SUPPORTING INFORMATION

A Gold-Catalysed Fully Intermolecular Oxidation and

Sulfur-Ylide Formation Sequence on Ynamides

Mickaël Dos Santos and Paul W. Davies*

School of Chemistry, University of Birmingham

Edgbaston, Birmingham, B15 2TT, UK.

E-mail: p.w.davies@bham.ac.uk

General Experimental	2
Starting Materials	3
Formation of Ynamides	4
Study of Reaction Parameters	8
Products of the Catalysis Reaction	11
Crystal structure of 4eh	19
¹ H and ¹³ C NMR spectra of New Substrates	22
¹ H and ¹³ C NMR Spectra of Catalysis Products	26

General Experimental

All reactions were carried out under Ar in flame-dried glassware unless otherwise mentioned. The solvents used were purified using a Pure Solv-MD Solvent Purification System (alumina columns) from Innovative Technology and were transferred under Ar. Asynt DrySyn heating blocks on stirrer hotplates were employed with temperature control via external probe. Flash chromatography: Fluorochem silica gel 60 (43-63 µm). Thin layer chromatography (TLC): Macherey Nagel silica gel 60F₂₅₄ analytical plates (plastic support) which were developed using standard visualizing agents: UV fluorescence (254 and 366 nm), phosphomolybdic acid $/\Delta$, and potassium permanganate $/\Delta$. IR: Perkin-Elmer Spectrum 100 FTIR spectrometer, only selected absorbencies (u_{max}) are reported in cm⁻¹. MS and HRMS (EI): VG ProSpec or VG-ZabSpec at 70 eV. High resolution EI spectra were measured using perfluorokerosene (PFK) as an internal calibrant. MS and HRMS (ES): Micromass LCT using a methanol mobile phase. HRMS was obtained using a lock-mass to adjust the calibrated mass scale. MS data are reported as m/z (relative intensity). Commercially available compounds were purchased from Aldrich, Fluka, Acros, Strem, Alfa Aesar and used without further purification. NMR: Spectra were recorded on Bruker AVIII300 (¹H = 300 MHz, ¹³C = 75.5 MHz), Bruker AVIII400 (1 H = 400 MHz, 13 C = 101 MHz) in the solvents indicated; CDCl₃ was purchased from Aldrich (no TMS) and Cambridge Isotope Laboratory (0.05% v/v TMS); Chemical shifts (δ) are given in ppm relative to TMS. In the absence of TMS, solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ_{C} = 77.0 ppm; residual CHCl₃ in CDCl₃: $\delta_{\rm H} = 7.26$ ppm). Coupling constants (*J*) are reported in Hz. Multiplicity is denoted in ¹H NMR by: s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet). 1D ¹³C NMR spectra were recorded using the JMOD or PENDANT pulse sequences from the Bruker standard pulse program library. JMOD were combined with DEPT 135 to assign guaternary carbons.

Starting Materials

The following compounds were prepared following literature procedures:

N-Phenylmethanesulfonamide (A)

(51% yield).¹ Spectroscopic data were identical to those reported in literature.²

N-Phenyl-4-methylbenzenesulfonamide (B)

(97% yield).³ Spectroscopic data were identical to those reported in literature.²

N-Benzylmethanesulfonamide (C)

(88% yield).¹ Spectroscopic data were identical to those reported in literature.²

N-Benzyl-4-methylbenzenesulfonamide (D)

(83% yield).¹ Spectroscopic data were identical to those reported in literature.²

1-Ethynyl-4-fluorobenzene (E)

(44% yield over 2 steps).⁴ Spectroscopic data were identical to those reported in literature.⁵

Methyl-4-ethynylbenzoate (F)

(88% yield over 2 steps).⁶ Spectroscopic data were identical to those reported in literature.⁶

1-Ethynyl-4-methoxybenzene (G)

(96% yield over 2 steps).⁷ Spectroscopic data were identical to those reported in literature.⁷

(E)-But-1-en-3-yn-1-ylbenzene (H)

(34% yield over 2 steps).8 Spectroscopic data were identical to those reported in literature.9

Allyl(phenyl)sulfide (2a)

(Quant. yield).¹⁰ Spectroscopic data were identical to those reported in literature.¹¹

Allyl(p-tolyl)sulfide (2b)

(Quant. yield).¹⁰ Spectroscopic data were identical to those reported in literature.¹²

Allyl(p-bromophenyl)sulfide (2c)

(Quant. yield).¹⁰ Spectroscopic data were identical to those reported in literature.¹³

Allyl(benzyl)sulfide (2d)

(97% yield). Spectroscopic data were identical to those reported in literature.¹⁴

Allyl(*n*-butyl)sulfide (2e)

(76% yield).¹³ Spectroscopic data were identical to those reported in literature.¹⁵

Cinnamyl(phenyl)sulfide (2g)

(71% yield).¹³ Spectroscopic data were identical to those reported in literature.¹⁶

2-Vinyltetrahydrothiophene (2h)

(70% yield over 2 steps).¹⁷ Spectroscopic data were identical to those reported in literature.¹⁶

Methyl picolinate (I)

(97% yield).¹⁸ Spectroscopic data were identical to those reported in literature.¹⁹

2-(Methoxycarbonyl)pyridine-1-oxide (3)

(97% yield).²⁰ Spectroscopic data were identical to those reported in literature.²¹

(E)-N-Phenyl-N-tosylhex-2-enamide (6)

Spectroscopic data were identical to those reported in literature.²²

Formation of Ynamides

General procedure 1 (GP1)

Following the method of Stahl,²³ CuCl₂ (0.2 eq), amide (5 eq) and Na₂CO₃ (2 eq) were added to a flame-dried 500 mL three-necked round-bottomed flask. The flask was purged with oxygen for 15 min and a solution of freshly distillated pyridine (2 eq) in dry toluene (0.2 M) was added. A balloon filled with oxygen was connected to the flask and the stirred mixture was heated at 70 °C. After 15 min, a solution of alkyne (1.0 eq) in dry toluene (0.2 M) was added by syringe pump over 4 h. The mixture was allowed to stir at 70 °C for another 4 h and was then cooled to rt. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography to afford the desired product.

N-Phenyl-N-(phenylethynyl)methanesulfonamide (1a)

Ms Following **GP1** using amide **A** (855 mg, 5 mmol) and phenylacetylene N=Ph (0.11 mL, 1 mmol). After purification by flash chromatography [hexane:EtOAc (4:1)] *ynamide* **1a** was isolated as a white solid (238.5 mg, 88%). Spectroscopic data were identical to those reported in literature.²⁴

N-Methyl-N-(phenylethynyl)methanesulfonamide (1b)

Ms Following **GP1** using amide **A** (855 mg, 5 mmol) and phenylacetylene N=Ph (0.11 mL, 1 mmol). After purification by flash chromatography [hexane:EtOAc (4:1)] *ynamide* **1a** was isolated as a white solid (238.5 mg, 88%). Spectroscopic data were identical to those reported in literature.^{24,25}

N-Benzyl-N-phenylethynyl-methanesulfonamide (1c)

 $\begin{array}{l} \text{Ms} & \text{Following GP1 using amide C (1.9 g, 10 mmol) and phenylacetylene} \\ \text{Bn} & \text{O(22 mL, 2 mmol). After purification by flash chromatography} \\ \text{[hexane:EtOAc (4:1)] ynamide 1c was isolated as a white solid (291 mg, 51%).} \\ \text{Spectroscopic data were identical to those reported in literature.}^{24} \end{array}$

N-Benzyl-4-methyl-N-phenylethynyl-benzenesulfonamide (1d)

4-Methyl-N-phenyl-N-(phenylethynyl)benzenesulfonamide (1e)

Ts Following **GP1** using amide **B** (4.9 g, 20 mmol) and phenylacetylene (0.44 mL, 4 mmol). After purification by flash chromatography [hexane:EtOAc (4:1)] *ynamide* **1e** was isolated as a white solid (1.1 g, 82%). Spectroscopic data were identical to those reported in literature.²⁴

3-(Phenylethynyl)oxazolidin-2-one (1f)

N-((4-Methoxyphenyl)ethynyl)-4-methyl-N-phenylbenzenesulfonamide (1g)

Following **GP1** using amide **B** (1.8 g, 7.5mmol) and alkyne **G** (200.0 mg, 1.5 mmol). After purification by flash chromatography [hexane:EtOAc (9:1)] *ynamide* **1g** was isolated as a colourless solid (463.7 mg, 82%); mp: 100-102 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.62 (d, *J* = 8.3 Hz, 2H), 7.38-7.25 (m, 9H), 6.84 (d, *J* = 8.9 Hz, 2H), 3.81 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 159.8, 145.0, 139.3, 133.6 (2C), 133.2, 129.6 (2C), 129.2 (2C), 128.4 (2C), 128.2, 126.3 (2C), 114.7, 114.1 (2C), 81.7, 70.4, 55.4, 21.8; IR (neat): v = 3065, 2936, 2838, 2241, 1370, 1172; HR-MS (ES-TOF): *m/z*: calcd for C₂₂H₁₉NO₃NaS: 400.0983, found 400.0985 [*M*+*N*a].²⁶

Methyl 4-((4-methyl-N-phenylphenylsulfonamido)ethynyl)benzoate (1h)

Ph_N Tr

CO₂Me Following GP1 using amide B (2.96 g, 12.0 mmol) and alkyne F (384.3 mg, 2.4 mmol). After purification by flash chromatography [hexane:EtOAc (4:1)] *ynamide* 1h was isolated as a colourless

solid (418.0 mg, 43%); mp: 96-98 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.5 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.38-7.34 (m, 3H), 7.33-7.27 (m, 4H), 3.92 (s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 166.7, 145.4, 138.8, 133.2, 130.9 (2C), 129.8 (2C), 129.6 (2C), 129.4 (2C), 129.1, 128.6, 128.4 (2C), 127.8, 126.5 (2C), 86.3, 70.5, 52.3, 21.9; IR (neat): v = 3071, 2923, 2853, 2234, 1717, 1371, 1170; HR-MS (ES-TOF): *m/z*: calcd for C₂₃H₁₉NO₄NaS: 428.0932, found 428.0927 [*M*+*Na*].

N-((4-Fluorophenyl)ethynyl)-4-methyl-N-phenylbenzenesulfonamide (1i)

F Following **GP1** using amide **B** (547.4 g, 2.2 mmol) and alkyne **E** (53.2 mg, 0.44 mmol). After purification by flash chromatography [hexane:EtOAc (4:1)] *ynamide* **1i** was isolated as a colourless solid (58.5 mg, 18%); mp: 80-82 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.61 (d, *J* = 8.3 Hz, 2H), 7.41-7.27 (m, 9H), 7.00 (t, *J* = 8.8 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 162.7 (d,

J = 249.7 Hz, 1C), 145.3, 139.2, 133.9, 133.8, 133.4, 129.8 (2C), 129.4 (2C), 128.6 (3C), 126.5 (2C), 118.9, 115.8 (d, J = 22.1 Hz, 2C), 82.3, 69.7, 22.0; IR (neat): v = 3057, 2982, 2243, 1680, 1374, 1174; HR-MS (ES-TOF): m/z: calcd for C₂₁H₁₆NO₂NaSF: 388.0783, found 388.0776 [*M*+*Na*].

N-(Hex-1-ynyl)-N-phenylmethanesulfonamide (1j)

Ph_N_{Ms} Following **GP1** using amide **A** (855 mg, 5.0 mmol) and hexyne (0.11 mL, 1.0 mmol). After purification by flash chromatography [hexane:EtOAc (4:1)] *ynamide* **1j** was isolated as a colourless solid

(188.5 mg, 75%). Spectroscopic data were identical to those reported in literature.²²

(E)-4-methyl-N-phenyl-N-(4-phenylbut-3-en-1-ynyl)benzenesulfonamide (1k)

Following **GP1** using amide **B** (1.7 g, 7.0 mmol) and alkyne **H** (175.4 mg, 1.4 mmol). After purification by flash chromatography [hexane:EtOAc (4:1)] *ynamide* **1k** was isolated as a yellow solid

(386.3 mg, 75%); mp: 105-107 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.61 (d, *J* = 8.3 Hz, 2H), 7.42-7.25 (m, 12H), 6.86 (d, *J* = 16.2 Hz, 1H), 6.27 (d, *J* = 16.2 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 145.1, 140.1, 139.1, 136.5, 133.3, 129.7 (2C), 129.3 (2C), 128.9 (2C), 128.6, 128.4 (3C), 126.4 (2C), 126.3 (2C), 107.5, 85.1, 70.3, 21.8; IR (neat): v = 3067, 2970, 2847, 2249, 1607, 1368, 1172; HR-MS (ES-TOF): *m/z*: calcd for C₂₃H₁₉NO₂NaS: 396.1034, found 396.1043 [*M*+*Na*].

Study of Reaction Parameters

0	0 // N-=Ph //	∽ ^S ∖Ph	Oxidant Gold catalyst (5 mol%) Solvent, 23 °C		O V V		Ph 0	O O O N Ph SPh		
∽ S1 (1.0 eq.)			,	-	✓ 0S2			S3		
#	Catalyst (5 mol%)	Oxidant	Solvent	Sulfide	T ℃	Time	S2	S3	S1	
1	AuClPPh₃ AgOTf	+ N - O 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	22h	17%	10%	49%	
2	AuClPPh₃ AgSbF₀	+N - 0 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	22h	30%	28%	36%	
3	AuPPh ₃ NTf ₂	+N -0 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	22h	23%	24%	47%	
4	IPrAuCl AgOTf	+N -0 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	22h	25%	-	38%	
5	Cl ₂ Au—O	+N -0 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	24h	54%	-	-	
6	AuPPh ₃ NTf ₂	OMe + N - O 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	17h	27%	20%	36%	
7	AuPPh ₃ NTf ₂	+N -O 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	24h	18%	38%	41%	
8	AuPPh ₃ NTf ₂	+ N - O 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	24h	25%	36%	37%	
9	AuPPh ₃ NTf ₂	+N -0 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	24h	22%	39%	38%	
10	AuPPh ₃ NTf ₂	+ N Br - O 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	24h	29%	35%	33%	

11	AuPPh ₃ NTf ₂	OMe + N - O 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	24h	32%	14%	42%
12	AuPPh ₃ NTf ₂	+N -O 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	24h	29%	15%	55%
13	AuPPh ₃ NTf ₂	+ N - O 1.0 eq.	CH ₂ Cl ₂	1.0 eq.	23	24h	17%	24%	32%
14	AuPPh ₃ NTf ₂	+ N - O 1.0 eq.	THF	1.0 eq.	23	24h	30%	6%	46%
15	AuPPh ₃ NTf ₂	-0 OMe -0 0 1.0 eq.	PhCH₃	1.0 eq.	23	24h	24%	10%	53%
16	AuPPh ₃ NTf ₂	-0 OMe -0 0 1.0 eq.	CH₃CN	1.0 eq.	23	24h	31%	41%	25%
17	AuPPh ₃ NTf ₂	-0 OMe -0 0 1.0 eq.	CH ₃ NO ₂	1.0 eq.	23	24h	22%	40%	31%
18	AuPPh ₃ NTf ₂	-0 OMe -0 0 1.0 eq.	DCE	1.0 eq.	70	24h	27%	35%	29%
19	AuPPh ₃ NTf ₂	+N -0 1.0 eq.	CH ₂ Cl ₂	2 eq.	23	24h	18%	49%	24%
20	AuPPh ₃ NTf ₂	+ N - O 1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	23%	46%	28%

Ph		Gold (Oxidant O d catalyst (5 mol%) Ph				Ph	N N		
Ms	N — FII	Ph s	olvent, 23 °C	-	Ms	 O	Ν	⊿sPh SP	'n	
:	S4 (1.0 eq.)		S5				S6			
ц	Catalyst		Osharat	0	T 00	Time	05	00	04	
#	(5 mol%)	+ N - 0 0	Solvent	Sumde	1.0	Time	55	50	54	
21		1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	N/D	37%	33%	
22	^t Bu Bu ^t Bu 3	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	N/D	62%	12%	
23	AuPPh ₃ NTf ₂	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	N/D	53%	32%	
24	IPrAuNTf ₂	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	N/D	traces	54%	
25	OMeP(Cy) ₂ AuNT ₂	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	N/D	49%	31%	
26	F ₃ C PAuNTf ₂	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	N/D	53%	37%	
	0		Oxidant	(ö c)	0	0		
		S_Ph S	catalyst (5 mc solvent, 23 °C	^{⊳l%)} – Ó	N N	Ph		N Ph S	∼∕∕ Ph	
	S1 (1.0 eq.)				S2	2		S 3		
#	Catalyst (5 mol%)	+N -O O	Solvent	Sulfide	т∘с	Time	S2	S3	S1	
27	AuPPh ₃ NTf ₂	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	23%	44%	27%	
28	¹ Bu ¹ Bu ¹ Bu ¹ Bu ¹ Bu ¹ Bu	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	14%	20%	59%	
29		1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	17%	58%	24%	
30	OMeP(Cy) ₂ AuNTf ₂	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	23%	48%	26%	
31	F ₃ C	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	28%	19%	51%	
32	IPrAuNTf ₂	1.0 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	49%	-	50%	
33		1.2 eq.	CH ₂ Cl ₂	1.2 eq.	23	24h	22%	59%	16%	

Yields determined from ¹H NMR spectra against the addition of a known quantity of internal standard. Overlap of

resonances and co-elution prevented accurate calculation of $\boldsymbol{S5}$ yield.

Products of the Catalysis Reaction

General procedure 2 (GP2)

A solution of allyl sulfide **2** (1.2 eq) in CH_2CI_2 (0.1 M) was added to a mixture of gold catalyst (5 mol% unless indicated in the main paper) and the corresponding ynamide **1** (1.0 eq). Pyridine *N*-oxide **3** (1.3 eq) was then added and the reaction mixture was stirred at room temperature until complete consumption of the starting material was observed (monitored by TLC). The mixture was filtered through a pad of silica and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography.

N-(Methylsulfonyl)-N,2-diphenyl-2-(phenylthio)pent-4-enamide (4aa)

Following **GP2** using *ynamide* **1a** (54.2 mg, 0.2 mmol) and *allyl sulfide* **2a** Ph, N, S, Ph (36.0 mg, 0.24 mmol) for 2 h. After purification by chromatography Ms S, Ph [hexane:EtOAc (4:1)] thioether **4aa** was isolated as a colourless solid (62.4 mg, 71%); mp: 132-134 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.35-7.27 (m, 1H), 7.24-7.07 (m, 8H), 6.97 (t, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 7.2 Hz, 2H), 6.72 (d, *J* = 7.5 Hz, 2H), 5.80-5.99 (m, 1H), 5.14 (dd, *J* = 10.4, 1.6 Hz, 1H), 5.01 (dd, *J* = 17.2, 1.6 Hz, 1H), 3.50 (s, 3H), 2.61 (ddt, *J* = 15.8, 5.9, 1.7 Hz, 1H), 2.48 (ddd, *J* = 15.8, 7.1, 1.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 173.1, 138.8, 137.3 (2C), 133.5, 132.8, 132.0, 130.0, 129.7, 129.4, 128.8 (3C), 128.4 (2C), 128.0 (2C), 127.8, 127.2 (2C), 118.9, 66.2, 42.5, 39.4; IR (neat): v = 3059, 2927, 1681, 1355, 1158; HR-MS (ES-TOF): *m/z*: calcd for C₂₄H₂₃NO₃NaS₂: 460.1017, found 460.1021 [*M*+*N*a].

N-Methyl-2-phenyl-2-(phenylthio)-N-tosylpent-4-enamide (4ba)

Following **GP2** using *ynamide* **1b** (81.0 mg, 0.2 mmol) and *allyl sulfide* **2a** Me N_{H_s} (39.4 mg, 0.24 mmol) for 6 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4ba** was isolated as a colourless solid (57.3 mg, 76%); mp: 95-97 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.56-7.19$ (m, 10H), 5.72 (ddt, *J* = 17.2, 10.3, 6.9 Hz, 1H), 4.98 (dd, *J* = 10.3, 1.9 Hz, 1H), 4.80 (dd, *J* = 17.2, 1.9 Hz, 1H), 3.27 (s, 3H), 3.03 (s, 3H), 2.76 (d, *J* = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 172.3, 137.8, 137.2 (2C), 132.7, 130.3, 129.3 (2C), 129.2, 129.1 (2C), 128.2, 126.4 (2C), 119.2, 64.0, 44.2, 42.3, 34.1; IR (neat): v = 2947, 2869, 1700, 1679, 1360, 1168; HR-MS (ES-TOF): *m/z*: calcd for C₁₉H₂₁NO₃NaS₂: 398.0861, found 398.0870 [*M*+*Na*].

N-Benzyl-N-(methylsulfonyl)-2-phenyl-2-(phenylthio)pent-4-enamide (4ca)

Following **GP2** using *ynamide* **1c** (57.0 mg, 0.2 mmol) and *allyl sulfide* **2a** $Bn_{MS} \xrightarrow{S}_{Ph}$ [toluene:EtOAc (16:1)] thioether **4ca** was isolated as a colourless solid (52.6 mg, 58%); mp: 127-129 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.54-7.47 (m, 2H), 7.46-7.31 (m, 5H), 7.30-7.22 (m, 2H), 7.21-7.11 (m, 4H), 7.10-7.01 (m, 2H), 5.67 (ddt, *J* = 17.1, 10.3, 6.8 Hz, 1H), 4.96 (dd, *J* = 10.3, 1.9 Hz, 1H), 4.85 (d, *J* = 16.8 Hz, 1H), 4.75 (d, *J* = 17.1 Hz, 1H), 4.74 (d, *J* = 16.8 Hz, 1H), 3.19 (s, 3H), 2.85-2.69 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ = 173.8, 137.4, 136.8 (2C), 136.2, 132.4, 130.1, 129.5, 129.3 (2C), 129.0 (2C), 128.3, 128.2 (2C), 127.3, 127.1 (2C), 127.0 (2C), 119.2, 63.9, 51.0, 43.7, 43.2; IR (neat): v = 3055, 3037, 2985, 1677, 1339, 1159; HR-MS (ES-TOF): *m/z*: calcd for C₂₅H₂₅NO₃NaS₂: 474.1174, found 474.1165 [*M*+*Na*].

N-Benzyl-2-phenyl-2-(phenylthio)-N-tosylpent-4-enamide (4da)

Following **GP2** using *ynamide* **1d** (72.2 mg, 0.2 mmol) and *allyl sulfide* **2a** Bn N + Ts S Ph (36.0 mg, 0.24 mmol) for 5 h. After purification by chromatography [toluene:EtOAc (49:1)] thioether **4da** was isolated as a colourless solid (64.2 mg, 61%); mp: 134-136 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.76 (d, *J* = 8.4 Hz, 2H), 7.34-7.27 (m, 3H), 7.22-7.12 (m, 10H), 7.12-7.03 (m, 4H), 5.52 (ddt, *J* = 17.1, 10.3, 6.8 Hz, 1H), 5.00 (d, *J* = 17.1 Hz, 1H), 4.85 (dd, *J* = 10.3, 1.8 Hz, 1H), 4.72 (d, *J* = 17.1 Hz, 1H), 4.57 (dd, *J* = 17.1, 1.8 Hz, 1H), 2.59-2.44 (m, *2*H), 2.50 (s, 3H);¹³C NMR (101 MHz, CDCl₃): δ = 172.1, 144.7, 137.5, 136.7, 136.6 (2C), 136.5, 132.2, 129.8 (2C), 129.6 (2C), 129.3 (2C), 129.1 (2C), 129.0 (2C), 128.1, 128.0 (2C), 127.2 (2C), 127.0, 126.8 (2C), 118.9, 63.3, 52.0, 42.8, 21.8; IR (neat): v = 3060, 3025, 2926, 2847, 1679, 1354, 1167; HR-MS (ES-TOF): *m/z*: calcd for C₃₁H₂₉NO₃NaS₂: 550.1487, found 550.1480 [*M*+*Na*].

N,2-Diphenyl-2-(phenylthio)-N-tosylpent-4-enamide (4ea)

Following **GP2** using *ynamide* **1e** (69.4 mg, 0.2 mmol) and *allyl sulfide* **2a** Ph, $\stackrel{\mathsf{V}}{\mathsf{Ts}}$ $\stackrel{\mathsf{V}}{\mathsf{S}}$ Ph (36.0 mg, 0.24 mmol) for 2 h. After purification by chromatography (78.6 mg, 77%); mp: 137-139 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.98 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.29-7.22 (m, 2H), 7.21-7.13 (m, 2H), 7.10-6.94 (m, 9H), 6.78 (d, *J* = 7.5 Hz, 2H), 5.68-5.55 (m, 1H), 4.97 (d, *J* = 10.3 Hz, 1H), 4.83 (d, *J* = 17.1 Hz, 1H), 2.53 (s, 3H), 2.50 (dd, *J* = 15.8, 6.2 Hz, 1H), 2.37 (dd, *J* = 15.8, 6.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.3, 144.9, 138.8, 137.1 (2C), 136.6, 134.3, 132.6 (2C), 130.0 (3C), 129.5, 129.4 (3C), 129.2, 128.7 (2C), 128.4 (2C), 127.8 (2C), 127.6, 127.1 (2C), 118.6, 65.2, 40.1, 21.9; IR (neat): v = 2970, 2922, 2854, 1683, 1359, 1164; HR-MS (ES-TOF): *m/z*: calcd for C₃₀H₂₇NO₃NaS₂: 536.1330, found 536.1332 [*M*+*Na*].

3-(2-Phenyl-2-(phenylthio)pent-4-enoyl)oxazolidin-2-one (4fa)

Following **GP2** using *ynamide* **1f** (18.7 mg, 0.1 mmol) and *allyl sulfide* **2a** figure (30.0 mg, 0.2 mmol), and **Au-II** (7 mol%) for 24 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4fa** was isolated as a yellow oil (22.5 mg, 64%); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.39-7.21$ (m, 6H), 7.20-7.12 (m, 4H), 6.06-5.78 (m, 1H), 5.05 (d, J = 10.2 Hz, 1H), 4.94 (d, J = 17.1 Hz, 1H), 4.39-4.15 (m, 3H), 3.87-3.67 (m, 1H), 3.10 (dd, J = 14.9, 8.2 Hz, 1H), 2.74 (ddt, J = 14.9, 5.7, 1.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 171.0$, 151.5, 138.8, 137.6 (2C), 133.4, 130.1, 129.8, 128.9 (2C), 128.3 (2C), 127.6, 126.9 (2C), 118.8, 66.7, 62.1, 44.8, 40.0; IR (neat): v = 3065, 2923, 2850, 1787, 1678, 1383, 1180; HR-MS (ES-TOF): *m/z*: calcd for C₂₀H₁₉NO₃NaS: 376.0983 found 376.0989 [*M*+*Na*].

N,2-Diphenyl-2-(p-tolylthio)-N-tosylpent-4-enamide (4eb)

Following **GP2** using *ynamide* **1e** (69.4 mg, 0.2 mmol) and *allyl sulfide* **2b** (39.4 mg, 0.24 mmol) for 1 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4eb** was isolated as a colourless solid (78.4 mg, 74%); mp: 163-165 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.98

(d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.22-7.12 (m, 2H), 7.11-7.03 (m, 2H), 6.95 (br s, 2H), 6.90-6.84 (m, 5H), 6.78 (d, J = 7.4 Hz, 2H), 6.61 (br s, 1H), 5.60 (ddt, J = 17.1, 10.4, 6.5 Hz, 1H), 4.95 (dd, J = 10.4, 1.8 Hz, 1H), 4.82 (dd, J = 17.1, 1.8 Hz, 1H), 2.53 (s, 3H), 2.51 (dd, J = 15.8, 6.2 Hz, 1H), 2.37 (dd, J = 15.8, 6.8 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 171.3$, 144.8, 139.7, 138.8, 137.1 (2C), 136.6 (2C), 134.3, 132.7, 130.0 (2C), 129.5 (2C), 129.4 (2C), 129.1 (2C), 128.3 (2C), 127.7 (2C), 127.5, 127.1 (2C), 126.2, 118.5, 64.9, 40.2, 21.9, 21.4; IR (neat): v = 3066, 3022, 2979, 2927, 1683, 1359, 1164; HR-MS (ES-TOF): *m/z*: calcd for C₃₁H₂₉NO₃NaS₂: 550.1487, found 550.1479 [*M*+*Na*].

2-(4-Bromophenylthio)-N,2-diphenyl-N-tosylpent-4-enamide (4ec)

Following **GP2** using *ynamide* **1e** (69.4 mg, 0.2 mmol) and *allyl sulfide* **2c** (55.0 mg, 0.24 mmol) for 4 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4ec** was isolated as a colourless solid (66.4 mg, 56%); mp: 154-156 °C; ¹H NMR

(300 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.23-7.13 (m, 4H), 7.08 (app. t, *J* = 7.5 Hz, 2H), 6.99 (app. t, *J* = 7.8 Hz, 2H), 6.81-6.70 (m, 6H), 5.62 (ddt, *J* = 17.0, 10.4, 6.4 Hz, 1H), 5.01 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.88 (dd, *J* = 17.0, 1.6 Hz, 1H), 2.53 (s, 3H), 2.47 (dd, *J* = 15.9, 6.1 Hz, 1H), 2.36 (dd, *J* = 15.9, 6.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.0, 145.0, 138.6, 138.5 (2C), 136.4, 134.0, 132.3 (2C), 131.8 (2C), 129.9 (2C), 129.4 (2C), 129.3, 129.2, 128.4 (2C), 127.9 (2C), 127.8 (2C), 127.1 (2C), 124.3, 118.9, 65.8, 39.6, 21.9; IR (neat): v = 3061, 2923, 2853, 1681, 1359, 1164; HR-MS (ES-TOF): *m/z*: calcd for C₃₀H₂₆NO₃NaS₂Br: 614.0435, found 614.0427 [*M*+*N*a].

2-(Benzylthio)-N,2-diphenyl-N-tosylpent-4-enamide (4ed)

Following **GP2** using *ynamide* **1e** (69.4 mg, 0.2 mmol) and *allyl sulfide* **2d** Ph N_{Ts} S Ph (39.4 mg, 0.24 mmol) for 24 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4ed** was isolated as a colourless solid (57.4 mg, 55%); mp: 124-126 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.95 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 7.32-7.23 (m, 4H), 7.18-7.00 (m, 6H), 6.98-6.84 (m, 3H), 6.82 (dd, *J* = 8.2, 1.2 Hz, 2H), 5.49-5.22 (m, 1H), 4.89 (d, *J* = 16.6 Hz, 1H), 4.82 (dd, *J* = 10.7, 1.5 Hz, 1H), 3.55 (d, *J* = 11.1 Hz, 1H), 3.44 (d, *J* = 11.1 Hz, 1H), 3.03 (dd, *J* = 15.3, 7.7 Hz, 1H), 2.77 (dd, *J* = 15.3, 5.9 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.6, 144.9, 138.3, 136.8, 136.3, 134.5, 132.5 (3C), 129.8 (2C), 129.6 (2C), 129.5 (2C), 129.1, 128.8 (2C), 128.5 (2C), 127.8 (2C), 127.6, 127.5, 126.9 (2C), 118.4, 62.7, 42.1, 33.8, 21.9; IR (neat): v = 3063, 3028, 2920, 1677, 1359, 1164; HR-MS (ES-TOF): *m/z*: calcd for C₃₁H₂₉NO₃NaS₂: 550.1487, found 550.1488 [*M*+*Na*].

2-(Butylthio)-N,2-diphenyl-N-tosylpent-4-enamide (4ee)

Following **GP2** using *ynamide* **1e** (69.4 mg, 0.2 mmol) and *allyl sulfide* **2e** (31.3 mg, 0.24 mmol) for 4.5 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4ee** was isolated as a yellow oil (60.1 mg, 61%); ¹H NMR (300 MHz, CDCl₃): δ = 7.94 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.42-7.17 (m, 5H), 6.97 (br s, 3H), 6.83 (dd, *J* = 8.2, 1.4 Hz, 2H), 5.43-5.21 (m, 1H), 4.85 (d, *J* = 15.9 Hz, 1H), 4.84 (dd, *J* = 11.9, 1.8 Hz, 1H), 2.95 (dd, *J* = 15.3, 7.5 Hz, 1H), 2.74 (dd, *J* = 15.3, 6.1 Hz, 1H), 2.49 (s, 3H), 2.33 (dt, *J* = 11.0, 7.3 Hz, 1H), 2.22 (dt, *J* = 11.0, 7.3 Hz, 1H), 1.53-1.41 (m, 2H), 1.36-1.24 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.7, 138.4, 136.8, 134.4, 132.6, 132.4 (3C), 129.7 (2C), 129.3 (2C), 128.9, 128.3 (2C), 127.6 (2C), 127.3, 126.8 (2C), 118.1, 61.4, 42.2, 30.6, 28.2, 22.4, 21.8, 13.8; IR (neat): v = 3069, 2958, 2930, 2872, 1678, 1360, 1165; HR-MS (ES-TOF): *m/z*: calcd for C₂₈H₃₁NO₃NaS₂: 516.1643, found 516.1635 [*M*+*Na*].

2-(Allylthio)-N,2-diphenyl-N-tosylpent-4-enamide (4ef)

Following **GP2** using *ynamide* **1e** (69.4 mg, 0.2 mmol) and *allyl* sulfide **2f** (27.4 mg, 0.24 mmol) for 6 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4ef** was isolated as a yellow oil (64.8 mg, 68%); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.92$ (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.21-7.01 (m, 5H), 7.01-6.87 (m, 3H), 6.81 (dd, J = 8.2, 1.2 Hz, 2H), 5.66 (ddt, J = 17.0, 9.9, 7.1 Hz, 1H), 5.45-5.27 (m, 1H), 5.10 (dd, J = 17.0, 1.3 Hz, 1H), 5.03 (d, J = 9.9 Hz, 1H), 4.85-4.81 (m, 2H), 2.98 (dd, J = 12.1, 7.2 Hz, 1H), 2.92 (dd, J = 15.3, 7.5 Hz, 1H), 2.89 (dd, J = 12.1, 7.5 Hz, 1H), 2.75 (dd, J = 15.3, 6.1 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 171.6$, 144.8, 138.2, 136.6, 134.3, 132.7, 132.4 (3C), 129.6 (2C), 129.3 (2C), 129.0, 128.4 (2C), 127.7 (2C), 127.4, 126.8 (2C), 118.6, 118.3, 62.2, 42.0, 32.1, 21.8; IR (neat): v = 3070, 2924, 2860, 1678, 1359, 1164; HR-MS (ES-TOF): *m/z*: calcd for C₂₇H₂₇NO₃NaS₂: 500.1330, found 500.1327 [*M*+*Na*].

Methyl-4-(1-(4-methyl-N-phenylphenylsulfonamido)-1-oxo-2-(p-tolylthio)pent-4en-2-yl)benzoate (4hb)

Following **GP2** using *ynamide* **1h** (81.0 mg, 0.2 mmol) and *allyl sulfide* **2b** (39.4 mg, 0.24 mmol) for 9 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4hb** was isolated as a colourless solid (70.8 mg, 61%); mp: 193-195 °C;

¹H NMR (300 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.08-6.92 (m, 3H), 6.91-6.79 (m, 7H), 5.61 (ddt, *J* = 17.1, 10.4, 6.5 Hz, 1H), 4.96 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.83 (dd, *J* = 17.1, 1.6 Hz, 1H), 3.94 (s, 3H), 2.53 (s, 3H), 2.48 (dd, *J* = 15.8, 6.6 Hz, 1H), 2.39 (dd, *J* = 15.8, 6.6 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.6, 166.7, 145.0, 144.1, 140,1, 137.1 (2C), 136.4, 134.0, 132.7 (2C), 132.2, 130.0 (2C), 129.7 (2C), 129.5 (2C), 129.4 (3C), 129.1, 127.9 (2C), 127.2 (2C), 125.8, 118.0, 65.0, 52.4, 40.0, 21.9, 21.4; IR (neat): v = 3075, 2985, 127.9 (2C), 127.2 (2C), 125.8, 118.0, 65.0, 52.4, 40.0, 21.9, 21.4; IR (neat): v = 3075, 2985, 128.0 (2C), 129.1, 129.1, 127.9 (2C), 127.2 (2C), 125.8, 118.0, 65.0, 52.4, 40.0, 21.9, 21.4; IR (neat): v = 3075, 2985, 127.9 (2C), 127.2 (2C), 125.8, 118.0, 65.0, 52.4, 40.0, 21.9, 21.4; IR (neat): v = 3075, 2985, 127.9 (2C), 127.2 (2C), 125.8, 118.0, 65.0, 52.4, 40.0, 21.9, 21.4; IR (neat): v = 3075, 2985, 127.9 (2C), 127.2 (2C), 125.8, 118.0, 65.0, 52.4, 40.0, 21.9, 21.4; IR (neat): v = 3075, 2985, 127.9 (2C), 127.2 (2C), 125.8, 118.0, 65.0, 52.4, 40.0, 21.9, 21.4; IR (neat): v = 3075, 2985, 127.9 (2C), 127.9 (2C), 127.9 (2C), 125.8, 118.0, 65.0, 52.4, 40.0, 21.9, 21.4; IR (neat): v = 3075, 2985, 127.9 (2C), 127.9 (2C), 127.9 (2C), 127.9 (2C), 129.4 (3C), 129.7 (2C), 129.4 (3C), 129.4 (3C), 129.4 (3C), 129.1 (3C), 129.9 (3C), 129.1 (

2953, 1720, 1684, 1361, 1164; HR-MS (ES-TOF): *m*/*z*: calcd for C₃₃H₃₁NO₅NaS₂: 608.1541, found 608.1543 [*M*+*Na*].

2-(4-Fluorophenyl)-N-phenyl-2-(p-tolylthio)-N-tosylpent-4-enamide (4ib)

Ph.N.Ts S

Following **GP2** using *ynamide* **1i** (47.0 mg, 0.13 mmol) and *allyl sulfide* **2b** (25.3 mg, 0.15 mmol) for 9 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4ib** was isolated as a colourless solid (40.4 mg, 57%); mp: 174-176 °C; ¹H NMR

(300 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.05 (brd, 2H), 7.00-6.73 (m, 10H), 5.60 (ddt, *J* = 17.1, 10.4, 6.5 Hz, 1H), 4.96 (dd, *J* = 10.4, 1.7 Hz, 1H), 4.83 (dd, *J* = 17.1, 1.7 Hz, 1H), 2.53 (s, 3H), 2.46 (dd, *J* = 15.7, 6.3 Hz, 1H), 2.36 (dd, *J* = 15.7, 6.7 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 171.1, 162.1 (d, *J* = 248.0 Hz, 1C), 144.9, 139.9, 137.1 (2C), 136.5, 134.8, 134.4, 132.4 (2C), 130.0 (2C), 129.6 (2C), 129.4 (2C), 129.3, 129.2, 128.8 (d, *J* = 8.1 Hz, 2C), 127.9 (2C), 126.1, 118.8, 115.2 (d, *J* = 21.5 Hz, 2C), 64.4, 40.2, 21.9, 21.4; ¹⁹F-NMR (282 MHz, CDCl₃): δ = -114.3 (ddd, *J* = 13.6, 7.6, 6.6 Hz, 1F); IR (neat): v = 3072, 2985, 2927, 1683, 1360, 1165; HR-MS (ES-TOF): *m/z*: calcd for C₃₁H₂₈NO₃NaS₂F: 568.1392, found 568.1378 [*M*+*Na*].

(E)-N-Phenyl-2-(phenylthio)-2-styryl-N-tosylpent-4-enamide (4ka)

Following **GP2** using *ynamide* **1k** (74.6 mg, 0.2 mmol) and *allyl sulfide* Ph, r_{s} , r_{s} , r_{ph} **2a** (36.0 mg, 0.24 mmol) for 3 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4ka** was isolated as a colourless solid (56.7 mg, 53%); mp: 129-131 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.95 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.34-7.27 (m, 3H), 7.25-7.19 (m, 3H), 7.19-7.10 (m, 7H), 6.97 (dd, *J* = 7.4, 2.0 Hz, 2H), 5.85 (d, *J* = 16.2 Hz, 1H), 5.80-5.73 (m, 1H), 5.69 (d, *J* = 16.2 Hz, 1H), 5.06 (dd, *J* = 10.4, 1.4 Hz, 1H), 4.96 (dd, *J* = 17.2, 1.5 Hz, 1H), 2.51 (s, 3H), 2.47 (dd, *J* = 15.2, 6.0 Hz, 1H), 2.30 (dd, *J* = 15.2, 7.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.4, 144.9, 137.7 (2C), 136.3, 136.2, 135.2, 133.0, 132.6 (2C), 130.3, 130.1 (2C), 129.9, 129.8, 129.7, 129.4 (2C), 128.7 (2C), 128.5 (2C), 128.4 (2C), 127.9, 127.3, 126.6 (2C),118.9, 62.3, 40.5, 21.9; IR (neat): v = 3059, 2923, 2852, 1686, 1362, 1166; HR-MS (ES-TOF): *m/z*. calcd for C₃₂H₂₉NO₃NaS₂: 562.1487, found 562.1481 [*M*+*Na*].

(Z)-N,2-Diphenyl-N-tosyl-3,6,7,8-tetrahydro-2H-thiocine-2-carboxamide (4eg)

Ph_N Ts S

Following **GP2** using *ynamide* **1e** (69.4 mg, 0.2 mmol) and *allyl sulfide* **2g** (27.4 mg, 0.24 mmol) for 8 h. After purification by chromatography [hexane:EtOAc (17:3)] product **4eg** was isolated as a colourless solid

(69.5 mg, 65%); mp: 174-176 °C; ¹H NMR (300 MHz, CDCl₃): δ =7.88 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.20-7.06 (m, 2H), 6.92-6.87 (m, 5H), 6.71 (br s, 1H), 5.73 (dd, *J* = 18.4, 8.2 Hz, 1H), 5.52-5.42 (br s, 1H), 3.17 (br s, 1H), 2.72 (br s, 3H), 2.47 (s, 3H), 2.22 (br s, 2H), 1.86 (br s, 1H), 1.59 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 172.4, 144.5, 138.8, 136.6, 134.7, 132.9, 132.4 (2C), 124.4 (2C), 129.3 (2C), 128.9, 128.4 (2C), 127.6 (2C), 127.5, 126.8 (2C), 126.5, 63.9, 38.9, 30.9, 29.5, 25.8, 21.8; IR (neat): v = 2923, 2853, 1677, 1360, 1164; HR-MS (ES-TOF): *m/z*: calcd for C₂₇H₂₇NO₃NaS₂: 500.1330, found 500.1335 [*M*+*N*a].

N,2,3-Triphenyl-2-(phenylthio)-N-tosylpent-4-enamide (4eh)

Following **GP2** using *ynamide* **1e** (69.4 mg, 0.2 mmol) and *allyl sulfide* **2h** (54.2 mg, 0.24 mmol) for 24 h. After purification by chromatography [hexane:EtOAc (17:3)] thioether **4eh** was isolated as a colourless solid (70.7 mg, 60%) and a 10.1:1 mixture of two diastereoisomers; mp: 170-172 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.01 (d, *J* = 8.3 Hz, 2H), 7.62-7.32 (m, 4H), 7.31-7.14 (m, 6H), 7.13-6.99 (m, 5H), 6.95 (t, *J* = 7.4 Hz, 2H), 6.84-6.52 (m, 5H), 5.93 (dt, *J* = 17.1, 9.9 Hz, 1H), 4.99 (d, *J* = 10.3 Hz, 1H), 4.60 (d, *J* = 17.1 Hz, 1H), 4.15 (d, *J* = 9.4 Hz, 1H), 2.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.1, 144.6, 141.3, 137.2, 136.8, 136.1 (2C), 134.7, 133.6, 133.4 (2C), 132.0 (2C), 130.2 (3C), 130.0, 129.4, 129.2 (2C), 128.7 (4C), 128.2, 127.2 (4C), 126.8 (2C), 126.3, 117.2, 66.1, 53.7, 21.9; IR (neat): v = 3060, 3034, 2964, 2925, 2853,

1686, 1360, 1162; HR-MS (ES-TOF): *m/z*. calcd for C₃₆H₃₁NO₃NaS₂: 612.1643, found 612.1632 [*M*+*Na*].

2-(4-Methoxyphenyl)-2-oxo-N-phenyl-N-tosylacetamide (5)

Following **GP2** using *ynamide* **1g** (75.4 mg, 0.2 mmol) and *allyl* sulfide **1b** (39.4 mg, 0.24 mmol) for 24 h. After purification by chromatography [hexane:EtOAc (17:3)] keto imide **5** was isolated as a colourless solid (44.2 mg, 54%); mp: 148-150 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.88 (d, *J* = 8.9 Hz, 2H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.49-7.29 (m, 5H), 7.13 (d, *J* = 6.8 Hz, 2H), 6.98 (d, *J* = 8.9 Hz, 2H), 3.89 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): 186.5, 167.1, 165.0, 146.0, 134.6, 133.9, 132.3 (2C), 130.9 (2C), 130.4, 130.0 (2C), 129.6 (2C), 129.3 (2C), 126.0, 114.6 (2C), 55.9, 22.0; IR (neat): v = 3980, 2945, 2845, 1692, 1669, 1368, 1169; HR-MS (ES-TOF): *m/z*: calcd for C₂₂H₁₉NO₅NaS: 432.0882, found 432.0879 [*M*+*Na*].

Crystal structure of 4eh

Crystal Data for 4eh: $C_{36}H_{31}NO_3S_2$, M = 589.74, Monoclinic, a = 16.0175(3), b = 9.6290(2), c = 19.5279(5) Å, $\beta = 98.570(1)$, U = 2978.2(1) Å³, T = 120(2) K, space group $P2_1/c$, Z = 4, 34108 reflections measured, 6813 unique ($R_{int} = 0.0607$) which were used in all calculations. The final *R*1 was 0.0458 ($l > 2\sigma(l)$) and $wR(F_2)$ was 0.1150 (all data).

The dataset was measured on a Bruker KappaCCD diffractometer at the window of a Bruker FR591 rotating anode ($\lambda_{Mo-K\alpha} = 0.71073$ Å). The data collection was driven by COLLECT²⁷ and processed by DENZO.²⁸ An absorption correction was applied using SADABS.²⁹ The structure was solved using ShelXS-97³⁰ and refined by a full-matrix least-squares procedure on F² in ShelXL-97.³⁰ All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on the equivalent isotropic displacement parameter (U_{eq}) of the parent atom. Figures were produced using OLEX2.³¹ The CIF has been deposited with the CCDC and has been given the deposition number 984457.

Figure S1 Alternative views of the crystal structure of MDS_242 with ellipsoids drawn at the 50% probability level.

¹ R. J. Sundberg, J. P. Laurino, *J. Org. Chem.*, 1984, **49**, 249.

² R. Sridhar, B. Srinivas, V. Pavan Kumar, M. Narender, K. Rama Rao, *Adv. Synth. Catal.*, 2007, **349**, 1873.

³ Á. González-Gómez, G. Domínguez, J. Pérez-Castells, *Eur. J. Org. Chem.*, 2009, **29**, 5057.

⁴ K. L. Stevens, D. K. Jung, M. J. Alberti, J. G. Badiang, G. E. Peckham, J. M. Veal, M. Cheung, P. A.

Harris, S. D. Chamberlain, M. R. Peel, Org. Lett., 2005, 7, 4753.

⁵ E.-I. Negishi, M. Kotora, C. Xu, *J. Org. Chem.*, 1997, **62**, 8957.

⁶ G. Zanotti, N. Angelini, A. M. Paoletti, G. Pennesi, G. Rossi, A. A. Bonapasta, G. Mattioli, A. Di Carlo,

T. M. Brown, A. Lembo, A. Reale, *Dalton Trans.*, 2011, 40, 38.

⁷ H.-K. Chang, Y.-C. Liao, R.-S. Liu, *J. Org. Chem.*, 2007, **72**, 8139.

⁸ W. H. Moser, L. A. Feltes, L. Sun, M. W. Giese, R. W. Farrell, *J. Org. Chem.*, 2006, **71**, 6542.

⁹ J. J. Newby, C.-P. Liu, C. W. Muller, W. H. James III, E. G. Buchanan, H. D. Lee, T. S. Zwier, *J. Phys. Chem. A*, 2010, **114**, 3190.

- ¹⁰ N. Ono, T. Miyake, A. Kaji, *Synthesis*, 1980, 952.
- ¹¹ M. Piffl, J. Weston, W. Günter, *J. Org. Chem.*, 2000, **65**, 5942.
- ¹² X. Rathgeb, S. March, A. Alexakis, *J. Org. Chem.*, 2006, **71**, 5737.
- ¹³ P. W. Davies, S. J.-C. Albrecht, *Chem. Commun.*, 2008, 238.
- ¹⁴ Y. A. Lin, J. M. Chalker, N. Floyd, G. J. L. Bernardes, B. G. Davis, *J. Am. Chem. Soc.*, 2008, **130**, 9642.
- ¹⁵ W. E. Parham, S. H. Groen, *J. Org. Chem.*, 1964, **29**, 2214.
- ¹⁶ D. Crich, V. Krishnamurthy, F. Brebion, M. Karatholuvhu, V. Subramanian, T. K. Hutton, *J. Am. Chem. Soc.*, 2007, **129**, 10282.
- ¹⁷ E. Vedejs, J. P. Hagen, B. L. Roach, K. L. Spear, *J. Org. Chem.*, 1978, **43**, 1185.
- ¹⁸ N. M. Silva, J. L. M. Tributino, A. L. P. Miranda, E. J. Barreiro, C. A. M. Fraga, *Eur. J. Med. Chem.,* 2002, **37**, 163.
- ¹⁹ V. Mamane, E. Aubert, Y. Fort, *J. Org. Chem.*, 2007, **72**, 7294.
- ²⁰ J. Yin, B. Xiang, M. A. Huffman, C. E. Raab, I. W. Davies, *J. Org. Chem.*, 2007, **72**, 4554.
- ²¹ C. Coperet, H. Adolfsson, T.-A. V. Khuong, A. K. Yudin, K. B. Sharpless, *J. Org. Chem.*, 1998, **63**, 1740.
- ²² P. W. Davies, A. Cremonesi, N. Martin, *Chem. Commun.*, 2011, **47**, 379.
- ²³ T. Hamada, X. Ye, S. Stahl, *J. Am. Chem. Soc.*, 2008, **130**, 833.
- ²⁴ P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. Int. Ed., 2011, **50**, 8931.
- ²⁵ J. S, Reddy, E. V. Bharathi, D. Dastagiri, A. Kamal, *Tetrahedron Lett.*, 2008, **49**, 348.
- ²⁶ M. F. Martínez-Esperón, D. Rodríguez, L. Castedo, Carlos Saá, *Tetrahedron*, 2006, **62**, 3842.
- ²⁷ R. W. W. Hooft, COLLECT, Data Collection Software, Nonius B. V. (Delft), 1998.
- ²⁸ Z. Otwinowski and W. Minor, in *Methods in Enzymology*, ed. C. W. Carter and R. M. Sweet, Academic Press, New York, 1997, vol. 276, pp. 307-326.
- ²⁹ G. M. Sheldrick, 2007, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- ³⁰ G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112.
- ³¹ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, R. J., J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339.

¹H and ¹³C NMR Spectra of New Substrates

Compound 1g

Compound 1h

Compound 1i

Compound 1k

¹H and ¹³C NMR Spectra of Catalysis Products

Compound 4da

Compound 4ea

Compound 4fa

Compound 4eb

Compound 4ec

Compound 4ed

Compound 4hb

Compound 4ib

Compound 4ka

Compound 4eg

Compound 5

