Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Palladium-Catalyzed Synthesis of Polysubstituted Quinolines from 2-Amino

Aromatic Ketones and Alkynes

Supporting Information

Wang Zhou,* Jianhua Lei

College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China

E-mail: wzhou@xtu.edu.cn

Contents:

General Remarks	S2
Typical Experimental Procedure	S3
Analytical Data for Compounds 3	S4
References	S19
Crystal Data and Structure Refinement for 3ka	S20
NMR and HRMS Spectra of Those Compounds	S21

General Remarks

¹H-NMR spectra were recorded on a Bruker AVIII-400 spectrometer. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C-NMR spectra were obtained by using the same NMR spectrometers and calibrated with CDCl₃ ($\delta = 77.0$ ppm). Mass spectra were recorded using an Agilent 5975 GC-MS. A variety of 2-aminobenzophenones could be readily available *via* one-step synthesis from 2-cyano aniline and aromatic boronic acid.¹ Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Typical Experimental Procedure

To a seal tube were added 2-amino aromatic ketone (1, 0.2 mmol), acetylene (2, 0.4 mmol), PdBr₂ (2.7 mg, 0.01 mmol), PivOH or AcOH (1.6 mmol), DCE (0.8 mL) and benzenenitrile (0.8 mL). The mixture was stirred and heated at 130 °C for 18 h until the substrate disappeared as monitored by TLC. The reaction mixture was neutralized with saturated NaHCO₃ and then extracted with ethyl acetate. The combined ethyl acetate solution was washed with brine, filtered, and dried under vaccum. The crude product was purified by column chromatography on silica gel to obtain the desired products **3** (petroleum ether:ethyl acetate = 20:1).

Analytical Data for Compounds 3

1) 2,3,4-triphenylquinoline (3aa)²

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 59 mg (83%) of **3aa** as white solid. m.p.: 203-204 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.31$ (m, 1H), 7.75 (t, J = 7.47 Hz, 1H), 7.59 (d, J = 7.47 Hz, 1H), 7.47 (t, J = 7.47 Hz, 1H), 7.39-7.37 (m, 2H), 7.28-7.26 (m, 3H), 7.23-7.21 (m, 3H), 7.14-7.12 (m, 2H), 7.01-6.99 (m, 3H), 6.89-6.87 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.0$, 147.7, 147.4, 141.2, 138.4, 137.0, 133.0, 131.4, 130.4, 130.0, 129.8, 129.4, 127.8, 127.7, 127.6, 127.4, 127.3, 126.72, 126.67, 126.6, 126.4 ppm; IR (KBr): v_{max} = 3437, 3054, 3024, 2925, 1549, 1481, 1442, 1347, 1074, 1026, 774, 698, 630 cm⁻¹; MS (70 eV): m/z (%) 356.2 (M⁺, 100).

2) 2,3-diphenyl-4-p-tolylquinoline (3ba)

The reaction of (2-aminophenyl)(p-tolyl)methanone (**1b**, 0.2 mmol, 42.2 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 47 mg (64%) of **3ba** as white solid. m.p.: 153-154 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.26$ (d, J = 7.9 Hz, 1H), 7.72 (t, J = 7.9 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.40-7.34 (m, 2H), 7.23-7.16 (m, 3H), 7.11-7.05 (m, 2H),

7.05-6.98 (m, 5H), 6.92-6.86 (m, 2H), 2.32 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta =$ 159.0, 147.9, 147.3, 141.2, 138.5, 136.9, 133.9, 133.0, 131.4, 130.2, 129.9, 129.6, 129.4, 128.6, 127.7, 127.6, 127.4, 126.9, 126.8, 126.5, 126.3, 21.2 ppm; IR (KBr): $v_{max} =$ 3442, 3055, 3027, 2918, 1544, 1486, 1369, 1347, 1109, 1022, 831, 749, 692 cm⁻¹; HRMS m/z (ESI) calcd for C₂₈H₂₂N (M + H)⁺: 372.1747, found 372.1733.

3) 4-(4-methoxyphenyl)-2,3-diphenylquinoline (3ca)

The reaction of (2-aminophenyl)(4-methoxyphenyl)methanone (**1c**, 0.2 mmol, 45.4 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 54 mg (70%) of **3ca** as white solid. m.p.: 170-171 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.25$ (d, J = 8.1 Hz, 1H), 7.71 (t, J = 8.1 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.45 (t, J = 8.1 Hz, 1H), 7.40-7.30 (m, 2H), 7.22-7.17 (m, 3H), 7.08-6.98 (m, 5H), 6.92-6.86 (m, 2H), 6.84-6.78 (m, 2H), 3.78 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.1$, 158.7, 147.5, 147.4, 141.3, 138.5, 133.2, 131.6, 131.4, 130.0., 129.7, 129.3, 129.1, 127.7, 127.6, 127.4, 127.1, 126.7, 126.5, 126.3, 131.3, 55.2 ppm; IR (KBr): $v_{max} = 3438$, 3053, 3024, 2933, 1609, 1514, 1486, 1247, 1174, 1030, 853, 770, 696, 620 cm⁻¹; HRMS m/z (ESI) calcd for C₂₈H₂₂NO (M + H)⁺: 388.1696, found 388.1690.

4) 2,3-diphenyl-4-(4-(trifluoromethoxy)phenyl)quinoline (3da)

The reaction of (2-aminophenyl)(4-(trifluoromethoxy)phenyl)methanone (**1d**, 0.2 mmol, 56.2 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 64 mg (73%) of **3da** as white solid. m.p.: 130-131 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.19$ (d, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.8 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.34-7.28 (m, 2H), 7.16-7.12 (m, 3H), 7.12-7.04 (m, 4H), 6.98-6.88 (m, 3H), 6.82-6.76 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.0$, 148.4, 148.43, 148.41, 147.4, 146.2, 141.0, 138.0, 135.7, 133.2, 131.8, 131.3, 130.0, 129.5, 127.7, 127.5, 126.9, 126.6, 126.4, 126.2, 120.3, 119.2 ppm; IR (KBr): $v_{max} = 3422$, 3063, 2924, 1486, 1349, 1283, 1255, 1212, 1159, 768, 701, 628 cm⁻¹; HRMS m/z (ESI) calcd for C₂₈H₁₉F₃NO (M + H)⁺: 442.1413, found 442.1401.

5) 4-(4-chlorophenyl)-2,3-diphenylquinoline (3ea)

The reaction of (2-aminophenyl)(4-chlorophenyl)methanone (1e, 0.2 mmol, 46.2 mg), diphenylacetylene (2a, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 53 mg (68%) of **3ea** as white solid. m.p.: 173-174 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.26$ (d, J = 7.9 Hz, 1H), 7.73 (t, J = 7.9 Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 7.9 Hz, 1H), 7.40-7.32 (m, 2H), 7.28-7.24 (m, 2H), 7.24-7.18 (m, 3H), 7.10-6.98 (m, 5H), 6.90-6.84 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.0$, 153.9, 147.3, 146.3, 141.0, 138.1, 135.5, 133.4, 133.0, 131.7, 131.3, 129.9, 129.5, 128.2, 127.7, 127.6, 126.8, 126.6, 126.4, 126.2 ppm; IR (KBr): $v_{max} = 3432$, 3058, 2923, 2852, 1548, 1482, 1348, 1086, 1015, 851, 793, 702, 628 cm⁻¹; HRMS m/z (ESI) calcd for C₂₇H₁₉ClN (M + H)⁺: 392.1201, found 392.1207. **6) 4-(4-fluorophenyl)-2,3-diphenylquinoline (3fa)**

The reaction of (2-aminophenyl)(4-fluorophenyl)methanone (**1f**, 0.2 mmol, 43.0 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 47 mg (63%) of **3fa** as white solid. m.p.: 168-169 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.26$ (d, J = 8.0 Hz, 1H), 7.73 (t, J = 7.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.40-7.34 (m, 2H), 7.22-7.16 (m, 3H), 7.14-7.06 (m, 2H), 7.04-6.94 (m, 5H), 6.90-6.86 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 162.0$ (d, $J_{C-F} = 250.0$ Hz), 159.0, 147.4, 146.7, 141.0, 138.2, 133.2, 132.88 (d, $J_{C-F} = 4.0$ Hz), 132.01 (d, $J_{C-F} = 8.0$ Hz), 131.3, 130.0, 129.9, 129.5, 127.70, 127.68, 127.5, 126.74, 126.67, 126.5, 126.3, 115.0 (d, $J_{C-F} = 20.0$ Hz) ppm; IR (KBr): $v_{max} = 3439$, 3058, 2923, 2856, 1603, 1510, 1486, 1347, 1222, 1155, 1092, 841, 765, 702, 693 cm⁻¹; HRMS m/z (ESI) calcd for C₂₇H₁₉FN (M + H)⁺: 376.1496, found 376.1496.

7) 2,3-diphenyl-4-o-tolylquinoline (3ga)

The reaction of (2-aminophenyl)(o-tolyl)methanone (**1g**, 0.2 mmol, 42.2 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 39 mg (53%) of **3ga** as white solid. m.p.: 149-150 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.26$ (d, J = 8.0 Hz, 1H), 7.72 (t, J = 8.0 Hz, 1H), 7.46-7.34 (m, 4H), 7.24-7.16 (m, 4H), 7.16-7.08 (m, 2H), 7.08-6.82 (m, 6H), 1.92 (s, 3H); ¹³C NMR (CDCl₃,

100 MHz): $\delta = 159.2$, 147.5, 147.2, 141.1, 138.3, 136.5, 136.1, 133.0, 130.4, 130.0, 129.8, 129.7, 129.5, 127.8, 127.72, 127.65, 127.3, 126.7, 126.54, 126.47, 126.4, 125.2, 20.0 ppm; IR (KBr): $v_{max} = 3434$, 3051, 3022, 1548, 1477, 1346, 1026, 763, 701, 629 cm⁻¹; HRMS m/z (ESI) calcd for C₂₈H₂₂N (M + H)⁺: 372.1747, found 372.1744.

8) 4-(naphthalen-2-yl)-2,3-diphenylquinoline (3ha)

The reaction of (2-aminophenyl)(naphthalen-3-yl)methanone (**1h**, 0.2 mmol, 49.4mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and Benzenenitrile (0.8 mL) under **typical procedure** afforded 44 mg (54%) of **3ha** as white solid. m.p.: 104-105 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.28$ (d, J = 8.6 Hz, 1H), 7.82-7.64 (m, 4H), 7.67 (s, 1H), 7.58 (d, J = 8.6 Hz, 1H), 7.50-7.36 (m, 5H), 7.22-7.18 (m, 4H), 6.98-6.88 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.1$, 147.5, 147.4, 141.2, 138.3, 134.5, 133.2, 132.8, 132.3, 131.3, 130.0, 129.8, 129.6, 129.4, 128.2, 128.0, 127.8, 127.7, 127.6, 127.4, 126.7, 126.6, 126.4, 126.3, 126.25 ppm; IR (KBr): v_{max} = 3439, 3054, 2924, 2853, 1730, 1236, 1041, 701 cm⁻¹; HRMS m/z (ESI) calcd for C₃₁H₂₂N (M + H)⁺: 408.1747, found 408.1752.

9) 2,3-diphenyl-4-styrylquinoline (3ia)

The reaction of (E)-1-(2-aminophenyl)-3-phenylprop-2-en-1-one (**1i**, 0.2 mmol, 44.6mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and Benzenenitrile (0.8 mL) under **typical procedure** afforded 57 mg (74%) of **3ia** as white solid. m.p.: 168-169 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.35$ (d, J = 7.7 Hz, 1H), 8.26 (d, J = 7.7 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.40-7.32 (m, 6H), 7.26-7.18 (m, 7H), 7.16-7.12 (m, 2H), 7.04 (d, J = 16.6 Hz, 1H), 6.85 (d, J = 16.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 158.7$, 147.8, 143.3, 141.0, 138.3, 137.7, 136.8, 132.2, 131.4, 130.2, 129.9, 129.4, 128.8, 128.3, 127.9, 127.7, 127.6, 127.1, 126.7, 125.6, 125.8, 124.5, 124.4 ppm; IR (KBr): $v_{max} = 3433$, 3055, 2922, 2852, 1486, 1447, 1398, 1348, 988, 975, 771, 746, 701, 688 cm⁻¹; HRMS m/z (ESI) calcd for C₂₉H₂₂N (M + H)⁺: 384.1747, found 384.1746.

10) 4-methyl-2,3-diphenylquinoline (3ja)

The reaction of 1-(2-aminophenyl)ethanone (**1j**, 0.2 mmol, 27.0 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 37 mg (63%) of **3ja** as colorless liquid. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.21$ (d, J = 8.15 Hz, 1H), 8.08 (d, J = 8.15 Hz, 1H), 7.73 (t, J = 8.15 Hz, 1H), 7.60 (t, J = 8.15 Hz, 1H), 7.34-7.25 (m, 5H), 7.20-7.15 (m, 3H), 7.14-7.08 (m, 2H), 2.54 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 158.9$, 146.8, 142.3, 141.4, 139.1, 134.0, 130.8, 130.3, 129.8, 129.1, 128.0 127.6, 127.4, 127.2, 127.0, 126.5, 124.2, 16.3 ppm; MS (70 eV): m/z (%) 294.1 (M⁺, 100).

11) 4-ethyl-2,3-diphenylquinoline (3ka)³

The reaction of 1-(2-aminophenyl)propan-1-one (**1k**, 0.2 mmol, 29.8 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 34 mg (55%) of **3ka** as white solid. m.p.: 141-142 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.22$ (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 8.0 Hz, 1H), 7.59 (t, J = 8.0 Hz, 1H), 7.34-7.24 (m, 5H), 7.18-7.12 (m, 5H), 2.97 (q, J = 7.4 Hz, 2H), 1.21 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.1$, 148.2, 147.4, 141.4, 138.9, 133.5, 130.6, 130.5, 129.7, 129.1, 128.0, 127.6, 127.4, 127.0, 126.6, 126.0, 124.2, 22.7, 15.3 ppm; IR (KBr): $v_{max} = 3434$, 3051, 2971, 2932, 1566, 1491, 1443, 1346, 763, 697, 606 cm⁻¹; MS (70 eV): m/z (%) 308.2 (M⁺, 100).

Figure S1. ORTEP drawing of 3ka

12) 4,8-dimethyl-2,3-diphenylquinoline (3la)

The reaction of 1-(2-aino-3-methylphenyl)ethanone (**11**, 0.2 mmol, 29.8 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 55 mg (89%) of **31a** as yellow solid. m.p.: 150-151 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.90$ (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.42-7.36 (m, 2H), 7.32-7.24 (m, 3H), 7.20-7.14 (m, 3H), 7.12-7.08 (m, 2H), 2.87 (s, 3H), 2.51 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 156.9$, 145.9, 142.3, 141.7, 139.6, 138.2, 133.5, 130.9, 130.3 129.3, 128.1, 127.4, 127.39, 127.0, 126.2, 122.1, 18.4, 16.5 ppm; IR (KBr): $v_{max} = 3436$, 3059, 3021, 2918, 1560, 1483, 1440, 1347, 1073, 1015, 903, 756, 697, 615 cm⁻¹; HRMS m/z (ESI) calcd for C₂₃H₂₀N (M + H)⁺: 310.1590, found 310.1587.

13) 6-chloro-4-methyl-2,3-diphenylquinoline (3ma)

3ma

The reaction of 1-(2-amino-5-chlorophenyl)ethanone (**1m**, 0.2 mmol, 33.8 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 40 mg (61%) of **3ma** as white solid. m.p.: 136-137°C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.12$ (d, J = 8.8 Hz, 1H), 8.04 (s, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.34-7.25 (m, 5H), 7.20-7.16 (m, 2H), 7.12-7.07 (m, 3H), 2.49 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.2$, 145.2, 141.6, 141.0, 138.7, 134.8, 132.3, 131.9, 131.4 131.1, 130.7, 130.0, 129.7, 128.1, 127.7, 127.2, 123.4, 16.4 ppm; IR (KBr): $v_{max} = 3436$, 3055, 2922, 1480, 1348, 765, 696 cm⁻¹; MS (70 eV): m/z (%) 328.1 (M⁺, ³⁵Cl, 100), 330.1 (M⁺, ³⁷Cl, 36).

14) 6-bromo-4-methyl-2,3-diphenylquinoline (3na)

3na

The reaction of 1-(2-amino-5-bromophenyl)ethanone (**1n**, 0.2 mmol, 42.4 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 44 mg (59%) of **3na** as white solid. m.p.: 134-135 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.24$ (s, 1H), 8.07 (d, J = 9.0 Hz, 1H), 7.80 (d, J = 9.0 Hz, 1H), 7.32-7.26 (m, 5H), 7.24-7.18 (m, 2H), 7.13-7.06 (m, 3H), 2.50 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.3$, 145.4, 141.5, 141.0, 138.6, 132.6, 132.0, 131.4, 131.1 130.7, 129.7, 128.1, 127.9, 127.7, 127.2, 126.7, 120.6, 16.4 ppm; IR (KBr): $v_{max} = 3435$, 3055, 2922, 1480, 1348, 1070, 828, 766, 696 cm⁻¹; MS (70 eV): m/z (%) 374.0 (M⁺, ⁸¹Br, 100).

15) 6-chloro-2,3,4-triphenylquinoline (30a)⁴

3oa

The reaction of (2-amino-5-chlorophenyl)(phenyl)methanone (**10**, 0.2 mmol, 46.2 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 40 mg (51%) of **30a** as white solid. m.p.: 193-194 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.19$ (d, J = 8.8 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.55 (s, 1H), 7.40-7.26 (m, 5H), 7.24-7.18 (m, 3H), 7.14-7.08 (m, 2H), 7.04-6.98 (m, 3H), 6.90-6.86 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.3$, 147.0, 145.7, 140.8, 138.0, 136.3, 133.8, 132.5, 131.4 131.3, 130.3, 130.2, 129.9, 128.1, 127.8, 127.76, 127.6, 127.5, 126.6, 125.4 ppm; IR (KBr): $v_{max} = 3443$, 3060, 3025, 1471, 1443, 1367, 1080, 837, 699, 609 cm⁻¹; MS (70 eV): m/z (%) 390.1 (M⁺, 100).

16) 7-fluoro-2,3,4-triphenylquinoline (3pa)

3ра

The reaction of (2-amino-4-fluorophenyl)(phenyl)methanone (**1p**, 0.2 mmol, 43.0 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 42 mg (56%) of **3pa** as yellow solid. m.p.: 195-196 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.87$ (d, J = 9.6 Hz, 1H), 7.60-7.54 (m, 1H), 7.40-7.34 (m, 2H), 7.32-7.24 (m, 3H), 7.22-7.18 (m, 4H), 7.14-7.08 (m, 2H), 7.04-6.96 (m, 3H), 6.90-6.86 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 161.0$ (d, $J_{C-F} = 171.3$ Hz), 147.9, 140.9, 138.1, 136.8, 133.4, 132.4 (d, $J_{C-F} = 1.7$ Hz), 131.4, 130.2 129.9, 129.5 (d, $J_{C-F} = 9.8$ Hz), 127.9, 127.8, 127.7, 127.5 127.4, 126.4, 123.8, 116.9 (d, $J_{C-F} = 24.7$ Hz), 113.1 (d, $J_{C-F} = 20.1$ Hz) ppm; IR (KBr): $v_{max} = 3440$, 3057, 3026, 2924, 2855, 1617, 1481, 1444, 1149, 872, 752, 698, 614, 528 cm⁻¹; HRMS m/z (ESI) calcd for C₂₇H₁₉FN (M + H)⁺: 376.1496, found 376.1501.

17) 2,3,4-triphenylbenzofuro[3,2-b]pyridine (3ra)

The reaction of (3-aminobenzofuran-2-yl)(phenyl)methanone (**1r**, 0.2 mmol, 47.4 mg), diphenylacetylene (**2a**, 0.4 mmol, 71.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 50 mg (63%) of **3ra** as yellow solid. m.p.: 178-179 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.27$ (d, J = 7.6 Hz, 1H), 7.50-7.46 (m, 2H), 7.38-7.34 (m, 1H), 7.30-7.26 (m, 2H), 7.24-7.16 (m, 5H), 7.14-7.10 (m, 2H), 7.02-6.96 (m, 3H), 6.88-6.82 (m,

3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 158.1$, 155.2, 147.2, 143.0, 141.3, 137.8, 133.3, 133.1, 133.0, 131.8, 131.0, 130.5, 130.2, 129.0, 128.0 127.7, 127.6, 127.2, 126.7, 123.8, 123.5, 121.6, 112.3 ppm; IR (KBr): $v_{max} = 3440$, 3057, 3026, 2924, 1495, 1445, 1369, 1199, 872, 753, 699 cm⁻¹; HRMS m/z (ESI) calcd for C₂₉H₂₀NO (M + H)⁺: 398.1539, found 398.1540.

18) 4-phenyl-2,3-dip-tolylquinoline (3ab)

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), 1,2-diptolylethyne (**2b**, 0.4 mmol, 82.4 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 54 mg (70%) of **3ab** as white solid. m.p.: 199-200 °C; ¹H NMR (CDCl₃, 400 MHz): δ = 8.23 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.32-7.24 (m, 5H), 7.16-7.08 (m, 2H), 7.14-6.98 (m, 2H), 6.81 (d, *J* = 8.0 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 2H), 2.29 (s, 3H), 2.18 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 159.1, 147.6, 147.3, 138.5, 137.3, 135.7, 135.4, 132.9, 131.2, 130.3, 129.9, 129.7, 129.1, 128.4, 128.0, 127.8, 127.1, 126.7, 126.56, 126.3, 21.2, 21.1 ppm; IR (KBr): v_{max} = 3435, 3058, 3021, 2918, 1548, 1479, 1346, 1188, 1069, 1020, 829, 763, 705, 612 cm⁻¹; HRMS m/z (ESI) calcd for C₂₉H₂₄N (M + H)⁺: 386.1903, found 386.1895.

19) 2,3-bis(4-chlorophenyl)-4-phenylquinoline (3ac)

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), 1,2-bis(4chlorophenyl)ethyne (**2c**, 0.4 mmol, 98.4 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 60 mg (70%) of **3ac** as yellow solid. m.p.: 241-242 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.23$ (d, J = 7.7 Hz, 1H), 7.74 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 7.7 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.36-7.28 (m, 5H), 7.26-7.18 (m, 2H), 7.14-7.06 (m, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 157.4$, 148.1, 147.4, 139.4, 136.7, 136.5, 134.1, 132.7, 132.6, 131.5, 131.3, 130.2, 129.8, 129.7, 128.1, 128.09, 127.9, 127.6, 127.0, 126.7, 126.6 ppm; IR (KBr): v_{max} = 3433, 3059, 2924, 2853, 1571, 1489, 1342, 1125, 1013, 829, 767, 710 cm⁻¹; HRMS m/z (ESI) calcd for C₂₇H₁₈Cl₂N (M + H)⁺: 426.0811, found 426.0812.

20) 2,3-bis(4-methoxyphenyl)-4-phenylquinoline (3ad)

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), 1,2-bis(4methoxyphenyl)ethyne (**2d**, 0.4 mmol, 95.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 57 mg (68%) of **3ad** as white solid. m.p.: 180-181 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.15$ (d, J = 8.0 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.30-7.18 (m, 5H), 7.10-7.02 (m, 2H), 6.76-6.66 (m, 4H), 6.56-6.47 (m, 2H), 3.69 (s, 3H), 3.61 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 163.1$, 159.2, 158.8, 158.0, 157.9, 137.3, 133.8, 132.5, 132.4, 131.4, 130.8, 130.3, 129.5, 129.2, 127.9, 127.2, 126.6, 126.3, 113.2, 113.0, 55.2, 55.0 ppm; IR (KBr): $v_{max} =$ 3433, 2926, 2837, 1607, 1511, 1247, 1180, 1027, 833, 765, 704, 617 cm⁻¹; HRMS m/z (ESI) calcd for C₂₉H₂₄NO₂ (M + H)⁺: 418.1802, found 418.1810.

21) 2,3-bis(4-fluorophenyl)-4-phenylquinoline (3ae)

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), 1,2-bis(4-fluorophenyl)ethyne (**2e**, 0.4 mmol, 85.6 mg), PdBr₂ (2.7 mg, 0.01 mmol), AcOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 53 mg (68%) of **3ae** as white solid. m.p.: 186-188 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.15$ (d, J = 8.0 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.30-7.18 (m, 5H), 7.06-6.98 (m, 2H), 6.88-6.80 (m, 2H), 6.78-6.72 (m, 2H), 6.68-6.60 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 162.5$ (d, $J_{C-F} = 247$ Hz), 161.4 (d, $J_{C-F} = 246$ Hz), 157.8, 148.1, 147.4, 137.1 (d, $J_{C-F} = 3.5$ Hz), 136.7, 134.2 (d, $J_{C-F} = 4.1$ Hz), 132.9 (d, $J_{C-F} = 7.9$ Hz), 131.81, 131.8 (d, $J_{C-F} = 21$ Hz), 114.7 (d, $J_{C-F} = 21$ Hz) ppm; IR (KBr): $v_{max} = 3436$, 3058, 2923, 1602, 1511, 1479, 1344, 1225, 1155, 1094, 822, 769, 744 cm⁻¹; HRMS m/z (ESI) calcd for C₂₇H₁₈F₂N (M + H)⁺: 394.1402, found 394.1391.

22) 2,3-bis(3-nitrophenyl)-4-phenylquinoline (3af)

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), 1,2-bis(3-nitrophenyl)ethyne (**2f**, 0.4 mmol, 107.2 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 60 mg (67%) of **3af** as yellow solid. m.p.: 189-190 °C; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.26$ (s, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.90-7.84 (m, 1H), 7.80-7.72 (m, 2H), 7.60-7.54 (m, 2H), 7.52-7.46 (m, 1H), 7.36-7.30 (m, 1H), 7.28-716 (m, 5H), 7.14-6.88 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 155.4$, 149.1, 147.9, 147.7, 147.6, 142.0, 139.7, 137.2, 135.9, 135.6, 130.7, 130.2, 129.8, 129.1, 128.9, 128.2, 127.8, 126.9, 126.7, 126.0, 125.2, 123.0, 122.1 ppm; IR (KBr): $v_{max} = 3436$, 3084, 2921, 1530, 1479, 1348, 1083, 765, 729, 701 cm⁻¹; HRMS m/z (ESI) calcd for C₂₇H₁₈N₃O₄ (M + H)⁺: 448.1292, found 448.1293.

23) dimethyl 4-phenylquinoline-2,3-dicarboxylate (3ag)⁴

3ag

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), dimethyl but-2ynedioate (**2g**, 0.4 mmol, 56.8 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 38 mg (59%) of **3ag** as white solid. m.p.: 124-126 °C; ¹H NMR (CDCl₃, 400 MHz): δ = 8.33 (d, *J* = 8.4 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.65-7.56 (m, 2H), 7.51-7.49 (m, 3H), 7.38-7.35 (m, 2H), 4.07 (s, 3H), 3.63 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 167.6, 165.5, 148.1, 147.1, 144.9, 134.5, 131.0, 130.6, 129.3, 129.2, 128.8, 128.2, 127.6, 127.2, 126.6, 53.4, 52.4 ppm; IR (KBr): v_{max} = 3436, 3051, 2951, 1731, 1726, 1560, 1443, 1312, 1250, 1234, 1205, 1129, 1050, 996, 865, 794, 769, 706, 606 cm⁻¹; MS (70 eV): m/z (%) 321.2 (M⁺, 100).

24) 2,4-diphenylquinoline (3ai)⁵

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), 1-ethynylbenzene (**2i**, 0.4 mmol, 40.8 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 32 mg (57%) of **3ai** as red liquid. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.16$ (d, J = 8.8 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.73 (s, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.48-7.34 (m, 10H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 156.9$, 149.2, 148.8, 139.7, 138.4, 130.1, 129.5, 129.5, 129.3, 128.8, 128.6, 128.4, 127.6, 126.3, 125.8, 125.6, 119.3 ppm; MS (70 eV): m/z (%) 280.1 (M⁺, 100).

25) Ethyl 2,4-diphenylquinoline-3-carboxylate (3aj)⁶

The reaction of 2-aminobenzophenone (**1a**, 0.2 mmol, 39.4 mg), ethyl 3-phenylpropiolate (**2j**, 0.4 mmol, 69.7 mg), PdBr₂ (2.7 mg, 0.01 mmol), PivOH (1.6 mmol), in DCE (0.8 mL) and benzenenitrile (0.8 mL) under **typical procedure** afforded 62 mg (88%) of **3aj** as white solid. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.26$ (d, J = 7.6 Hz, 1H), 7.82-7.44 (m, 3H), 7.63 (d, J = 8.2 Hz, 1H), 7.52-7.40 (m, 9H), 7.63 (q, J = 7.2 Hz, 2H), 0.81 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 168.1$, 156.0, 147.9 147.1, 140.3, 135.6, 130.5, 129.9, 129.5, 128.9, 128.6, 128.4, 128.2, 127.2, 127.0, 126.6, 125.6, 61.3, 13.4 ppm; IR (KBr): $v_{max} = 3436$, 3061, 2975, 1731, 1550, 1481, 1404, 1227, 1103, 775, 695 cm⁻¹; MS (70 eV): m/z (%) 353.0 (M⁺, 100).

References

- 1. B. Zhao, X. Lu, Tetrahedron Lett., 2006, 47, 6765.
- 2. T. Mitamura, A. Ogawa, J. Org. Chem., 2011, 76, 1163.
- 3. T. Meng, W.-X. Zhang, H.-J. Zhang, Y. Liang, Z. Xi, Synthesis, 2012, 44, 2754.
- 4. T. Chanda, M. Singh, R. Verma, Chem. Asian J., 2012, 7, 778.
- 5. R. Martínez, D. Ramón, M. Yus, J. Org. Chem., 2008, 73, 9778.
- 6. S. Cai, J. Zeng, Y. Bai, X.-W. Liu, J. Org. Chem., 2012, 77, 801.

Table S1. Crystal data and structure refinement for **3ka** (CCDC 993171).

Identification code	3
Empirical formula	C23 H19 N
Formula weight	309.39
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P n a 21
Unit cell dimensions	a = 13.6312(15) A alpha = 90 deg.
	b = 9.0492(10) A beta = 90 deg.
	c = 27.107(3) A gamma = 90 deg.
Volume	3343.6(6) A^3
Z, Calculated density	8, 1.229 Mg/m^3
Absorption coefficient	0.071 mm^-1
F(000)	1312
Crystal size	0.32 x 0.25 x 0.20 mm
Theta range for data collection	2.37 to 26.00 deg.
Limiting indices	-16<=h<=16, -11<=k<=11, -31<=l<=33
Reflections collected / unique	25483 / 6411 [R(int) = 0.0257]
Completeness to theta $= 26.00$	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9860 and 0.9777
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6411 / 1 / 436
Goodness-of-fit on F ²	1.016
Final R indices [I>2sigma(I)]	R1 = 0.0337, wR2 = 0.0949
R indices (all data)	R1 = 0.0402, wR2 = 0.0990
Absolute structure parameter	0(3)
Extinction coefficient	0.0064(6)
Largest diff. peak and hole	0.145 and -0.114 e.A^-3

NMR and HRMS Spectra of Those Compounds

Peking University Mass Spectrometry Sample Analysis Report

Peking University Mass Spectrometry Sample Analysis Report

Analysis Info Acquisition Date 13120379_20131224_000005.d 12/24/2013 11:29:20 AM Analysis Name Instrument Bruker Apex IV FTMS Sample С Comment Peking University ESI Positive Operator 13120379_20131224_000005.d: +MS Intens. x10⁸ 388.16902 5 OMe 3. Ph Ph 2 3ca 0 250 300 350 400 450 500 m/z m/z err [mDa] err [ppm] mSigma rdb e⁻ Conf N-Rule 6959 0.6 1.5 18.9 18.5 even ok I Formula Meas. m/z 388.16902 531339008 C 28 H 22 N O 388.16959

Peking University Mass Spectrometry Sample Analysis Report

Peking University Mass Spectrometry Sample Analysis Report

6.1

Peking University Mass Spectrometry Sample Analysis Report

`--

`--

1.07

Peking University Mass Spectrometry Sample Analysis Report

Peking University Mass Spectrometry Sample Analysis Report

Peking University Mass Spectrometry Sample Analysis Report

-0.001

