Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting information

1/ TEM experiments

Figure S1. Particle size distribution (volume averaged) determined from TEM measurements: 7nm-Co/silica (left) and 12nm-Co/silica (right) catalysts before treatment.

Figure S2. Particle size distribution (volume averaged) determined from TEM measurements: 7nm-Co/silica (left) and 12nm-Co/silica (right) catalysts after treatment.

2/ Quantification of crystalline phases

Before reduction, the catalyst was fully oxidized in the Co₃O₄ form.

During in situ reduction of the catalyst, crystalline changes were followed by XRD.

At 100 °C under hydrogen, Co_3O_4 was still the unique detected phase and the corresponding diffraction pattern was used as intern reference " $Co_3O_{4initial}$ ". The area $A_{65,2}$ of the diffraction peak at 65.2°20, typically assigned to Co_3O_4 , was used to quantify Co_3O_4 when it was not the only crystalline phase anymore (*Eq. 1*).

$$%Co_{3O4} = 100 \times \frac{A65.2}{ACo_{3O4} \text{ REF}}$$
 (Eq. 1)

Where $A_{65,2}$ and $A_{Co3O4 REF}$ are respectively the areas at 65.2°20 on the diffraction patterns of a mixture containing Co₃O₄ phase and of the Co₃O₄ reference.

Around 250°C under hydrogen, CoO was the unique detected phase and the corresponding diffraction pattern was used as intern reference "CoO _{REF}". The area $A_{61.6}$ of the diffraction peak at 61.6°2 θ was then used to quantify CoO (*Eq. 2*).

 $\%C_{0O} = 100 \times \frac{A61.6}{AC_{OO} \text{ REF}} \qquad (Eq. 2)$

Where $A_{61.6}$ and $A_{CoO REF}$ are respectively the areas at 61.6°20 on the diffraction patterns of a mixture containing CoO phase and of the CoO reference.

After reduction at 700 °C and cooling at 230 °C, when Co was the only detected phase (case for 12nm-Co/silica catalyst), the diffraction pattern was used as intern reference "Co REF". The area $A_{44.2}$ of the diffraction peak at 44.2°20 was then used to quantify Co, taking into account the contribution at 44.8°20 of Co₃O₄ if this latter was detected by its typical peak at 65.2°20 (*Eq. 3*).

%Co =
$$100 \times \frac{A44.2 - A65.2 \times \frac{19}{34}}{ACo \text{ REF}}$$
 (Eq. 3)

Where $A_{44.2}$ and $A_{Co REF}$ are respectively the areas at 44.2°20 on the diffraction patterns of a mixture containing Co phase and of the Co reference. The coefficient (19/34) was determined on diffraction patterns containing only Co₃O₄ as the ratio between the areas of the peak at 65.2°20 and that at 44.8°20.

When the catalyst was not fully reduced after the reduction step (case for 7nm-Co/silica catalyst), the proportion x% of CoO was determined according to equation 2 and the proportion of Co was then (100-x)% before treatment. Equation 3 was then replaced by equation 4.

Figure S3. XRD patterns of 12nm-Co/silica catalyst during reduction at 100°C (ref Co_3O_4 , blue), 250°C (ref CoO, red), after reduction at 700°C and cooling at 230°C (ref Co, black), and during steam treatment (mixture of Co, CoO and Co_3O_4 , orange)