Supporting Information

Reductive Generation of Stable, Five-Membered

N,*N*'-Diamidocarbenes

Jonathan P. Moerdyk and Christopher W. Bielawski*

Department of Chemistry, University of Texas at Austin, Austin, Texas 78712

Synthetic Details S2-S6 General Considerations S2 Procedures S2-S6 X-Ray Crystallography **S6-S10** Figure S1. ORTEP diagram of 1a. **S7** Figure S2. ORTEP diagram of 1b. **S7** Figure S3. ORTEP diagram of 3. **S8** Figure S4. ORTEP diagram of 4. **S8** Figure S5. ORTEP diagram of 5. **S9** Figure S6. ORTEP diagram of 7. **S9 Table S1.** Summary of crystal data, data collection, and structure refinement details. **S10 Table S2.** Summary of crystal data, data collection, and structure refinement details. **S11** ¹H and ¹³C NMR Spectra S12-S42 **DFT Calculations** S43-S50 **Table S3.** Summary of calculated structures and thermodynamic values. **S43** Tables S4-S11. Cartesian coordinates for various carbenes and ketenes. S44-S50 References **S50**

Table of Contents

General Considerations. All procedures were performed using standard Schlenk techniques under an atmosphere of nitrogen or in a nitrogen-filled glove box unless otherwise noted. Compounds 1 and 2 are highly moisture sensitive. N,N'-di-tert-butylcarbodiimide was purchased from Sigma Aldrich. Bromotriphenylphosphonium bromide^{S1} was synthesized according to literature procedures. *N*-adamantyl-*N'-tert*-butylcarbodiimide^{S2} was prepared using the methods reported by Palomo.^{S3} Methyl acrylate, methyl vinyl ketone, 1-phenyl-1-butyne, 4-methyl anisole, and 4-chlorotoluene were dried over molecular sieves for at least 24 h prior to use. Toluene, tetrahydrofuran, benzene, diethyl ether, and pentane were dried and degassed using a Vacuum Atmospheres Company solvent purification system and stored over molecular sieves. Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum BX FTIR spectrometer. High resolution mass spectra (HRMS) were obtained with a Waters Micromass Autospec-Ultima (CI). UV-vis spectra were acquired on a Perkin Elmer Lambda 35 UV-vis spectrometer. NMR spectra were recorded on a Varian Mercury 400, a Varian Directdrive 400, or an Agilent MR400 spectrometer. Chemical shifts (δ) are reported in ppm relative to the residual solvent (benzene: ¹H: 7.15 ppm, ¹³C: 128.0 ppm; chloroform: ¹H: 7.24 ppm, ¹³C: 77.0 ppm). Elemental analyses were performed with a ThermoScientific Flash 2000 Organic Elemental Analyzer. Melting points were obtained using a Stanford Research Systems MPA100 OptiMelt automated melting point apparatus (ramp rate: $1 \, {}^{\circ}\text{C} \cdot \min^{-1}$) and are uncorrected.

Synthesis of N.N'-bis(1-adamantyl)carbodiimide. A 100 mL Schlenk flask was charged with bromotriphenylphosphonium bromide (1.93 g, 4.57 mmol, 1.5 equiv), triethylamine (1.5 mL, 10.65 mmol, 3.5 equiv), dichloromethane (20 mL) and a stir bar. The heterogeneous mixture was cooled to 0 °C and N,N'-bis(1-adamantyl)urea (1.0 g, 3.0 mmol) added in four portions over 30 min. The resultant mixture was heated at 40 °C for 14 h during which time the solution became homogenous. After adding water (60 mL) to the red solution, the two layers were separated, and the aqueous layer was washed with dichloromethane (10 mL). The combined organic layers were dried over sodium sulfate and filtered. After removing the residual solvent under reduced pressure, the crude solid was extracted with diethyl ether and passed through a plug of silica gel using diethyl ether as the eluent. Concentration of the resultant solution afforded N_N -bis(1adamantyl)carbodiimide as a white solid (0.828 g, 2.67 mmol, 88%). m.p. = 310-312 °C. ¹H NMR (CDCl₃, 399.68 MHz): δ 1.57-1.65 (m, 12 H), 1.75 (overlapping s, 12 H), 2.05 (bs, 6H). ¹³C NMR (CDCl₃, 100.50 MHz): δ 29.8, 36.0, 44.7, 54.9, 139.4. IR (KBr): 2901.8, 2848.8, 2108.3, 2037.5, 1352.7, 1300.5, 1079.8, 633.9 cm⁻¹. HRMS (CI): $[M-H]^+$ calcd. for $C_{21}H_{29}N_2$: 309.2331: Found: 309.2330. Anal. calcd. for C₂₁H₃₀N₂: C, 81.24; H, 9.74; N, 9.02; Found: C, 80.97; H, 9.99; N, 9.15.

Synthesis of 1a. Using a modified procedure reported by Zinner,^{S4} a 100 mL Schlenk flask outfitted with a septum was charged with *N*,*N*'-di-*tert*-butylcarbodiimide (2.00 g, 12.96 mmol), dichloromethane (60 mL) and a stir bar. The resultant solution was cooled to 0 °C for 15 min whereupon oxalyl chloride (1.73 g, 1.17 mL, 13.6 mmol, 1.05 equiv) was added dropwise. The ice bath was removed and the solution was stirred for 1 h. Removal of the residual solvent under reduced pressure afforded 1a as a white solid (3.63 g, 12.91 mmol, 99%). m.p. = 129-130 °C (decomp.) ¹H NMR (CDCl₃, 400.27 MHz): δ 1.75 (s, 18H). ¹H NMR (C₆D₆, 400.09 MHz): δ 1.52 (s, 18H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 28.0, 62.2, 101.7, 154.9. IR (KBr): 3458.9, 3002.5, 2975.8, 2940.1, 1757.7, 1483.3, 1368.8, 1295.4, 1174.1, 1129.7, 1019.9, 873.0, 771.4,

552.2 cm⁻¹. HRMS (CI): $[M+H]^+$ calcd. for $C_{11}H_{19}N_2O_2^{35}Cl_2$: 281.0824; Found: 281.0827. Anal. calcd. for $C_{11}H_{18}Cl_2N_2O_2$: C, 46.99; H, 6.45; N, 9.96; Found: C, 46.96; H, 6.58; N, 10.23.

Synthesis of 1b. Using an adapted procedure reported by Zinner,^{S4} a 25 mL Schlenk flask outfitted with a septum was charged with *N*,*N*'-bis(1-adamantyl)carbodiimide (0.500 g, 1.61 mmol), dichloromethane (10 mL) and a stir bar. To this solution, oxalyl chloride (0.225 g, 0.15 mL, 1.77 mmol, 1.1 eq) was added dropwise and the resultant mixture was stirred at ambient temperature for 1.5 h. After removing the residual solvent under reduced pressure, the resulting solid was washed with a minimal quantity of cold diethyl ether followed by a minimal quantity of pentane. Subsequent drying under reduced pressure afforded **1b** as a white solid (0.630 g, 1.44 mmol, 89%). m.p. = 200-202 °C (decomp.) ¹H NMR (CDCl₃, 399.68 MHz): δ 1.68 (m, 6H), 1.78 (m, 6H), 2.17 (bs, 6H), 2.63 (overlapping s, 12H). ¹³C NMR (CDCl₃, 100.50 MHz): δ 30.1, 36.0, 38.7, 65.5, 101.8, 155.0. IR (KBr): 2914.9, 2851.9, 1758.0, 1457.1, 1376.8, 1359.0, 1343.2, 1263.8, 1200.8, 1124.5, 978.6, 866.3, 749.6 cm⁻¹. HRMS (CI): [M-H]⁺ calcd. for C₂₃H₂₉N₂O₂³⁵Cl₂: 435.1606; Found: 435.1610. Anal. calcd. for C₂₃H₃₀N₂O₂Cl₂: C, 63.16; H, 6.91; N, 6.40; Found: C, 63.45; H, 6.78; N, 6.41.

Synthesis of 1c. Using an adapted procedure reported by Zinner,^{S4} a 50 mL Schlenk flask outfitted with a septum was charged with *N*-adamantyl-*N'-tert*-butylcarbodiimide (0.450 g, 1.94 mmol), dichloromethane (10 mL) and a stir bar. To the resulting solution was added dropwise oxalyl chloride (0.18 mL, 2.13 mmol, 1.1 equiv). After stirring the resulting mixture at ambient temperature for 1.5 h, the residual solvent was removed under reduced pressure. The resulting crude residue was washed twice with a minimal quantity of cold diethyl ether followed by minimal quantity of pentane (×2). Subsequent drying of the product under reduced pressure afforded **1c** as an off-white solid (0.427 g, 1.19 mmol, 61%). m.p. = 141-143 °C (decomp.) ¹H NMR (CDCl₃, 399.68 MHz): δ 1.72 (m, 3H), 1.77-1.80 (m overlapping s, 12H), 2.18 (bs, 3H), 2.64 (overlapping s, 6H). ¹³C NMR (CDCl₃, 100.50 MHz): δ 28.2, 30.07, 35.97, 38.65, 62.35, 65.48, 101.78, 154.90, 155.13. IR (KBr): 2917.4, 2852.3, 1756.8, 1374.3, 1368.6, 1345.2, 1276.3, 1123.9, 741.2 cm⁻¹. HRMS (CI): [M+H]⁺ calcd. for C₁₇H₂₅N₂O₂³⁵Cl₂: 359.1293; Found: 359.1289. Anal. calcd. for C₁₇H₂₄N₂O₂Cl₂: C, 56.83; H, 6.73; N, 7.80; Found: C, 56.99; H, 6.74; N, 7.47.

Synthesis of 2a. A 30 mL vial was charged with 1a (1.0 g, 3.56 mmol), tetrahydrofuran (10 mL), potassium metal (0.292 g, 7.47 mmol, 2.1 equiv) and a stir bar. The resulting solution was observed to rapidly turn red and form a precipitate over time at ambient temperature. After 3 h, the residual solvent was removed under reduced pressure and the crude solid was extracted with pentane (4 mL), filtered through a medium porosity fritted funnel, and then washed with pentane (2 × 2 mL). Concentration of the filtrate afforded 2a as a bright red solid (0.567 g, 2.70 mmol, 76%). m.p. = 73-75 °C. ¹H NMR (C₆D₆, 400.09 MHz): δ 1.37 (s, 18H). ¹³C NMR (C₆D₆, 100.60 MHz): δ 28.6, 58.6, 154.2, 287.2. IR (KBr): 2979.5, 2935.2, 1780.1, 1754.9, 1395.4, 1325.6, 1205.0, 1066.3, 996.6, 770.9, 572.3 cm⁻¹. UV-vis (C₅H₁₂): λ_{max} = 489 nm. HRMS (CI): [M+H]⁺ calcd. for C₁₁H₁₉N₂O₂: 211.1447; Found: 211.1448. Anal. calcd. for C₁₁H₁₈N₂O₂: C, 62.83; H, 8.63; N, 13.32; Found: C, 62.76; H, 8.82; N, 13.50.

Synthesis of 2b. An 8 mL vial was charged with **1b** (0.200 g, 0.457 mmol), tetrahydrofuran (2 mL), potassium metal (0.038 g, 0.96 mmol, 2.1 equiv) and a stir bar. Stirring the resultant

mixture at ambient temperature for 2 h afforded a red solution that was accompanied by the formation of a precipitate. The reaction mixture was concentrated under reduced pressure, and the crude solid was extracted with benzene (5 mL), filtered through a medium fritted funnel, and washed with benzene (2 × 2 mL). Concentration of the filtrate afforded **2b** as a pale purple-red solid (0.103 g, 0.281 mmol, 61%). m.p. = 197-199 °C (decomp.) ¹H NMR (C₆D₆, 400.09 MHz): δ 1.49 (m, 6H), 1.55 (m, 6H), 1.95 (bs, 6H), 2.24 (overlapping s, 12H). ¹³C NMR (C₆D₆, 400.09 MHz): δ 29.9, 36.3, 41.4, 59.5, 154.2, 288.0. IR (KBr): 2906.0, 2851.2, 1777.9, 1756.4, 1342.3, 1300.6, 1222.9, 1025.1, 668.0 cm⁻¹. UV-vis (C₅H₁₂): $\lambda_{max} = 492$ nm. HRMS (CI): [M+H]⁺ calcd. for C₂₃H₃₁N₂O₂: 367.2386; Found: 367.2381. Anal. calcd. for C₂₃H₃₀N₂O₂: C, 75.37; H, 8.25; N, 7.64; Found: C, 75.50; H, 8.47; N, 7.83.

Synthesis of 2c. An 8 mL vial was charged with 1c (0.150 g, 0.417 mmol), benzene (2 mL), potassium metal (0.035 g, 0.090 mmol, 2.1 equiv) and a stir bar. The reaction vessel was sealed and then heated at 60 °C for 2 h. After cooling to ambient temperature, the reaction mixture was concentrated under reduced pressure. The resulting red-purple residue was extracted with pentane, filtered through a 0.2 μ m PTFE filter and the residual solvent removed under reduced pressure to afford 2c as a purple-red solid (0.072 g, 0.250 mmol, 60%). m.p. = 96-98 °C (decomp.) ¹H NMR (C₆D₆, 399.68 MHz): δ 1.39 (s, 9H), 1.46-1.54 (m, 6H), 1.93 (bs, 3H), 2.20-2.21 (overlapping s, 6H). ¹³C NMR (C₆D₆, 100.60 MHz): δ 28.6, 29.9, 36.2, 41.3, 58.6, 59.5, 154.1, 154.3, 287.5. IR (KBr): 2910.2, 1855.4, 1770.8, 1756.0, 1729.7, 1357.3, 1303.7, 1007.6 cm⁻¹. UV-vis (C₅H₁₂): λ_{max} = 491 nm. HRMS (CI): [M+H]⁺ calcd. for C₁₇H₂₅N₂O₂: 289.1916; Found: 289.1913. Anal. calcd. for C₁₇H₂₄N₂O₂: C, 70.80; H, 8.39; N, 9.71; Found: C, 70.73; H, 8.53; N, 9.43.

Synthesis of 3. A 50 mL Schlenk flask was charged with 2a (0.075 g, 0.36 mmol), pentane (10 mL) and a stir bar. The flask was cooled to -78 °C and the atmosphere was removed from the flask under reduced pressure prior to warming back to ambient temperature. Ammonia gas was then added to the flask via a balloon which resulted in the formation of a pale yellow solution that was accompanied with a white precipitate. After stirring for 30 min at ambient temperature, the residual solvent was removed under reduced pressure and the crude solid was washed with a minimal quantity of pentane to afford 3 as a white solid (0.072 g, 0.317 mmol, 89%). m.p. = 162-165 °C (decomp.) ¹H NMR (CDCl₃, 400.09 MHz): δ 1.53 (s, 18H), 1.86 (bs, 2H), 5.64 (s, 1H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 27.8, 55.8, 76.1, 157.9. IR (KBr): 3438.5, 3405.5, 3312.0, 2979.2, 1717.1, 1413.5, 1366.6, 1218.7, 1128.7, 598.7 cm⁻¹. HRMS (CI): [M+H]⁺ calcd. for C₁₁H₂₂N₃O₂: 228.1712; Found: 228.1712. Anal. calcd. for C₁₁H₂₁N₃O₂: C, 58.12; H, 9.31; N, 18.49; Found: C, 57.93; H, 9.36; N, 18.31.

Synthesis of 4. An 8 mL vial was charged with 2a (0.075 g, 0.36 mmol), benzene (1 mL), methyl vinyl ketone (0.025 g, 0.36 mmol, 1 equiv) and a stir bar. The resultant mixture was stirred at ambient temperature for 12 h after which the residual solvent was removed under reduced pressure. Subsequent washing of the residue with a minimal quantity of pentane followed by drying under reduced pressure afforded 4 as a white solid (0.083 g, 0.296 mmol, 83%). m.p. = 159-161°C (decomp.) ¹H NMR (CDCl₃, 400.09 MHz): δ 1.52 (s, 18H), 1.82 (s, 3H), 3.07 (t, *J* = 2 Hz, 2H), 4.88 (s, 1H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 14.2, 28.0, 41.5, 58.6, 97.3, 108.5, 154.5, 157.4. IR (KBr): 3115.1, 2999.6, 2964.7, 2917.3, 1739.9, 1691.8, 1407.2, 1394.8, 1368.4, 1195.0, 1158.8, 955.9, 909.2, 751.5, 584.9 cm⁻¹. HRMS (CI): [M+H]⁺

calcd. for $C_{15}H_{25}N_2O_3$: 281.1865; Found: 281.1860. Anal. calcd. for $C_{15}H_{24}N_2O_3$: C, 64.26; H, 8.63; N, 9.99; Found: C, 64.64; H, 8.56; N, 10.01.

Synthesis of 5. An 8 mL vial was charged with **2a** (0.075 g, 0.36 mmol), benzene (1 mL), 1phenyl-1-butyne (0.046 g, 0.36 mmol, 1 equiv) and a stir bar. The resultant mixture was stirred at ambient temperature for 6 h after which the residual solvent was removed under reduced pressure. Subsequent washing of the residue with pentane followed by drying under reduced pressure afforded **5** as a white solid (0.083 g, 0.243 mmol, 68%). m.p. = 161-163 °C (decomp.) ¹H NMR (CDCl₃, 400.09 MHz): δ 1.34 (s, 18H), 1.45 (t, *J* = 7.4 Hz, 3H), 2.70 (q, *J* = 7.4 Hz, 2H), 7.41-7.49 (m, 5H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 12.0, 19.64, 28.8, 57.4, 62.3, 122.1, 124.2, 126.4, 129.4, 129.6, 130.5, 159.82. IR (KBr): 3384.6, 3064.7, 3005.9, 2977.3, 2932.2, 1716.1, 1388.4, 1362.0, 1223.8, 1133.7, 766.8, 693.0, 559.6 cm⁻¹. HRMS (CI): [M+H]⁺ calcd. for C₂₁H₂₉N₂O₂: 341.2229; Found: 341.2235. Anal. calcd. for C₂₁H₂₈N₂O₂: C, 74.08; H, 8.29; N, 8.23; Found: C, 73.75; H, 8.26; N, 7.95.

Synthesis of 6. An 8 mL vial was charged with **2a** (0.075 g, 0.36 mmol), benzene (1 mL), methyl acrylate (0.031 g, 0.36 mmol, 1 equiv) and a stir bar. The resultant mixture was stirred at ambient temperature for 12 h after which the residual solvent was removed under reduced pressure. Subsequent washing of the resulting residue with a minimal quantity of pentane followed by drying under reduced pressure afforded 6 as a white solid (0.079 g, 0.267 mmol, 75%). m.p. = 129-131 °C (decomp.) ¹H NMR (CDCl₃, 400.09 MHz): δ 1.55 (s, 18H), 3.15 (s, 2H), 3.73 (s, 3H), 3.87 (s, 1H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 28.0, 40.4, 56.8, 58.9, 65.7, 106.3, 157.3, 160.9. IR (KBr): 3126.7, 2991.6, 2967.6, 2945.7, 1740.4, 1689.6, 1409.4, 1333.7, 1317.9, 1279.7, 1244.2, 1194.7, 1163.8, 1005.3, 954.5, 922.5, 781.3 cm⁻¹. HRMS (CI): [M+H]⁺ calcd. for C₁₅H₂₅N₂O₄: 297.1814; Found: 297.1817. Anal. calcd. for C₁₅H₂₄N₂O₄: C, 60.79; H, 8.16; N, 9.45; Found: C, 60.51; H, 8.02; N, 9.09.

Synthesis of 7. An 8 mL vial was charged with 2a (0.075 g, 0.36 mmol), benzene (1 mL), toluene (0.164 g, 1.78 mmol, 5 equiv) and a stir bar. The resultant mixture was stirred at 80 °C for 40 h after which the reaction mixture was cooled and the residual solvent was removed under reduced pressure. Subsequent washing of the residue with a minimal quantity of pentane followed by drying under reduced pressure afforded 7 as a white solid (0.084 g, 0.278 mmol, 78%). m.p. = 149-151 °C. ¹H NMR (CDCl₃, 400.09 MHz): δ 1.46 (s, 18H), 3.28 (d, *J* = 3.1 Hz, 2H), 5.32 (t, *J* = 3.1 Hz, 1H), 7.09 (m, 2H), 7.21-7.27 (m overlapping solvent, 3H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 27.7, 42.0, 56.5, 67.7, 127.7, 128.9, 129.7, 133.0, 159.5. IR (KBr): 2981.6, 2965.9, 1716.3, 1396.2, 1371.2, 1361.6, 1207.6, 700.7, 632.6 cm⁻¹. HRMS (CI): [M+H]⁺ calcd. for C₁₈H₂₇N₂O₂: 303.2073; Found: 303.2076. Anal. calcd. for C₁₈H₂₆N₂O₂: C, 71.49; H, 8.67; N, 9.26; Found: C, 71.48; H, 8.69; N, 9.15.

Synthesis of 8. An 8 mL vial was charged with 2a (0.075 g, 0.36 mmol), benzene (1 mL), 4methyl anisole (0.218 g, 1.78 mmol, 5 equiv) and a stir bar. The resultant mixture was stirred at 80 °C for 24 h after which the reaction mixture was cooled and the residual solvent was removed under reduced pressure. Subsequent washing of the residue with a minimal quantity of pentane followed by drying under reduced pressure afforded 8 as a white solid (0.094 g, 0.283 mmol, 79%). m.p. = 143-145 °C. ¹H NMR (CDCl₃, 400.09 MHz): δ 1.46 (s, 18H), 3.21 (d, *J* = 2.7 Hz, 2H), 3.72 (s, 3H), 5.28 (t, *J* = 3.1 Hz, 1H), 6.78 (d, *J* = 8.6 Hz, 2H), 6.99 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 27.7, 40.9, 55.1, 56.5, 67.7, 114.2, 124.5, 130.9, 158.9, 159.6. IR (KBr): 2981.5, 2912.6, 1717.0, 1513.8, 1407.6, 1366.0, 1244.4, 1217.6, 1032.2, 802.6, 564.7 cm⁻¹. HRMS (CI): [M+H]⁺ calcd. for C₁₉H₂₉N₂O₃: 333.2178; Found: 333.2183. Anal. calcd. for C₁₉H₂₈N₂O₃: C, 68.65; H, 8.49; N, 8.43; Found: C, 68.33; H, 8.55; N, 8.39.

Synthesis of 9. An 8 mL vial was charged with 2a (0.075 g, 0.36 mmol), benzene (1 mL), 4chlorotoluene (0.226 g, 1.78 mmol, 5 equiv) and a stir bar. The resultant mixture was stirred at 80 °C for 48 h after which the reaction mixture was cooled and the residual solvent was removed under reduced pressure. Subsequent washing of the residue with a minimal quantity of pentane followed by drying under reduced pressure afforded 9 as a white solid (0.091 g, 0.270 mmol, 76%). m.p. = 183-185 °C (decomp.) ¹H NMR (CDCl₃, 400.09 MHz): δ 1.47 (s, 12H), 3.25 (d, *J* = 3.1 Hz, 2H), 5.31 (t, *J* = 3.1 Hz, 1H), 7.02 (d, *J* = 8.6 Hz, 2H), 7.24 (d overlapping solvent, *J* = 8.6 Hz, 2H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 27.7, 41.1, 56.7, 67.3, 129.0, 131.1, 131.3, 133.7, 159.5. IR (KBr): 2968.8, 2934.6, 1713.9, 1493.3, 1403.3, 1215.8, 1090.3, 809.4, 766.5, 603.7 cm⁻¹. HRMS (CI): [M+H]⁺ calcd. for C₁₈H₂₆N₂O₂³⁵Cl: 337.1683; Found: 337.1687. Anal. calcd. for C₁₈H₂₅ClN₂O₂: C, 64.18; H, 7.48; N, 8.32; Found: C, 64.08; H, 7.43; N, 8.39.

Synthesis of 10. An 8 mL vial was charged with **2a** (0.075 g, 0.36 mmol), benzene (0.3 mL), tetrahydrofuran (0.257 g, 3.6 mmol, 10 equiv) and a stir bar. The resultant mixture was stirred at 80 °C for 60 h after which the reaction mixture was cooled and the residual solvent was removed under reduced pressure. Subsequent washing of the residue with a minimal quantity of pentane followed by drying under reduced pressure afforded **10** as a white solid (0.079 g, 0.280 mmol, 78%). m.p. = 110-112 °C (decomp.) ¹H NMR (CDCl₃, 400.09 MHz): δ 1.29-1.38 (m, 1H), 1.45 (s, 9H), 1.46 (s, 9H), 1.57-1.66 (m, 1H), 1.76-1.90 (m, 2H), 3.72 (q, *J* = 7.8 Hz, 1H), 3.99 (m, 1H), 4.20 (m, 1H), 5.25 (d, *J* = 2.0 Hz, 1H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 22.9, 23.9, 27.4, 27.7, 56.0, 57.2, 68.0, 68.6, 82.0, 159.0, 160.6. IR (KBr): 2980.1, 2877.9, 1725.5, 1705.9, 1402.0, 1204.3, 1076.2 cm⁻¹. HRMS (CI): [M+H]⁺ calcd. for C₁₅H₂₇N₂O₃: 283.2022; Found:283.2029. Anal. calcd. for C₁₅H₂₆N₂O₃: C, 63.80; H, 9.28; N, 9.92; Found: C, 63.86; H, 9.60; N, 10.31.

X-Ray Crystallography. Colorless, single crystals of **1a** were obtained by the slow diffusion of pentane into a concentrated benzene solution; this compound crystallized in the monoclinic $P2_1/c$ space group. Colorless, single crystals of 1b were obtained by the slow diffusion of pentane into a concentrated chloroform solution; this compound crystallized in the monoclinic $P2_1/c$ space group. Red-orange single crystals of 2a were grown by cooling a concentrated pentane solution to -20 °C; this compound crystallized in the monoclinic P21/n space group. Colorless, single crystals of 3 were obtained by the slow diffusion of pentane into a concentrated chloroform solution; this compound crystallized with two molecules of 3 in the asymmetric cell in the orthorhombic $P_{2_12_12_1}$ space group. Colorless single crystals of 4 were obtained by the slow diffusion of pentane into a concentrated benzene solution; this compound crystallized in the monoclinic P_{2_1} space group. Colorless, single crystals of 5 were obtained by the slow diffusion of pentane into a saturated benzene solution; this compound crystallized with two molecules of 5 in the asymmetric cell in the monoclinic $P2_1/c$ space group. Colorless, single crystals of 7 were obtained by the slow diffusion of pentane into a benzene solution; two molecules of 7 cocrystallized with a solvent benzene molecule in the monoclinic $P2_1/c$ space group. Crystallographic measurements were carried out on a Rigaku Mini CCD, Enraf-Nonius Kappa CCD, or Rigaku AFC-12 with Saturn 724+ CCD area detector diffractometer using graphitemonochromated Mo-K_a radiation ($\lambda = 0.71073$ Å) at 120 K or 150 K using an Oxford Cryostream low temperature device. A sample of suitable size and quality was selected and mounted onto a nylon loop. Data reductions were performed using DENZO-SMN.^{S5} The structures were solved by direct methods which successfully located most of the non-hydrogen atoms. Subsequent refinements on F_2 using the SHELXTL/PC package (version 5.1)^{S6} allowed the location of the remaining non-hydrogen atoms. Key details of the crystal and structure refinement data are summarized in Table S1-S2. Further crystallographic details may be found in the respective CIFs which were deposited at the Cambridge Crystallographic Data Centre, Cambridge, UK. The CCDC reference numbers for **1a**, **1b**, **2a**, **3**, **4**, **5**, and **7** were assigned as 983770, 983771, 983772, 983773, 983774, 983775, and 983776, respectively.

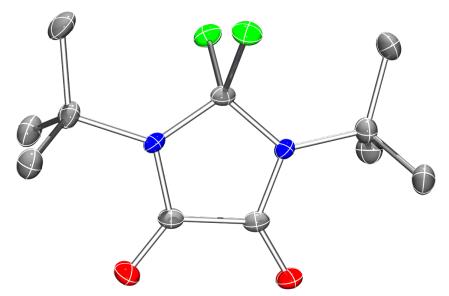
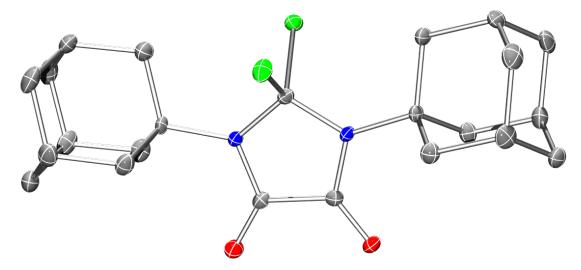
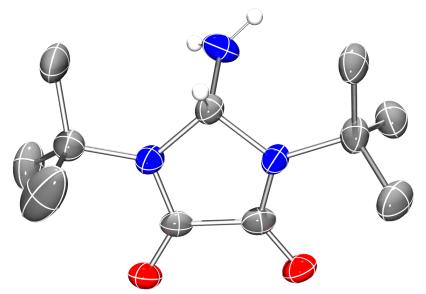
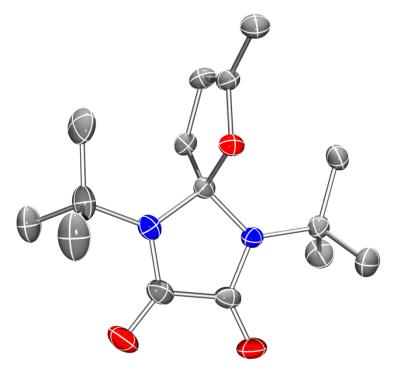
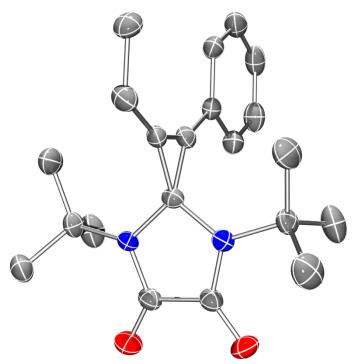


Figure S1. ORTEP diagram of 1a with thermal ellipsoids drawn at 50% probability and H-atoms omitted for clarity.


Figure S2. ORTEP diagram of 1b with thermal ellipsoids drawn at 50% probability and H-atoms omitted for clarity.

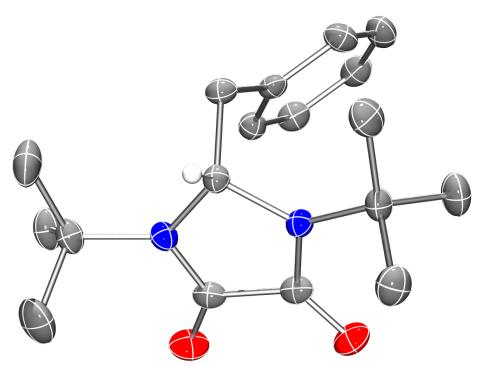
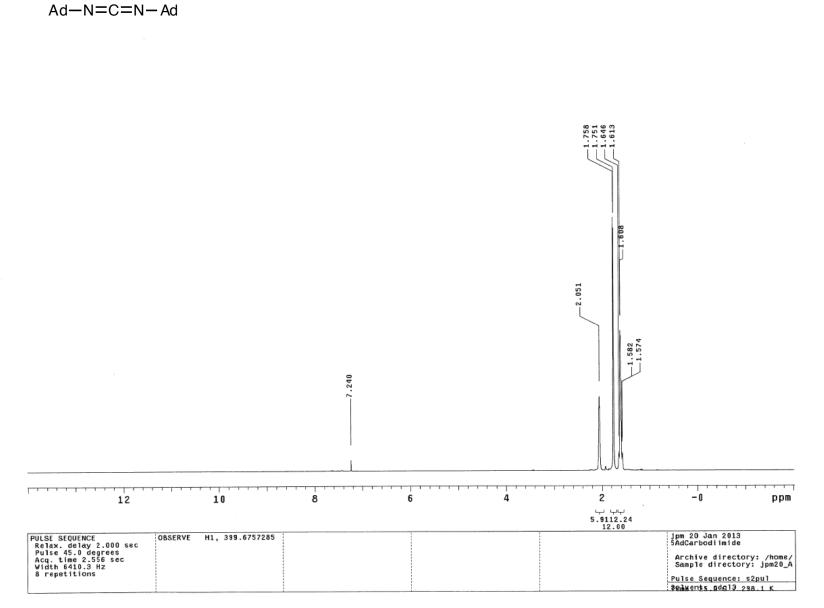

Figure S3. ORTEP diagram of **3** with thermal ellipsoids drawn at 50% probability and H-atoms, except at the nitrogens and carbenoid carbon, and a second molecule of **3** omitted for clarity.

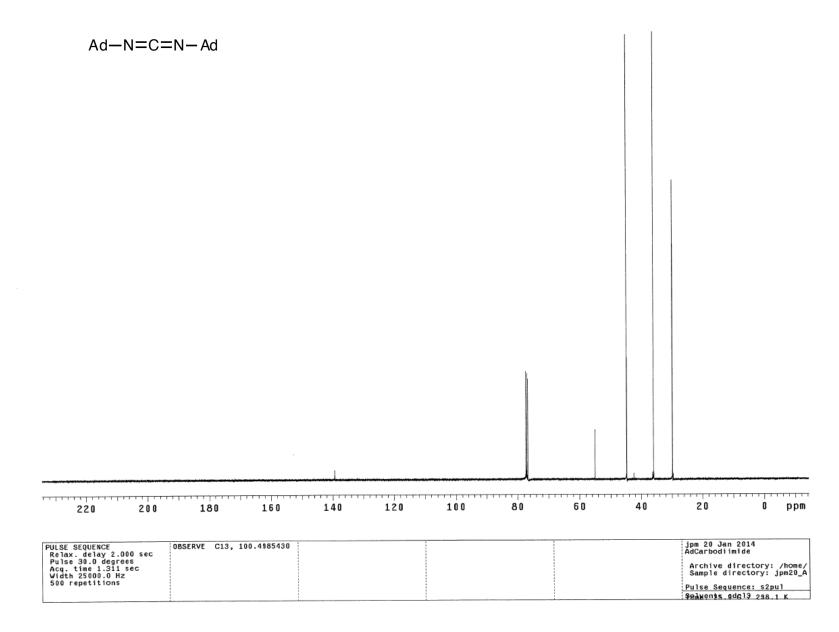
Figure S4. ORTEP diagram of **4** with thermal ellipsoids drawn at 50% probability and H-atoms omitted for clarity.

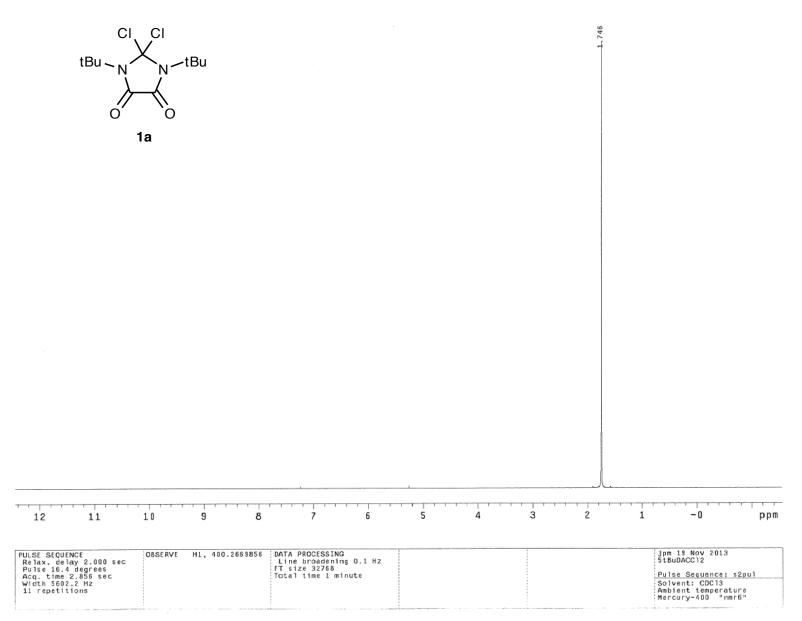
Figure S5. ORTEP diagram of **5** with thermal ellipsoids drawn at 50% probability and H-atoms and a second molecule of **5** omitted for clarity.

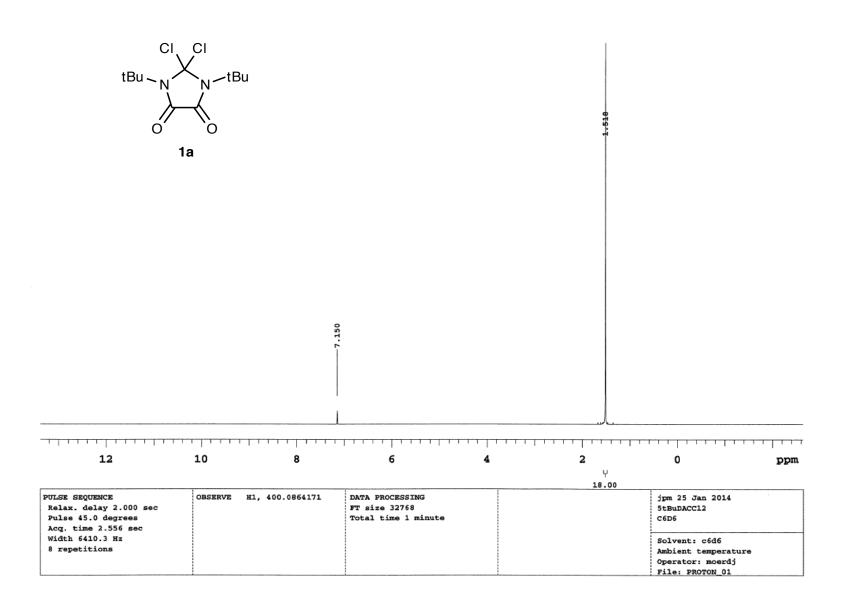
Figure S6. ORTEP diagram of **7** with thermal ellipsoids drawn at 50% probability and H-atoms, except at the carbenoid carbon, a second molecule of **7**, and a solvent benzene molecule omitted for clarity.

	1a	1b	2a	3
Formula M _r	$\begin{array}{c} C_{11}H_{18}Cl_2N_2O_2\\ 281.17\end{array}$	$\begin{array}{c} C_{23}H_{30}Cl_2N_2O_2\\ 437.39\end{array}$	$C_{11}H_{18}N_2O_2$ 210.27	$C_{11}H_{21}N_3O_2$ 227.31
crystal size (mm ³)	$0.14 \times 0.09 \times 0.08$	$0.29 \times 0.26 \times 0.22$	$0.18 \times 0.13 \times 0.07$	$0.12\times0.07\times0.04$
crystal system space group	Monoclinic $P2_1/c$	Monoclinic P2 ₁ /c	Monoclinic $P2_1/n$	Orthorhombic $P2_12_12_1$
$ \begin{array}{c} a(\text{\AA}) \\ b(\text{\AA}) \\ c(\text{\AA}) \\ \end{array} $	8.3148(19)	14.331(4)	13.3310(12)	9.102(3)
	14.215(3)	11.335(4)	5.9383(5)	12.188(4)
	11.639(3)	12.768(4)	15.6507(14)	23.505(8)
	90	90	90	90
$ \begin{array}{l} \alpha (^{\circ}) \\ \beta (^{\circ}) \\ \gamma (^{\circ}) \\ V (\text{Å}^{3}) \end{array} $	99.688(5)	103.063(6)	105.521(3)	90
	90	90	90	90
	1356.1(5)	2020.3(11)	1193.78(18)	2607.5(16)
$Z \rho_{\text{calc}} (\text{g cm}^{-3})$	4	4	4	8
	1.377	1.438	1.170	1.158
$\mu (\text{mm}^{-1})$	0.471	0.345	0.081	0.081
F(000)	592	928	456	992
<i>T</i> (K) scan mode	120(2)	120(2)	120(2)	150(2)
	ω	ω	ω	ω
hkl range	$\begin{array}{c} -9 \rightarrow 9 \\ -16 \rightarrow 16 \\ -13 \rightarrow 13 \end{array}$	$\begin{array}{c} -16 \rightarrow 17 \\ -13 \rightarrow 13 \\ -15 \rightarrow 15 \end{array}$	$\begin{array}{c} -15 \rightarrow 15 \\ -7 \rightarrow 6 \\ -18 \rightarrow 18 \end{array}$	$-10 \rightarrow 10$ $-14 \rightarrow 14$ $-27 \rightarrow 27$
measd reflns	19296	13343	11792	34428
unique reflns $[R_{int}]$	2373[0.0989]	3550 [0.0356]	2089 [0.0416]	4584[0.0919]
refinement reflns	2373	3550	2089	4584
refined parameters	160	262	142	301
GOF on F^2	1.006	1.006	1.006	1.006
R1 ^a (all data)	0.0449 (0.0598)	0.0366 (0.0937)	0.0452 (0.0546)	0.0851 (0.0897)
wR2 (all data)	0.0982 (0.1055)	0.0393 (0.0958)	0.1137 (0.1211)	0.1985 (0.2025)
$\rho_{\rm fin}$ (max/min) (e Å ⁻³)	0.307	0.506	0.305	0.337
r fin () (err)	-0.261	-0.299	-0.187	-0.336

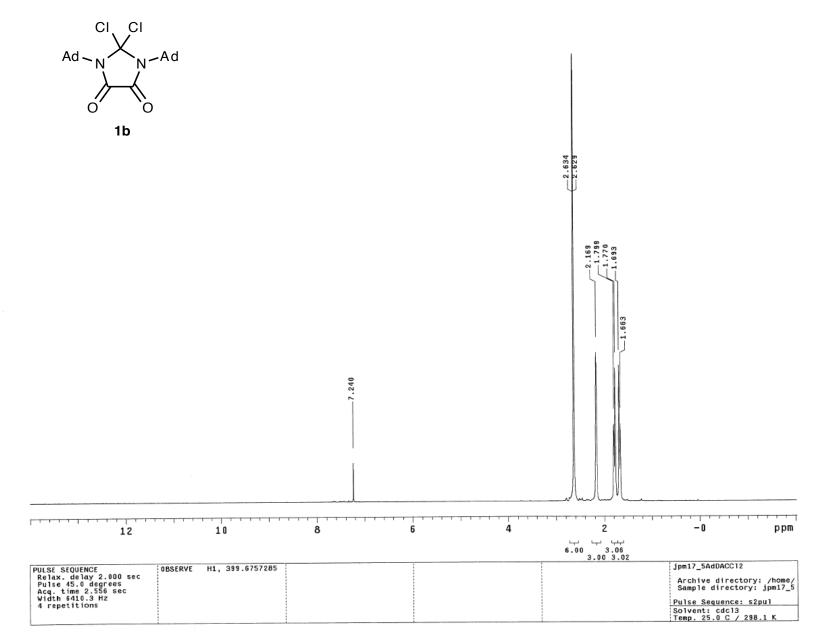

Table S1. Summary of crystal data, data collection, and structure refinement details for 1a, 1b, 2a, and 3.

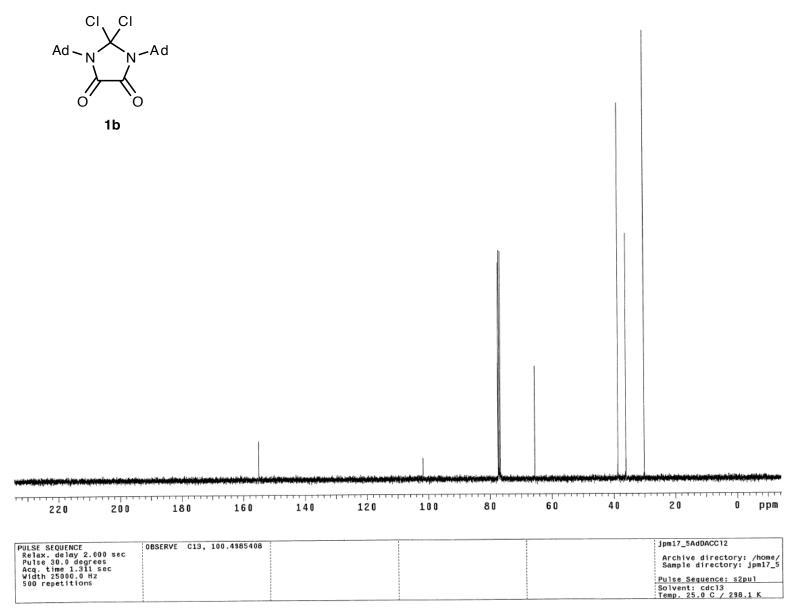

 ${}^{a}\mathrm{R1} = \sum ||Fo| - |Fc|| / \sum |\overline{Fo|} \cdot {}^{b}\mathrm{wR2} = \{ [\sum w(Fo^{2} - Fc^{2})^{2}] / [\sum w(Fo^{2})^{2}] \}^{1/2}.$

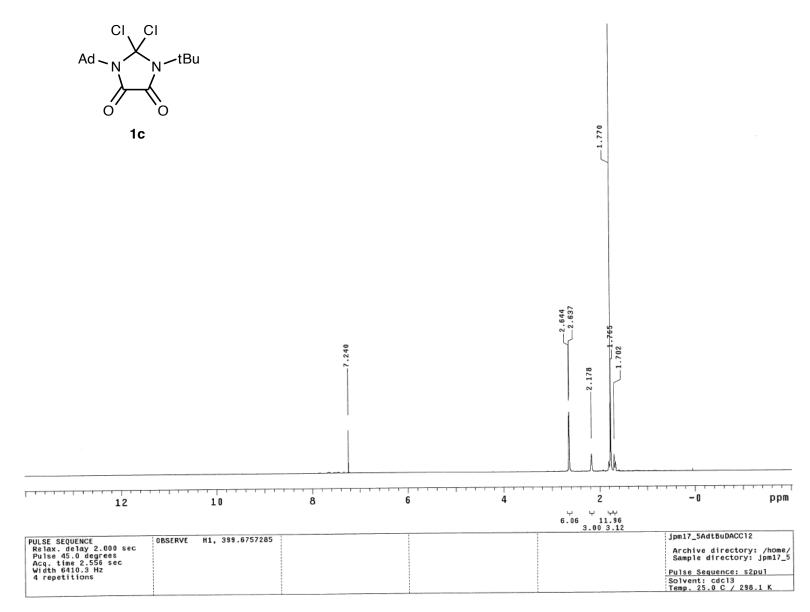

	4	5	$7 \cdot C_6 H_6$
Formula	$C_{15}H_{24}N_2O_3$	$C_{21}H_{28}N_2O_2$	$C_{42}H_{58}N_4O_4$
$M_{ m r}$	280.36	340.45	682.92
crystal size (mm ³)	$0.26 \times 0.24 \times 0.07$	$0.14 \times 0.09 \times 0.05$	$0.31 \times 0.26 \times 0.23$
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	$P2_1$	$P2_1/c$	$P2_1/c$
<i>a</i> (Å)	6.1949(2)	9.1753(6)	17.9469(10)
b (Å)	13.0960(3)	22.7039(14)	17.5630(8)
<i>c</i> (Å)	9.5555(3)	18.5417(13)	12.2414(7)
α (°)	90	90	90
β (°)	93.800(2) 90	97.125(5) 90	90.152(2) 90
γ (°) V (Å ³)	773.52(4)	3832.7(4)	3858.5(4)
Z	2	8	4
$\rho_{\rm calc} ({\rm g \ cm^{-3}})$	1.204	1.180	1.176
$\mu (\text{mm}^{-1})$	0.084	0.076	0.075
F(000)	304	1472	1480
$T(\mathbf{K})$	150(2)	120(2)	120(2)
scan mode	ω	ω	ω
	-7 → 7	$-10 \rightarrow 10$	-21 → 19
hkl range	$-15 \rightarrow 15$	-27 → 27	-14 → 20
	-11 → 11	-22 → 22	-13 → 14
measd reflns	20735	144570	18906
unique reflns [R _{int}]	2727 [0.0346]	6729 [0.2417]	6694[0.0313]
refinement reflns	2727	6729	6694
refined parameters	188	465	463
GOF on F^2	1.006	1.006	1.006
R1 ^a (all data)	0.0285 (0.0303)	0.0594 (0.1175)	0.0422 (0.0986)
wR2 (all data)	0.0781 (0.0798)	0.1462 (0.1648)	0.0590 (0.1113)
$ \rho_{\rm fin} ({\rm max/min}) ({\rm e}{\rm \AA}^{-3}) $	0.197	0.224	0.263
/ tin () ()	-0.217	-0.335	-0.256

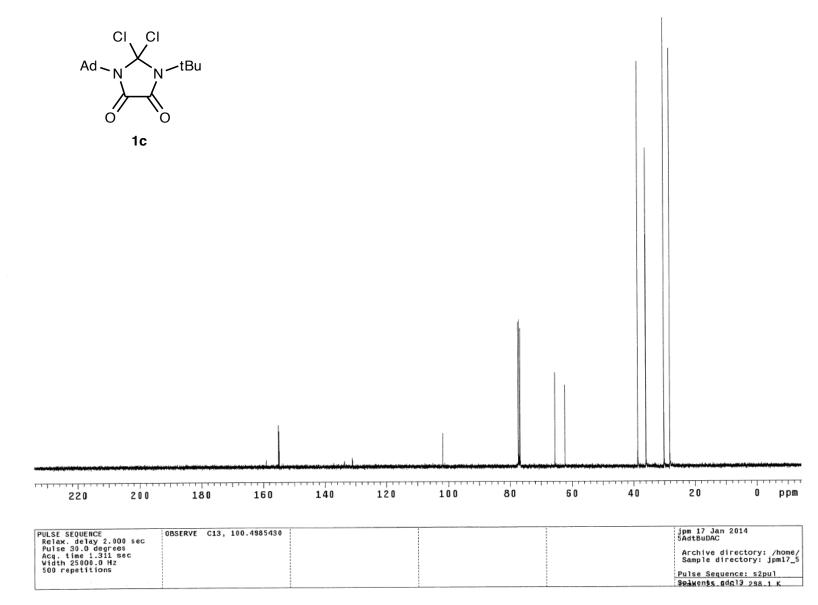

Table S2. Summary of crystal data, data collection, and structure refinement details for 4, 5, and 7.

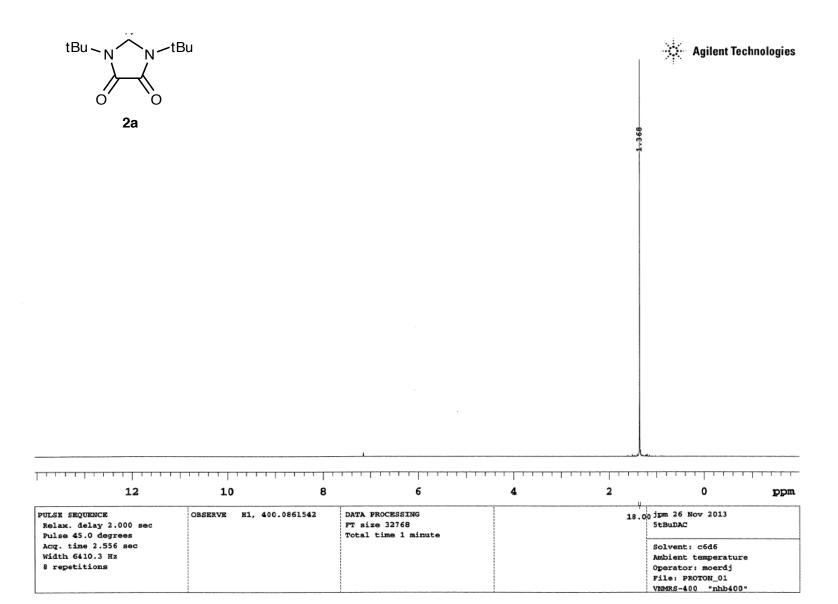
 ${}^{a}\mathrm{R1} = \sum ||Fo| - |Fc|| / \sum |Fo|. {}^{b}\mathrm{wR2} = \overline{\{[\sum w(Fo^{2} - Fc^{2})^{2}] / [\sum w(Fo^{2})^{2}]\}^{1/2}}.$

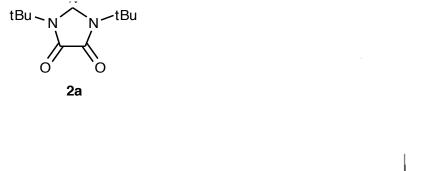


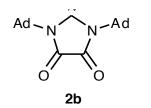


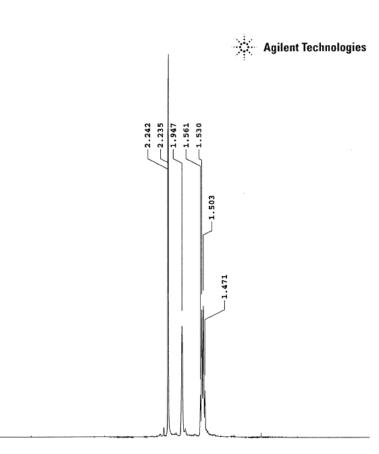

tBu -		≁tBu								Ag	ilent Techn	ologies
₩####################################		180	····· 160	140	120	 100	80	60	······ ······ 40			
220 PULSE SEQUENCE Relax. delay 2 Pulse 30.0 deg Acq. time 1.33 Width 25000.0 32 repetitions	2.000 sec rrees .1 sec Hz	OBSERVE DECOUPLE Power 3 continue	C13, 100.60 H1, 400.08	17503	120 DATA PROCESSII Line broaden: FT size 65536 Total time 1 m	NG ing 0.5 Hz	80	60	40	20 jpm 14 Dec 5tBuDACC12 Solvent: cd Ambient tem Operator: m VNMRS-400	lc13 mperature moerdj	DDw


١.

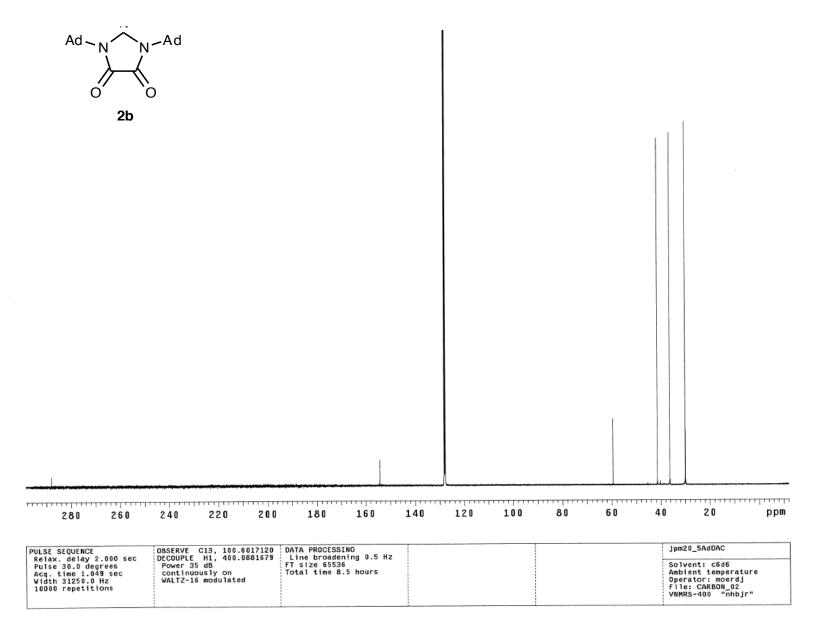


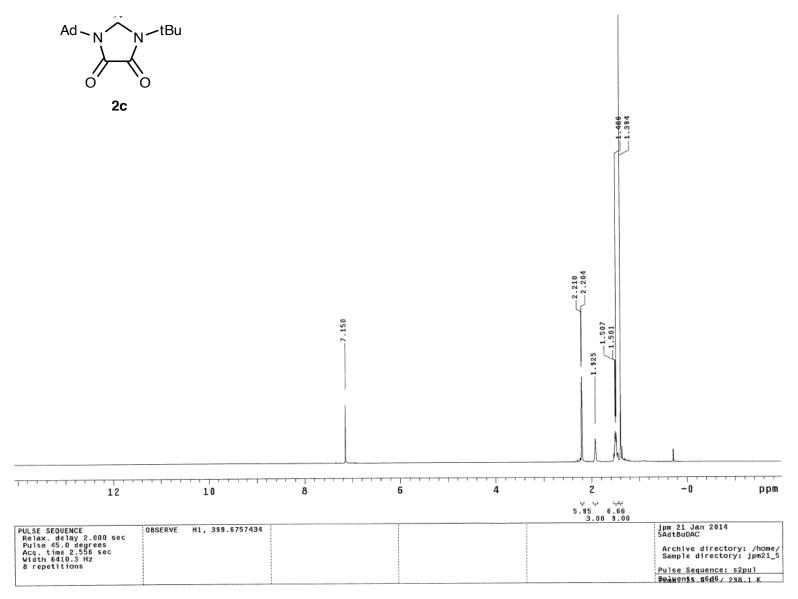


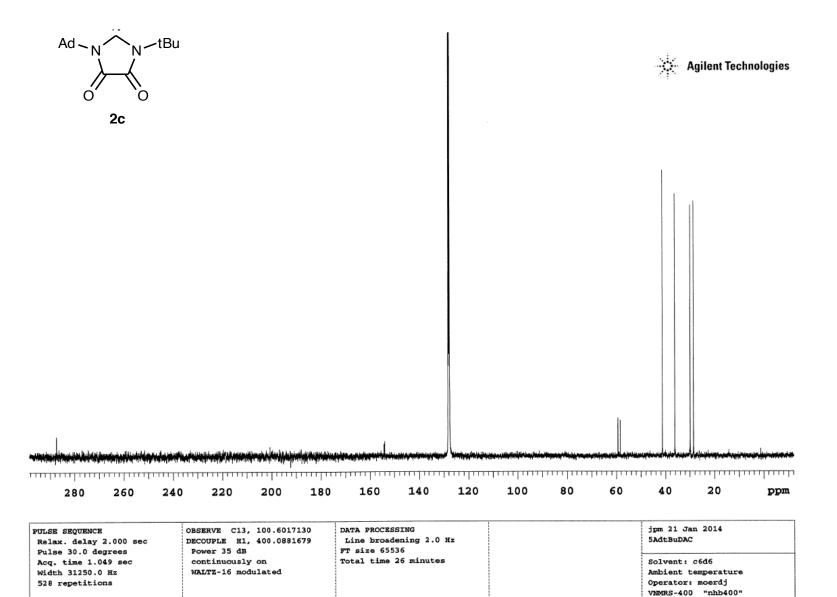


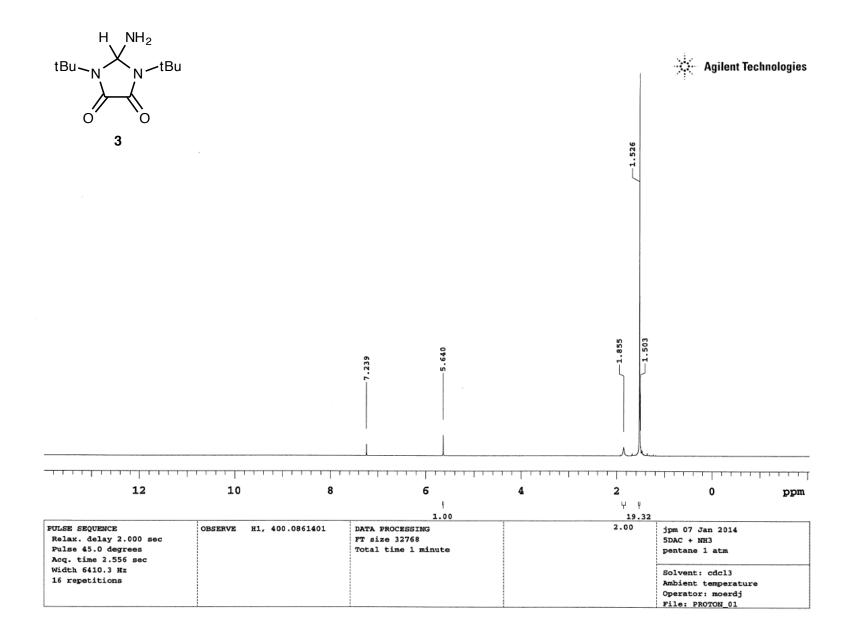


280	260	240	220	200	180	160	140	120	100	80	60	40	20	ppm
PULSE SEQUENCE Relax. delay Pulse 30.0 de	2.000 sec	DI	BSERVE C13 ECOUPLE H1 Power 35 dB	, 400.0881		DATA PROCES Line broad FT size 655	dening 0.5	Hz				jpm 14 N 5tBuDAC	ov 2013	
-	Acq. time 1.049 sec continuously on Width 31250.0 Hz WMLTZ-16 modulated			Total time	24 minute	8				Solvent: Ambient	c6d6 temperature			
480 repetitio	ons											Operator	: moerdj	
								1				File: CA VNMRS-40		

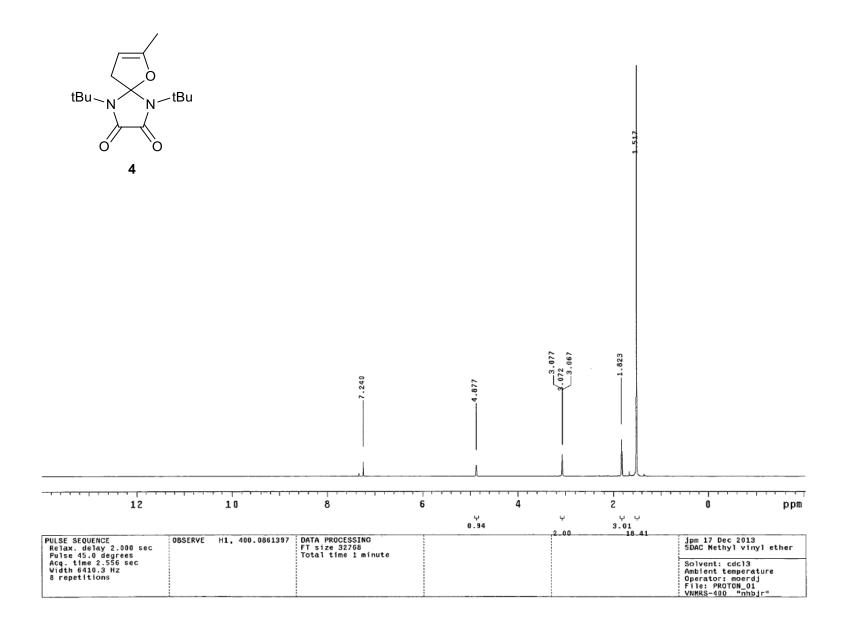


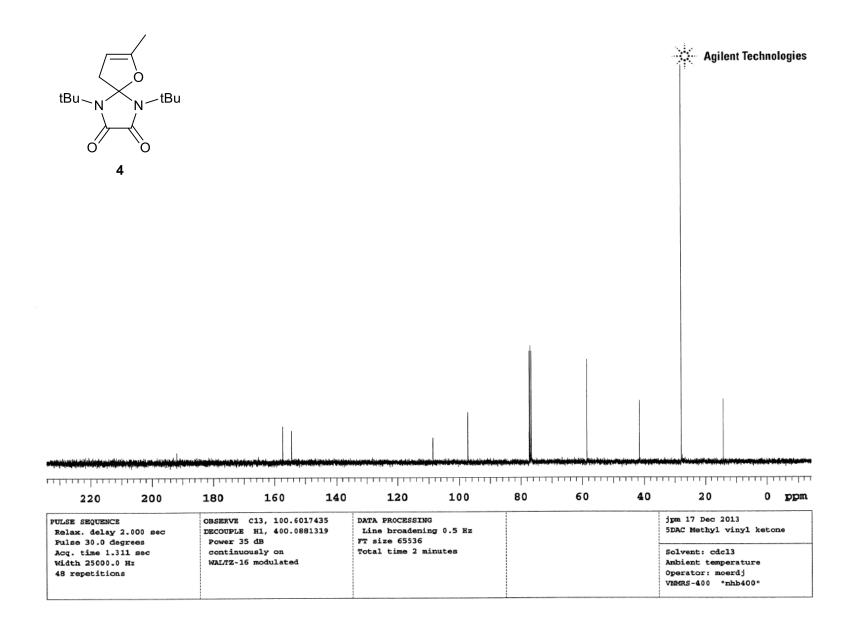


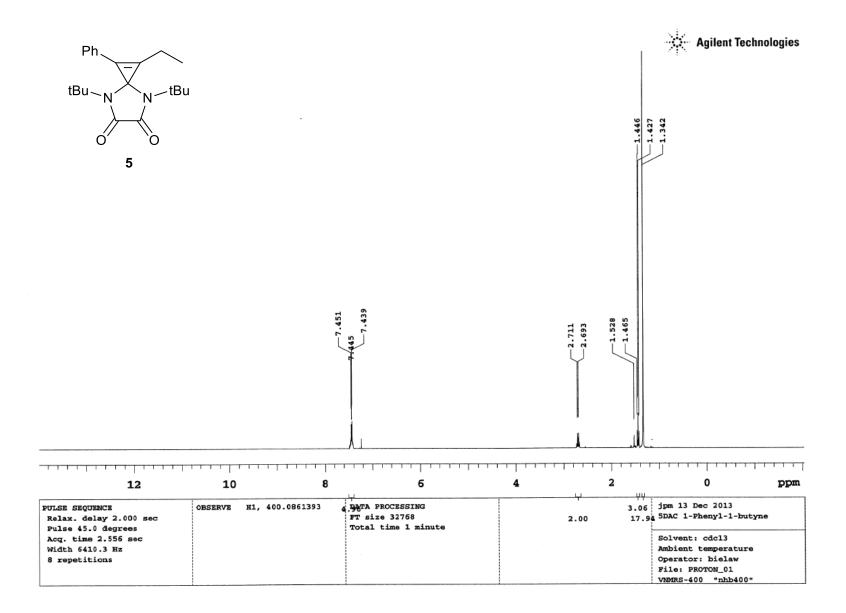

ų	ų	Ŷ

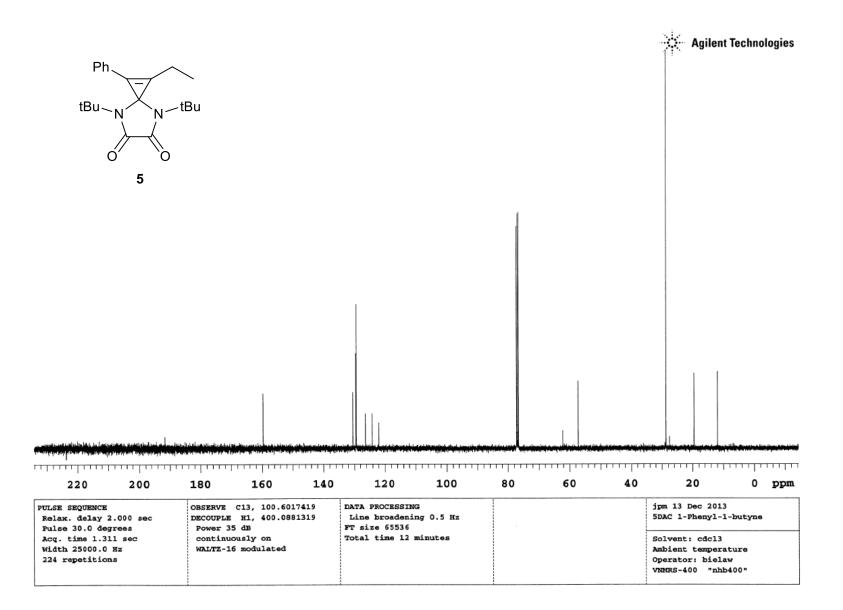

					6.03 6.21	
PULSE SEQUENCE Relax. delay 2.000 sec Pulse 45.0 degrees	OBSERVE	н1,	400.0861546	DATA PROCESSING FT size 32768 Total time 1 minute	3.00	jpm 17 Jan 2014 5AdDAC
Acq. time 2.556 sec Width 6410.3 Hz 8 repetitions						Solvent: c6d6 Ambient temperature Operator: moerdj File: PROTON_01 VNMRS-400 "nhb400"

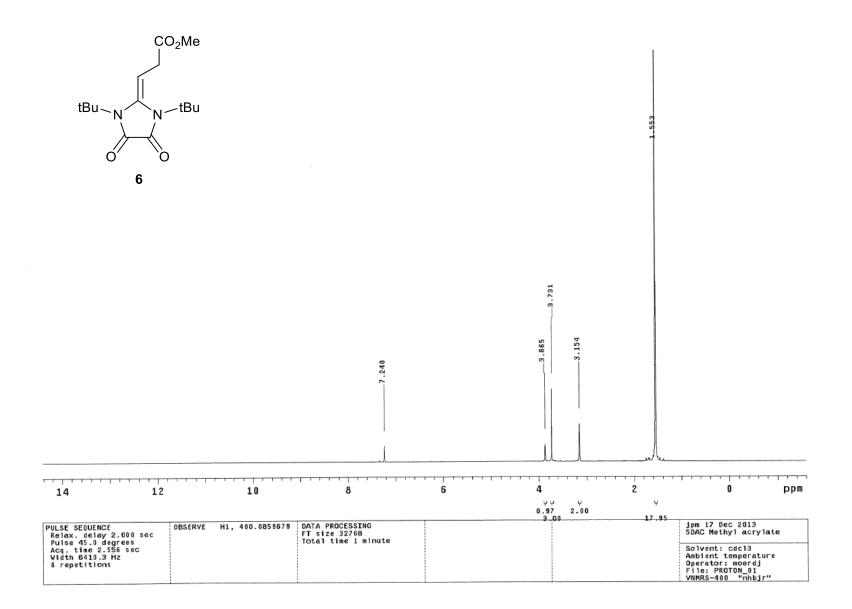
-7.150

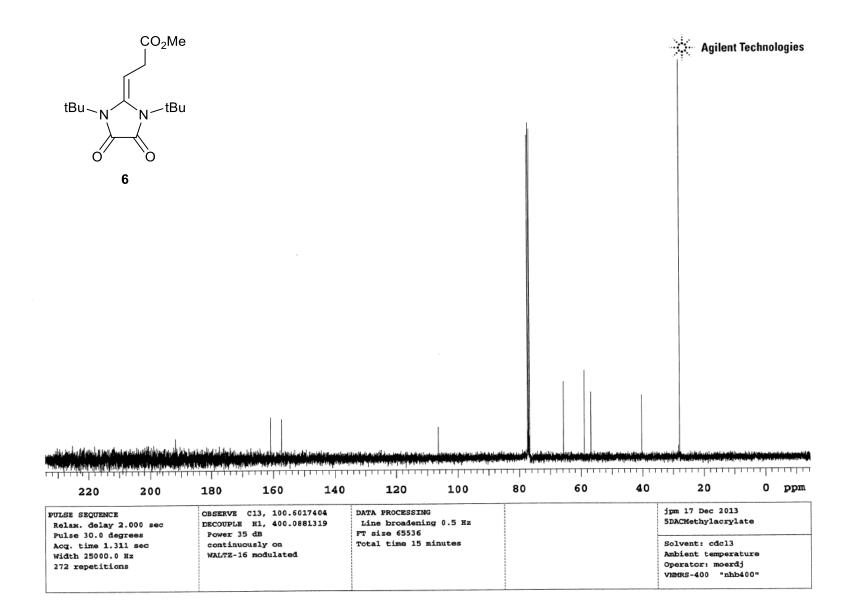


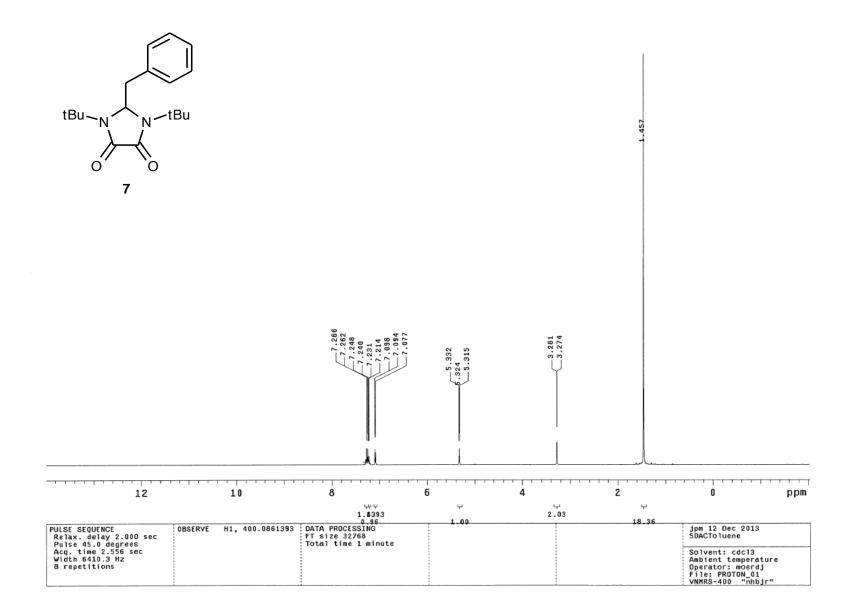


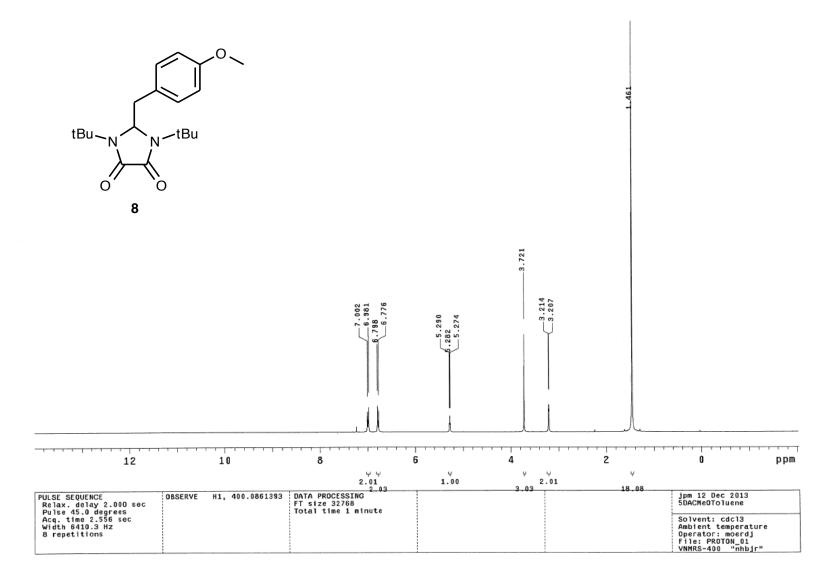


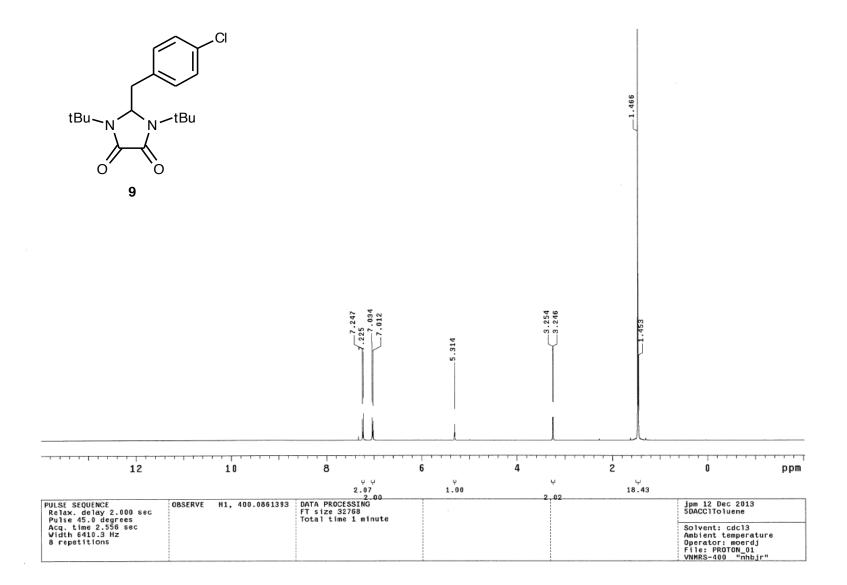


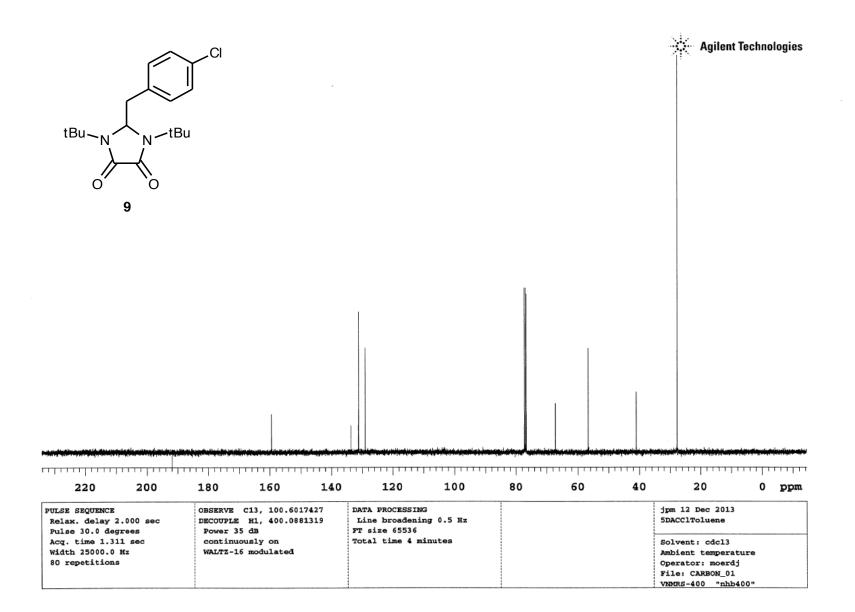

	1					1			*	Agilent Techn	ologies
3											
i in a stadistik al hali kali kali kali kali kali kali kali k	and the state of the second second second	a da a d	ارداله المحمد الري		L I I I I I I I I I I I I I I Innelad selected allocations and a nignation of the selection						
220 200	180	160	140	120	100	80	60	40	2	0 0	ppm
FULSE SEQUENCE Relax. delay 2.000 sec Pulse 30.0 degrees		3, 100.601739 L, 400.088131	.9	DATA PROCESSIN Line broadenin T size 65536					jpm 07 J 5DACNH3	an 2014	
Acq. time 1.311 sec Width 25000.0 Hz 688 repetitions	continuous WALTZ-16 ma	Ly on	7	Total time 37 :	minutes				Operator File: CA	temperature : moerdj	

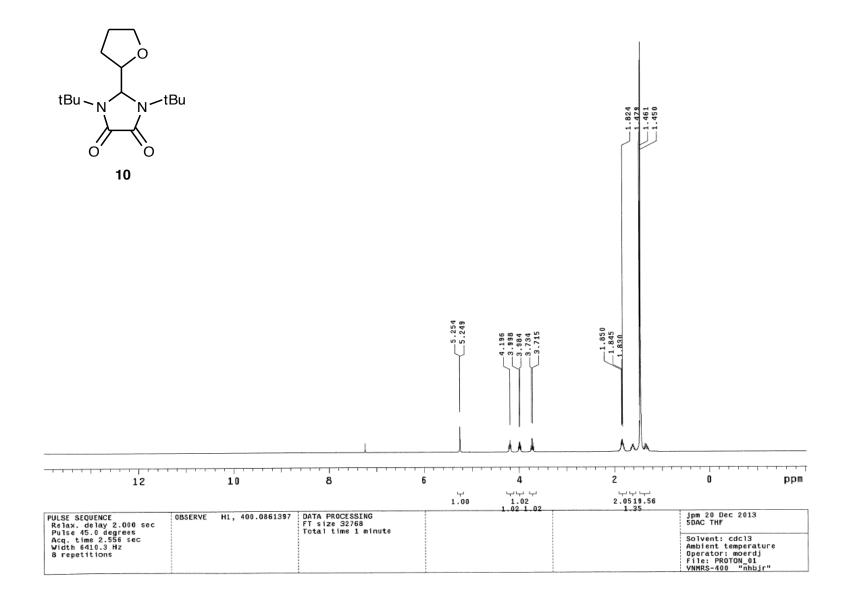


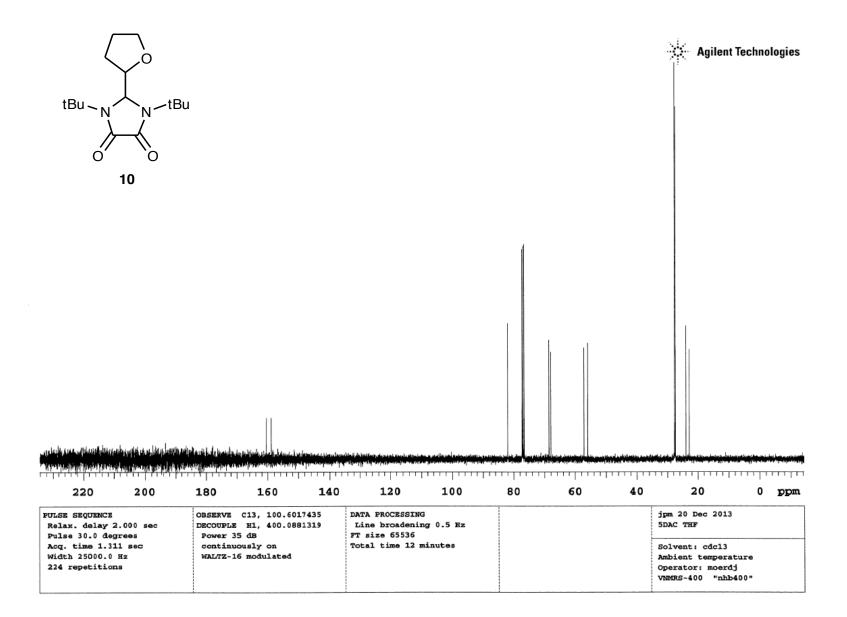









tBu~N O										Agile	nt Technologie
••••••••••••••••••••••••••••••••••••										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
220 PULSE SEQUENCE Relax. delay 2 Pulse 30.0 deg: Acq. time 1.31 Width 25000.0 1 128 repetition	200 cool sec cees L sec Iz	180 OBSERVE DECOUPLE Power 35 continuo	160 c13, 100.6017 H1, 400.0881 dB	140 427	120 DATA PROCESSI Line broaden FT size 65536 Total time 7	100 NG ing 0.5 Hz	80	60	5 S A O F	20 pm 12 Dec 200 DACToluene olvent: cdcl mbient tempe perator: moet ile: CARBON	3 rature rdj 01



tBu~N O										X	gilent Techn	ologies
								a.)))			• ##• \$#\$ \$ \$\$ \$ \$ \$	uyuşturu TTTTTT
220 PULSE SEQUENCE Relax. delay 2 Pulse 30.0 deg Acg. time 1.32 Width 25000.0 96 repetitions	200 2.000 sec grees 11 sec Hz	180 OBSERVE DECOUPLE Power 31 continue	160 C13, 100.601 H1, 400.088 dB	140 7442	120 DATA PROCES	100 SING Lening 0.5 Hz 36	80	60	40	20 jpm 12 Dec 5DACMeOTO Solvent: c Ambient te Operator: VNMRS-400	2013 uene dcl3 mperature moerdj	ppm

DFT Calculations. The DFT calculations were performed at the B3LYP/6-31g* level of theory using the Spartan'14 software package (v.1.1.3). Vibrational frequencies were calculated to identify the optimized structures as energy minima as well as to calculate the zero point energies. Truncated forms of the five- and six-membered DACs were also calculated for comparison. Key results are summarized in Table S3 and Cartesian coordinates are given in Tables S4 – S11.

		ΔH	ΔG	ΔH	ΔG
Carbene	Ketene	(298 K)	(298 K)	(195 K)	(195 K)
		(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
Za	H.	-6.21	6.25	-5.99	1.88
6DAC	A A	-12.2	-0.08	-12.0	-4.34
5DAC (truncated)		-12.3	-1.80	-12.2	-5.69
6DAC (truncated)	+	-11.3	-0.16	-11.1	-4.07

Table S3. Summary of calculated structures and thermodynamic values.^a

^{*a*} Change in enthalpy or Gibbs free energy calculated for the reaction: DAC + CO \rightarrow DAC-CO.

Atom	Х	у	Z
С	0.0140318	-0.8644076	0.0000000
Ν	0.0129201	-0.0421836	-1.1054858
Ν	0.0129201	-0.0421836	1.1054858
С	0.0062202	1.3130753	0.7735483
С	0.0062202	1.3130753	-0.7735483
Ο	-0.0006152	2.2879631	-1.4886180
Ο	-0.0006152	2.2879631	1.4886180
С	-0.0008231	-0.5553782	-2.5161852
С	-1.2852724	-0.0550198	-3.2023695
Н	-1.3287179	1.0365460	-3.2222054
Н	-2.1718672	-0.4341480	-2.6819846
Н	-1.3160712	-0.4182113	-4.2352980
С	1.2509636	-0.0266895	-3.2411926
Н	1.2574383	1.0650163	-3.2838657
Н	1.2709952	-0.4118989	-4.2663609
Н	2.1614882	-0.3648834	-2.7340148
С	0.0175259	-2.0881873	-2.4952567
Н	-0.8520009	-2.4959341	-1.9736923
Н	0.9113824	-2.4737439	-1.9980765
Н	0.0080538	-2.4447424	-3.5309820
С	-0.0008231	-0.5553782	2.5161852
С	-1.2852724	-0.0550198	3.2023695
Н	-1.3287179	1.0365460	3.2222054
Н	-1.3160712	-0.4182113	4.2352980
Н	-2.1718672	-0.4341480	2.6819846
С	0.0175259	-2.0881873	2.4952567
Н	-0.8520009	-2.4959341	1.9736923
Н	0.0080538	-2.4447424	3.5309820
Н	0.9113824	-2.4737439	1.9980765
С	1.2509636	-0.0266895	3.2411926
Н	1.2574383	1.0650163	3.2838657
Н	2.1614882	-0.3648834	2.7340148
Н	1.2709952	-0.4118989	4.2663609

 Table S4. Cartesian coordinates (Angstroms) for 2a.

Atom	Х	у	Z
С	-0.0000100	-0.6502713	0.0546126
Ν	-1.1514757	0.1881901	0.0648441
Ν	1.1521335	0.1870549	0.0728979
С	0.7615329	1.4983202	0.2651209
С	-0.7615584	1.4985880	0.2628135
Ο	-1.4748624	2.4835629	0.3472445
Ο	1.4746516	2.4835539	0.3477330
С	-2.5833135	-0.1994251	-0.1932762
С	-3.0772662	0.5937806	-1.4197322
Н	-2.5095472	0.3136231	-2.3142502
Н	-2.9773964	1.6681521	-1.2591314
Н	-4.1332572	0.3642957	-1.5987852
С	-2.7067257	-1.6985869	-0.4923666
Н	-2.0606361	-2.0132109	-1.3179822
Н	-3.7410175	-1.8996749	-0.7885522
Н	-2.5020480	-2.3195734	0.3843089
С	-3.4104300	0.1468371	1.0586793
Н	-3.3516984	1.2144436	1.2785777
Н	-3.0487493	-0.4147176	1.9273795
Н	-4.4604262	-0.1194595	0.8937617
С	2.5829635	-0.1989747	-0.1931508
С	3.0654396	0.5865024	-1.4291681
Н	2.4892268	0.2998969	-2.3161503
Н	4.1198135	0.3565007	-1.6169333
Н	2.9660061	1.6618523	-1.2744916
С	3.4190508	0.1584752	1.0496977
Н	3.3606417	1.2276612	1.2616269
Н	4.4676985	-0.1085270	0.8782236
Н	3.0644012	-0.3962549	1.9256196
С	2.7095285	-1.6999985	-0.4823741
Н	2.0595677	-2.0225528	-1.3019595
Н	2.5145989	-2.3171465	0.3993889
Н	3.7424917	-1.8980572	-0.7851952
С	-0.0009794	-1.9152782	0.5102904
0	0.0010024	-3.0850891	0.6442066

 Table S5. Cartesian coordinates (Angstroms) for 2a–CO.

Atom	Х	У	Z
Ν	1.1573004	0.4557478	0.0018860
Ν	-1.1546927	0.4491208	0.0179445
С	-2.3842301	-0.3333987	0.0271531
С	-4.7126715	-1.8806171	0.0372092
С	-2.8318441	-0.8821592	1.2369721
С	-3.0759421	-0.5286691	-1.1745893
С	-4.2373251	-1.3076858	-1.1447913
С	-3.9969862	-1.6522341	1.2168740
Н	-4.7816975	-1.4698189	-2.0728072
Н	-4.3532017	-2.0854070	2.1493461
С	2.3886829	-0.3236022	-0.0289022
С	4.7169848	-1.8702210	-0.1070791
С	2.8625408	-0.7805440	-1.2666839
С	3.0524372	-0.6140642	1.1702412
С	4.2141621	-1.3898154	1.1045456
С	4.0274998	-1.5517225	-1.2809978
Н	4.7376442	-1.6244585	2.0291020
Н	4.4029025	-1.9136810	-2.2360384
С	-1.2818815	1.8498988	0.1843321
С	1.2824905	1.8610943	0.1123993
О	2.3645155	2.3961676	0.2439579
Ο	-2.3570022	2.3673349	0.4075117
С	-0.0080365	2.6683663	-0.0041137
С	0.0155117	3.8371630	0.9985779
Н	0.0425973	3.4712156	2.0303312
Η	-0.8842041	4.4428043	0.8741582
Η	0.9041519	4.4480387	0.8280003
С	-0.0510937	3.2232198	-1.4596453
Н	-0.9434415	3.8439145	-1.5819178
Н	-0.0820072	2.4163818	-2.1998210
Н	0.8410251	3.8298780	-1.6395528
С	-2.5882635	0.0704138	-2.4716152
Н	-2.5958640	1.1669497	-2.4370699
Н	-3.2266872	-0.2384825	-3.3044892
Н	-1.5624648	-0.2445066	-2.6977613
С	-2.0743907	-0.6652885	2.5239367
Н	-2.5775405	-1.1612024	3.3591084
Н	-1.9927722	0.4009551	2.7680151
Н	-1.0563669	-1.0668014	2.4521005
С	-5.9495683	-2.7481260	0.0403784

 Table S6. Cartesian coordinates (Angstroms) for 6DAC.

Н	-6.5639842	-2.5689068	0.9298898
Н	-5.6862010	-3.8142688	0.0394832
Н	-6.5710650	-2.5644738	-0.8421636
С	2.5433611	-0.1116683	2.4991514
Н	2.6566728	0.9760771	2.5806945
Н	3.0977351	-0.5685446	3.3242020
Н	1.4811226	-0.3440485	2.6372357
С	5.9541761	-2.7364443	-0.1464328
Н	6.5683606	-2.5214955	-1.0280656
Н	5.6913395	-3.8019525	-0.1877912
Н	6.5755477	-2.5878109	0.7427673
С	2.1305508	-0.4724926	-2.5499930
Н	2.0103869	0.6075473	-2.7004640
Н	1.1270975	-0.9155499	-2.5436609
Н	2.6737189	-0.8709204	-3.4119545
С	0.0019748	-0.2753251	-0.0521685

 Table S7. Cartesian coordinates (Angstroms) for 6DAC–CO.

Atom	Х	У	Z
Ν	1.2205205	0.5749604	0.1601005
Ν	-1.2168502	0.5844339	0.1350377
С	-2.4313266	-0.2008415	0.0527270
С	-4.7386707	-1.7735905	-0.1389824
С	-2.8546062	-0.9319755	1.1724800
С	-3.1615269	-0.2026274	-1.1489902
С	-4.3051357	-1.0014040	-1.2219181
С	-4.0060765	-1.7161441	1.0491227
Н	-4.8755469	-1.0132007	-2.1484265
Н	-4.3421922	-2.2898479	1.9099976
С	2.4298636	-0.2178146	0.0819256
С	4.7432967	-1.7850207	-0.1018012
С	3.2301226	-0.1272624	-1.0698475
С	2.7768916	-1.0560495	1.1546346
С	3.9348159	-1.8289137	1.0380593
С	4.3777961	-0.9227388	-1.1387700
Н	4.2156791	-2.4774505	1.8652822
Н	5.0050128	-0.8591756	-2.0252152
С	-1.2900802	1.9363003	0.4206534
С	1.2996124	1.9310366	0.4297437
0	2.3592481	2.4516607	0.7440065
0	-2.3490923	2.4579721	0.7363337

С	0.0064965	2.7486105	0.2851159
С	0.0065807	3.8723541	1.3366364
Н	0.0074217	3.4610468	2.3512740
Н	-0.8890186	4.4847192	1.2174352
Н	0.9015763	4.4854075	1.2166043
С	0.0095357	3.3692925	-1.1407785
Н	-0.8774678	3.9977447	-1.2654840
Н	0.0024365	2.6012371	-1.9219951
Н	0.9040215	3.9863171	-1.2684923
С	-2.7686586	0.6712058	-2.3175744
Н	-2.9448696	1.7281480	-2.0826659
Н	-3.3609830	0.4210436	-3.2023441
Н	-1.7110617	0.5657485	-2.5822230
С	-2.1216606	-0.8474284	2.4879409
Н	-2.6075945	-1.4734894	3.2418685
Н	-2.1092816	0.1838619	2.8598120
Н	-1.0802847	-1.1739731	2.3992789
С	-5.9717130	-2.6384477	-0.2559797
Η	-6.8440171	-2.0501093	-0.5653670
Η	-6.2135031	-3.1218419	0.6955514
Η	-5.8337525	-3.4275466	-1.0058000
С	1.9412528	-1.1228275	2.4083320
Η	1.6195535	-0.1271581	2.7287909
Η	2.5070742	-1.5800536	3.2253479
Н	1.0377052	-1.7262364	2.2552225
С	5.9711062	-2.6578859	-0.2118841
Н	6.4641110	-2.7792561	0.7586559
Н	6.6998607	-2.2384520	-0.9129915
Н	5.7111864	-3.6623159	-0.5718871
С	2.9020957	0.8316056	-2.1892808
Н	3.0857287	1.8657769	-1.8743567
Н	1.8527303	0.7628141	-2.4962304
Н	3.5225247	0.6292927	-3.0669370
С	0.0031359	-0.0447492	-0.2190516
С	0.0093662	-1.1259338	-1.0118035
0	0.0113663	-2.1897969	-1.5184567

N 1.0800255 0.0000000 -0.948989 C 0.0000000 0.0000000 -1.804378 N -1.0800255 0.0000000 -0.948989 C -0.7764145 0.0000000 0.413805	
N -1.0800255 0.0000000 -0.948989	94
	35
C -0.7764145 0.0000000 0.413805	94
	9
C 0.7764145 0.0000000 0.413805	9
O -1.5237403 0.0000000 1.358268	1
O 1.5237403 0.0000000 1.358268	1
Н 2.0318139 0.0000000 -1.292918	9
Н -2.0318139 0.0000000 -1.292918	9

 Table S8. Cartesian coordinates (Angstroms) for 5DAC (truncated).

Table S9. Cartesian coordinates (Angstroms) for 5DAC (truncated)-CO.

Atom	X	у	Z
N	-0.1107628	0.0073466	1.1231056
С	-0.9624937	0.0142984	0.0000000
Ν	-0.1107628	0.0073466	-1.1231056
С	1.2267524	-0.0017433	-0.7687926
С	1.2267524	-0.0017433	0.7687926
Ο	2.1800033	-0.0054024	-1.5158517
О	2.1800033	-0.0054024	1.5158517
С	-2.2847868	-0.0115025	0.0000000
О	-3.4639050	-0.0059750	0.0000000
Н	-0.4277385	0.0177645	2.0818754
Н	-0.4277385	0.0177645	-2.0818754

Table S10. Cartesian coordinates (Angstroms) for 6DAC (truncated).

Atom	Х	у	Z
N	1.1332145	0.0000000	-1.0440642
С	0.0000000	0.0000000	-1.8050694
Ν	-1.1332145	0.0000000	-1.0440642
С	-1.2936735	0.0000000	0.3517650
С	1.2936735	0.0000000	0.3517650
О	2.3916497	0.0000000	0.8649013
Ο	-2.3916497	0.0000000	0.8649013
С	0.0000000	0.0000000	1.1447116
Н	0.0000000	-0.8718528	1.8099297
Н	0.0000000	0.8718528	1.8099297

Н	-2.0132056	0.0000000	-1.5502071
Н	2.0132056	0.0000000	-1.5502071

Atom	Х	У	Z
Ν	-0.2782762	-0.4798814	1.2126695
С	-1.0053358	-0.3858042	0.0000000
Ν	-0.2782762	-0.4798814	-1.2126695
С	0.9980492	0.0635772	-1.2686033
С	0.9980492	0.0635772	1.2686033
Ο	1.7490849	-0.1105057	2.2067281
0	1.7490849	-0.1105057	-2.2067281
С	1.3506844	0.8486339	0.0000000
Н	0.7845631	1.7912723	0.0000000
Н	2.4157546	1.0752383	0.0000000
С	-2.2330680	0.1545888	0.0000000
Ο	-3.3671893	0.4403915	0.0000000
Н	-0.5012844	-1.1853242	1.9066447
Н	-0.5012844	-1.1853242	-1.9066447

Table S11. Cartesian coordinates (Angstroms) for 6DAC (truncated)-CO.

References

- S1 H. J. Bestmann, J. Lienert and L. Mott, Justus Liebigs Ann. Chem., 1968, 718, 24.
- S2 R. E. Cowley, N. A. Eckert, J. Elhaïk and P. L. Holland. Chem. Commun., 2009, 1760.
- S3 C. Palomo and R. Mestres, Synthesis, 1981, 373.
- S4 G. Zinner and R. Vollrath, Chem. Ber., 1970, 103, 766.
- S5 Z. Otwinowski and W. Minor, Methods. In *Enzymology in Macromolecular Crystallography*, *Part A*; Carter, C. W., Jr; Sweets, R. M., Eds. (Academic Press, 1997); Vol. 276, pp 307– 326.
- S6 Sheldrick, G. M. SHELXL/PC package (version 5.1), program for the refinement of crystal structures, University of Gottingen, Germany, 2003.