Experimental Section

Supporting Information for the Paper entitled

Tin-Catalyzed Conversion of Biomass-Derived Triose Sugar and Formaldehyde to (\pm) - α -Hydroxy- γ -Butyrolactone

Sho Yamaguchi, Ken Motokura, Yasuharu Sakamoto, Akimitsu Miyaji, and Toshihide Baba*

Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-14 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

*Corresponding author; Email:tbaba@chemenv.titech.ac.jp

Table of Contents:

Section	Description	Page
A	General Techniques	S2
В	Typical Procesure of HBL (2)	S2
С	¹ H NMR chart of the reaction mixture (Table 1, entry 4)	S 3
D	¹ H NMR chart of the reaction mixture (Scheme 1)	S5
Е	The Optimization of the Reaction Consitions	S 7

A. General Techniques

Proton (¹H) nuclear magnetic resonance (NMR) spectrum was recorded in $CDCl_3$ or methanol-d₄ with an AVANCE 400 spectrometer operated at 400 MHz. A Shimadzu QP5000 equipped with DB-1 column was used for GC-MS analysis. Materials were purchased from Wako Pure Chemicals, Tokyo Kasei Co., Kanto Kagaku Co., and Aldrich Inc and were used without further purification.

The reaction products were identified by ¹H nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The conversion and product yields were determined by ¹H NMR analysis.

B, Typical Procesure of HBL (2)

(Table 1 entry 4): A 50 cm³ stainless-steel autoclave equipped with a magnetic bar was charged with 1,3-dihydroxyacetone (113 mg, 1.25 mmol), paraformaldehyde (39.4 mg, 1.31 mmol), 1,4-dioxane (4.0 mL), H₂O (1.11 mmol) and SnCl₄ (37.3 mg, 0.171 mmol) at room temperature, then filled with argon. After being stirred at 140 °C for 3 h under argon, reaction mixture was cooled down to room temperature, then 1,3,5-Trimethylbenzene (43.8 mg, 0.365 mmol) was used as an internal standard.

C, ¹H NMR chart of the reaction mixture (Table 1, entry 4)

D, ¹H NMR chart of the reaction mixture (Scheme 1)

E, The Optimization of the Reaction Consitions

Fig. S1 The effect of the amount of water on yields of HBL (2) and lactic acid (3). ■:HBL (2), ●:lactic acid (3). Reaction conditions: DHA (1) (1.25 mmol), paraformaldehyde (1.31 mmol), tin (IV) chloride (0.171 mmol), 1,4-dioxane (4.0 mL), Ar, 3 h, 140 °C. Using an internal standard technique. Yield was based on 1. The conversion of 1 was >99%.

Fig. S2 The effect of the amount of $SnCl_4$ on yields of HBL (2) and lactic acid (3). \blacksquare :HBL (2), \bullet :lactic acid (3). Reaction conditions: DHA (1) (1.25 mmol), paraformaldehyde (1.31 mmol), water (0.111 mmol), 1,4-dioxane (4.0 mL), Ar, 3 h, 140 °C. Using an internal standard technique. Yield was based on 1. The conversion of 1 was >99%.

Fig. S3 The effect of the reaction temperature on yields of HBL (2) and lactic acid (3). \blacksquare :HBL (2), \bullet :lactic acid (3). Reaction conditions: DHA (1) (1.25 mmol), paraformaldehyde (1.31 mmol), tin (IV) chloride (0.171 mmol), water (0.111 mmol), 1,4-dioxane (4.0 mL), Ar, 3 h. Using an internal standard technique. Yield was based on 1. The conversion of 1 was >99%.

Fig. S4 The effect of the reaction time on yields of HBL (2) and lactic acid (3). \blacksquare :HBL (2), \bullet :lactic acid (3). Reaction conditions: DHA (1) (1.25 mmol), paraformaldehyde (1.31 mmol), tin (IV) chloride (0.171 mmol), water (0.111 mmol), 1,4-dioxane (4.0 mL), Ar, 140 °C. Using an internal standard technique. Yield was based on 1. The conversion of 1 was >99%.