# **Supporting Information**

# A Highly stable Metal- and Nitrogen-doped Nanocomposite derived from Zn/Ni-ZIF-8 with CO<sub>2</sub> capture and separation

Rui Li,<sup>[a]</sup> Xiaoqian Ren,<sup>[a]</sup> Xiao Feng,<sup>[a]</sup> Xingguo Li,<sup>[b]</sup> Changwen Hu,\*,<sup>[a]</sup> and Bo Wang\*,<sup>[a]</sup>

<sup>a</sup>Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing

Institute of Technology, P.R. China

<sup>b</sup>College of Chemistry and Molecular Engineering, Peking University, P.R. China

## **Table of Contents**

| S-1. Synthetic materials and measurements                   | S2  |
|-------------------------------------------------------------|-----|
| Materials                                                   | S2  |
| Measurements                                                | S2  |
| S-2. Synthetic methods                                      | S2  |
| S-3. The powder X-ray diffraction (PXRD) patterns of sample | S3  |
| S-4. Raman spectrum of sample                               |     |
| S-5. EDX spectra of sample                                  | S4  |
| S-6. X-ray photoelectron spectroscopy (XPS) of sample       | S4  |
| S-7. Gas adsorption analyses                                | S5  |
| S-8. Gas selectivity analyses                               |     |
| The isosteric heats of adsorption                           | S9  |
| The calculation of initial slope                            | S10 |
| IAST analyses                                               | S11 |
| S-9. Elemental analyses                                     |     |

#### S-1. Synthetic materials and measurements.

#### Materials.

All chemicals were obtained commercially and used without additional purification. Zinc nitrate hexahydrate  $(Zn(NO_3)_2 \bullet 6H_2O)$ , nickel nitrate hexahydrate  $(Ni(NO_3)_2 \bullet 6H_2O)$ , and methanol (MeOH) were obtained from Sinopharm Chemical Reagent Co., Ltd, 2-methylimidazole (HMeIM) was purchased from J&K Scientific Company.

#### Measurements.

Powder X-ray diffraction (PXRD) patterns of the samples were analyzed with monochromatized Cu-K $\alpha$  ( $\lambda = 1.54178$  Å) incident radiation by Bruker D8 Advance X-ray diffractometer operating at 40 kV voltage and 50 mA current. PXRD patterns were recorded from 5° to 80° ( $2\theta$ ) at 298 K. The morphology and size of as-obtained products were investigated using transmission electron microscope (TEM, JEM-2010). Raman spectra were recorded on an Invia Raman spectrometer, with an excitation laser wavelength of 514.5 nm. Elemental analyses (C, H, and N) were conducted on Perkin-Elmer 2400 CHN elemental analyzer, Zn and Ni were determined by a JY-ULTIMA2 ICP atomic emission spectrometer. The N<sub>2</sub>, CO<sub>2</sub>, and CH<sub>4</sub> adsorption isotherms were measured using a Quantachrome automatic volumetric gas adsorption analyzer. The samples were degassed at 60 °C for 4 h and 200 °C for 7 h prior to analysis (increasing rate: 10 °C•min<sup>-1</sup>, outgas rate: 50 mbar•min<sup>-1</sup>).

#### S-2. Synthetic methods.

Violet sample Zn/Ni-ZIF-8 was synthesized by stirring the mixtures of  $Zn(NO_3)_2 \cdot 6H_2O$  (0.988 mmol), Ni(NO<sub>3</sub>)<sub>2</sub>  $\cdot 6H_2O$  (0.988 mmol), and HMeIM (15.808 mmol) in methanol (60 mL) for 24 hours. After washed with methanol (30 mL) for three times, violet powders were obtained. ZIF-8 was synthesized according the literature.<sup>1</sup>

The pyrolysis procedures of Zn/Ni-ZIF-8 were conducted in a horizontal quartz reactor under an N<sub>2</sub> flowing atmosphere at 1000 °C for 1 hour with the heating rate of 5 °C • min<sup>-1</sup> to afford the composite, the yield is 32.5%. The calcination procedures of ZIF-8 were conducted under the same conditions, the yield is 40%.

## S-3. The powder X-ray diffraction (PXRD) patterns of samples.



Figure S1. PXRD patterns of Zn/Ni-ZIF-8.



Figure S2. PXRD patterns of Zn/Ni-ZIF-8-1000 and after soaked in  $H_2O$  at 100 °C for 24 h.

### S-4. Raman spectrum of sample.



**Figure S3.** Raman spectrum of Zn/Ni-ZIF-8-1000 shows two broad peaks located at s3

1351 and 1600 cm<sup>-1</sup>. The ratio of peak intensity  $(I_D/I_G)$  is 0.976.





**Figure S4.** EDX plots of a) Zn/Ni-ZIF-8 and b) Zn/Ni-ZIF-8-1000. The inserts are the measure photos.

## S-6. X-ray photoelectron spectroscopy (XPS) of sample.



Figure. S5 X-ray photoelectron spectra (XPS) of the N 1s for Zn/Ni-ZIF-8-1000.



Figure. S6 X-ray photoelectron spectra (XPS) of the Zn/Ni-ZIF-8-1000: a) Ni 2p 2/3 s4

and b) Zn 2p 2/3 and 2p 1/2.

# S-7. N<sub>2</sub> adsorption analyses.



**Figure S7.** Langmuir equation fitting curve for Zn/Ni-ZIF-8-1000 N<sub>2</sub> isotherm (adsorption branch data points,  $P/P_0 = 0.05-0.30$ ). Surface area 750 m<sup>2</sup>•g<sup>-1</sup>, linearity 0.9973.



**Figure S8.** Langmuir equation fitting curve for Zn/Ni-ZIF-8 N<sub>2</sub> isotherm (adsorption branch data points,  $P/P_0 = 0.05-0.30$ ). Surface area 1700 m<sup>2</sup>•g<sup>-1</sup>, linearity 0.9937.



Figure S9. Pore size distributions (DFT) for Zn/Ni-ZIF-8-1000.



Figure S10. The nitrogen  $(N_2)$  adsorption/desorption isotherms of ZIF-8 (black) and ZIF-8-1000 (red) at 77 K.



**Figure S11.** Langmuir equation fitting curve for Zn/Ni-ZIF-8-1000 N<sub>2</sub> isotherm (adsorption branch data points,  $P/P_0 = 0.05-0.30$ ). Surface area 1260 m<sup>2</sup>•g<sup>-1</sup>, linearity 0.9959.



Figure S12. Langmuir equation fitting curve for Zn/Ni-ZIF-8 N<sub>2</sub> isotherm (adsorption

branch data points,  $P/P_0 = 0.05-0.30$ ). Surface area 1690 m<sup>2</sup>•g<sup>-1</sup>, linearity 0.9934.



Figure S13. Pore size distributions (DFT) for ZIF-8-1000.



**Figure S 14.** The comparison of  $CO_2$  adsorption isotherms collected at 298 K for Zn/Ni-ZIF-8-1000 (Black) and Zn/Ni-ZIF-8 (red).

| Table S1. The comparison of $CO_2$ uptake for for Zn/Ni-ZIF-8-1000 and ZIF-8-1000. |                                               |                         |                         |  |
|------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|-------------------------|--|
|                                                                                    | CO <sub>2</sub> uptake CO <sub>2</sub> uptake |                         | CO <sub>2</sub> uptake  |  |
|                                                                                    | $(cm^{3} \cdot g^{-1})$                       | $(cm^{3} \cdot g^{-1})$ | $(cm^{3} \cdot g^{-1})$ |  |
|                                                                                    | 273 K                                         | 298 K                   | 313 K                   |  |
| Zn/Ni-ZIF-8-1000                                                                   | 95.3                                          | 56.1                    | 49.3                    |  |
| ZIF-8-1000                                                                         | 88.0                                          | 54.8                    | 42.6                    |  |



Figure S 15. The comparison of  $CO_2$  adsorption isotherms collected at a) 313 K and b) 273 K for Zn/Ni-ZIF-8-1000 (Black) and ZIF-8-1000 (red).



Figure S16. CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub> adsorption isotherms of Zn/Ni-ZIF-8-1000 collected at

## a) 273 K, b) 298 K and c) 313K.



Figure S17.  $CO_2$ ,  $CH_4$  and  $N_2$  adsorption isotherms of ZIF-8-1000 collected at a) 273 K, b) 298 K and c) 313K.

#### S-8. Gas selectivity analyses.

The isosteric heats of adsorption.



**Figure S18.** The isosteric heats of adsorption of CO<sub>2</sub> for Zn/Ni-ZIF-8 and Zn/Ni-ZIF-8-1000. The calculations were collected at 273K, 283K, and 298K. The results are 61.2 and 21.3 kJ•mol<sup>-1</sup>, respectively.



Figure S19. The isosteric heats of adsorption of CO<sub>2</sub> for ZIF-8-1000. The calculations

were collected at 273K, 283K, and 298K. The result is 49.7 kJ•mol<sup>-1</sup>.



**Figure S20.** The isosteric heats of adsorption of  $CO_2$ ,  $CH_4$ , and  $N_2$  for Zn/Ni-ZIF-8-1000. The calculations were collected at 273K, 283K, and 298K. The results are 61.2, 30.7, and 26.2 kJ·mol<sup>-1</sup> for  $CO_2$ ,  $CH_4$ , and  $N_2$ , respectively.

## Initial slope calculation.



**Figure S21.** Initial slope calculation of Zn/Ni-ZIF-8-1000 for  $CO_2$ ,  $CH_4$  and  $N_2$  isotherms collected at a) 273 K, 298K and 313 K.



Figure S22. Initial slope calculation of ZIF-8-1000 for  $CO_2$ ,  $CH_4$  and  $N_2$  isotherms collected at a) 273 K, b) 298 K, and 313 K.

|                                  | Zn/Ni-ZIF-8-1000 |       | ZIF-8-1000 |       |       |       |
|----------------------------------|------------------|-------|------------|-------|-------|-------|
|                                  | 273 K            | 298 K | 313 K      | 273 K | 298 K | 313 K |
| CO <sub>2</sub> /N <sub>2</sub>  | 30.0             | 50.0  | 205.7      | 38.8  | 48.2  | 183.8 |
| CO <sub>2</sub> /CH <sub>4</sub> | 5.6              | 7.2   | 5.31       | 5.9   | 7.0   | 6.6   |

Table S2. The comparison of gas selectivity (initial slope) results of Zn/Ni-ZIF-8-1000 and ZIF-8-1000.

### **IAST calculation.**

In order to compare the efficacy of Zn/Ni-ZIF-8-1000 and ZIF-8-1000 for  $CO_2$  over  $N_2$  and  $CO_2$  over  $CH_4$  separation, we used the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz along with the pure component isotherm fits to determine the molar loadings in the mixture for specified partial pressures in the bulk gas phase. The dual-site Langmuir-Freundlich equation for  $CO_2$ , and the single-site Langmuir-Freundlich equation for  $N_2$  and  $CH_4$  adsorption were used for fitting of the 273 K and 298 K.

The adsorption selectivity for binary mixtures is defined by  $S = (q_1/p_1)/(q_2/p_2)$ .



**Figure S23.** The corresponding isotherm fits (solid black lines) dual-site Langmuir model fits for  $CO_2$  and single-site Langmuir model for  $CH_4$  and  $N_2$  of Zn/Ni-ZIF-8-1000 based on experimental pure component isotherms for  $CO_2$  (olive circle),  $CH_4$  (red circle) and  $N_2$  (blue circle) at a) 273 K, b)298 K and c) 313 K.



Figure S24. a) IAST adsorption selectivity of a)  $CO_2$  over  $N_2$  calculated under conditions of 15%  $CO_2$  balanced with  $N_2$  and b)  $CO_2$  over  $CH_4$  for 50/50 binary mixture for Zn/Ni-ZIF-8-1000 at 273 K and 298 K.



**Figure S25.** The corresponding isotherm fits (solid black lines) dual-site Langmuir model fits for  $CO_2$  and single-site Langmuir model for  $CH_4$  and  $N_2$  based on experimental pure component isotherms of ZIF-8-1000 for  $CO_2$  (navy circle),  $CH_4$  (red circle) and  $N_2$  (violet circle) at a) 273 K, b)298 K and c) 313 K.



Figure S26. IAST adsorption selectivity of a)  $CO_2$  over  $N_2$  calculated under conditions of 15% $CO_2$  balanced with  $N_2$  and b)  $CO_2$  over  $CH_4$  for 50/50 binary mixture for ZIF-8-1000 at 273 K and 298 K.

 Table S3. The comparison of gas selectivity (IAST) results of Zn/Ni-ZIF-8-1000 and

 S12

# ZIF-8-1000.

|                                               | Zn/Ni-ZIF-8-1000 |       | ZIF-8-1000 |       |       |       |
|-----------------------------------------------|------------------|-------|------------|-------|-------|-------|
|                                               | 273 K            | 298 K | 313 K      | 273 K | 298 K | 313 K |
| CO <sub>2</sub> /N <sub>2</sub> <sup>a</sup>  | 13.8             | 30.2  | 124        | 14.7  | 23.5  | 102   |
| CO <sub>2</sub> /CH <sub>4</sub> <sup>b</sup> | 2.6              | 3     | 4.5        | 2.8   | 3     | 3.2   |

 $^{\rm a}$  Selectivity was calculated from IAST for 15/85 gas mixtures for CO\_2/N\_2

 $^{\rm b}$  Selectivity was calculated from IAST for 50/50 gas mixtures for CO\_2/CH4.

#### S-9. Elemental analyses.

Table S4. Elemental analyses data.

|                               | С%    | N%    | H%   | Zn%  | Ni%  |
|-------------------------------|-------|-------|------|------|------|
| Zn/Ni-ZIF-8                   | 41.75 | 24.53 | 4.42 | 26.4 | 0.65 |
| Zn/Ni-ZIF-8-1000              | 72.80 | 9.46  | 0.85 | 2.93 | 1.66 |
| Zn/Ni-ZIF-8-1000 <sup>a</sup> | 73.16 | 9.27  | 0.85 | 2.87 | 1.57 |

<sup>a</sup> after soaked in  $H_2O$  for 24 h at 100 °C.

## References

[1] J. Cravillon, S. Münzer, S. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, *Chem. Mater.* 2009, **21**, 1410.