahydropyrano[3,2-g]chromene (5b): solid; m.p.104-106 °C; ¹H NMR (CDCl₃, 400MHz) δ: 7.30-7.26 (m, 5H), 6.33 (s, 1H), 5.97 (s, 1H), 5.12 (s, 1H), 4.09 (m, 4H), 2.70-2.62 (m, 2H), 2.28-2.21 (m, 2H), 1.90-1.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ: 153.8, 145.3, 141.8, 138.7, 128.5, 127.8, 125.6, 114.6, 113.2, 103.3, 66.1, 22.6. IR (neat) 3379, 2923, 2376, 1594, 1461, 1260, 1105, 800, 619. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₀H₂₁O₂: 293.1536; Found, 293.1534.

6-(1-phenylvinyl)-2,3,4,5,7,8,9,10-octahydrobenzo[**1,2-b:5,4-b']bis(oxepine)** (**5c**): oil; ¹H NMR (CDCl₃, 400MHz) δ : 7.28 (d, J = 5.6 Hz, 5H), 6.70 (s, 1H), 5.96 (s, 1H), 5.05 (s, 1H), 4.06-3.92 (m, 4H), 2.67-2.62 (m, 4H), 1.90-1.84 (m, 4H), 1.44-1.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 159.2, 146.9, 141.2, 139.9, 129.6, 128.4, 128.3, 127.7, 126.6, 126.1, 114.2, 113.3, 73.8, 32.3, 29.7, 25.9. IR (neat) 3371, 2923, 2853, 1738, 1588, 1462, 1376, 1160, 1113, 1033, 786. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₂H₂₅O₂: 321.1849; Found, 321.1845.

5-(1-(4-methoxyphenyl)vinyl)-2,3,4,6,7,8-hexahydropyrano[3,2-g]chromene (5d): solid; m.p. 121-123 °C; ¹H NMR (CDCl₃, 400MHz) δ : 7.22 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 6.32 (s, 1H), 5.85 (d, *J* = 0.8 Hz, 1H), 5.00 (d, *J* = 8.8 Hz, 1H), 4.13-4.05 (m, 4H), 3.80 (s, 3H), 2.70-2.62 (m, 2H), 2.29-2.22 (m, 2H), 1.91-1.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 159.3, 153.7, 144.7, 142.1, 131.2, 126.8, 113.8, 113.1, 112.4, 103.1, 66.2, 55.2, 22.7, 22.6. IR (neat) 3379, 2925, 2375, 1603, 1461, 1249, 1135, 1032, 839. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₁H₂₃O₃: 323.1642; Found, 323.1637.

6. General procedure for the preparation of the product 6aa

1t (0.2 mmol), **2a** (0.4 mmol), **6a** (0.6 mmol), Pd(OAc)₂ (4.5 mg,10 mol %), PPh₃ (10.5 mg, 20 mol %), norbornene (37.6 mg, 0.4 mmol, 2 equiv), Cs_2CO_3 (326 mg, 1 mmol, 5 equiv), H_2O (5 equiv) were dissolved in 4 mL of degassed dry dioxane. The mixture was flushed with N₂ and stirred at room temperature for 15 minutes, then heated at 80 °C for 16 h. After cooling at room temperature, the mixture was diluted with diethyl ether, washed with water, dried over magnesium sufate, and purified by flash chromatography (silica, petroleum ether/AcOEt).

6-(4-nitrophenethyl)-5-(1-phenylvinyl)chroman (6aa): oil; ¹H NMR (CDCl₃, 400MHz) δ : 8.04 (d, J = 8.4 Hz, 2H), 7.29-7.26 (m, 5H), 7.10 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 6.01 (d, J = 0.8 Hz, 1H), 5.06 (d, J = 0.8 Hz, 1H), 4.17-4.08 (m, 2H), 2.86-2.68 (m, 5H), 2.38-2.30 (m, 1H), 1.94-1.88 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 153.4, 150.0, 146.2, 145.6, 141.1, 139.1, 132.3, 130.3, 129.2, 128.6, 128.4, 128.0, 127.6, 125.8, 123.5, 120.8, 116.0, 114.8, 66.0, 38.0, 34.5, 23.3, 22.4. IR (neat) 3404, 3079, 2929, 2862, 1598, 1517, 1345, 1192, 1106, 954, 909, 735. HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₅H₂₄O₃N: 386.1751; Found, 386.1743.

7. References:

(1) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. Eur. J. Org. Chem. 2005, 1479.

(2) (a) Mariampillai, B.; Alberico, D.; Bidau, V.; Lautens, M.; J. Am. Chem. Soc. 2006, 128, 14436. (b) Pache, S.; Lautens, M. Org. Lett. 2003, 5, 4827.

8. Crystallographic data of 30

Structure of 30

Datablock:

Bond precision:	C-C = 0.0038 A	Wavelength=0.71073				
Cell:	a=11.9663(6)	b=8.2591(4)	c=20.6407(10)			
	alpha=90	beta=96.402(5)	gamma=90			
Temperature:	293 K					
	Calculated	R	leported			
Volume	2027.22(17)	20	027.24(17)			
Space group	P 21/c	Р	1 21/c 1			
Hall group	-P 2ybc	-P	2ybc			
Moiety formula	C24 H23 N O2	S C2	4 H23 N O2 S			
Sum formula	C24 H23 N O2	S C2	4 H23 N O2 S			
Mr	389.50	38	39.49			
Dx,g cm-3	1.276	1.	276			
Z	4	4				
Mu (mm-1)	0.179	C	0.179			
F000	824.0	8	24.0			
F000'	824.82					
h,k,lmax	14,10,25	1	4,10,25			
Nref	3992	3	987			
Tmin,Tmax	0.950,0.960	0.54	3,1.000			
Tmin'	0.919					
Correction method	= MULTI-SCAN					
Data completeness= 0.999 Theta(max)= 26.022						
R(reflections) = 0.0552(2557) wR2(reflections) = 0.1445(3987)						
S = 1.061	Npar=2	64				

7.7.235

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.821

6.822

6.822

6.822

6.823

6.824

6.825

6.825

6.825

