Supporting information

Pentacyclic coumarin-based blue emitters - the case of bifunctional nucleophilic behavior of amidines

Y. M. Poronik and D. T. Gryko*

Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland

E-mail: dtgryko@icho.edu.pl

Table of Contents

Instrumentation and Materials	S 1
Experimental Details	S 1
Proposed reaction mechanism for the formation of compound 3a	S 7
Crystal packing for compound 3a	S 7
¹ H and ¹³ C NMR Spectra	S 8
UV/Vis absorption and fluorescence spectra	S31

Instrumentation and Materials

All chemicals were used as received unless otherwise noted. All reported ¹H NMR spectra were collected using 500 MHz spectrometers. Chemical shifts (δ ppm) were determined with TMS as the internal reference; *J* values are given in Hz. Chromatography was performed on silicagel (230-400 mesh). Preparative thin layer chromatography (TLC) was carried out using Merck PLC Silica gel 60 F₂₅₄ 1 mm plates. The mass spectra were obtained via electron ionisation (EI-MS) or electrospray ionization (ESI-MS). All photophysical studies have been performed with freshly-prepared air-equilibrated solutions at room temperature (298 K).

A Perkin-Elmer Lambda 25 UV/Vis spectrophotometer and a Hitachi F7000 fluorescence spectrometer were used to acquire the absorption and emission spectra. Spectrophotometric grade solvents were used without further purification. Fluorescence quantum yields were determined in DMSO and in CH₂Cl₂ using 9,10-diphenylanthracene in cyclohexane (**4a**,**b**,**c**,**e**) and quinine sulfate in 0.05 M H₂SO₄ (**3d** and **4d**) as standards.

Experimental part

General procedure for the preparation of compounds 3a-e and 4a-e.

3-Alkoxycarbonyl coumarin **2a-e** (1 mmol) and amidine base **1a,b** (0.5 mmol) were heated at 120-130°C for 2 hr (1) or 30 min (2). On cooling the reaction was subsequently washed with diethyl ether, *i*-PrOH and filtered.

The crude product was recrystallized from EtOH. Yield 75%. M.p. 307-308°C(dec.)

¹H NMR (CDCl₃): δ 7.89 (dd, J = 8.5, 1.0 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.24-7.28 (m, 1H), 7.15 (t, J = 7.5 Hz, 1H), 4.21 (br. s, 2H), 3.68 (br. s. 2H), 3.42 (t, J = 6.5 Hz, 2H), 2.99 (br. s. 2H), 2.10 (quin, J = 6.0 Hz, 2H), 1.97-2.03 (m, 2H), 1.87-1.93 (m, 2H) ppm; ¹³C NMR (CDCl₃): δ 158.4, 158.3, 155.2, 153.8, 150.4, 131.7, 128.8, 122.4, 118.2, 117.7, 98.5, 97.9, 49.4, 38.9, 31.3, 24.8, 24.7, 22.6 ppm; HRMS (EI) calcd for C₁₉H₁₈N₂O₃: 322.1317 [M⁺], found: 322.1317; Anal. Calcd. for C₁₉H₁₈N₂O₃ (322.36): C, 70.79; H, 5.63; N, 8.69; Found: C, 70.54; H, 5.74; N, 8.57; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 413 (16.2), 278 (21.3) nm.

3b

The crude product was recrystallized from EtOH. Yield 68%. M.p. 320-321°C(dec.)

¹H NMR (CDCl₃): δ 7.36 (d, J = 2.7 Hz, 1H), 7.19 (d, J = 9.2 Hz, 1H), 7.04 (dd, J = 8.9, 2.8 Hz, 1H), 4.21 (br. s, 2H), 3.83 (s, 3H), 3.68 (br. s. 2H), 3.43 (t, J = 6.4 Hz, 2H), 3.00 (br. s. 2H), 2.10 (quin, J = 5.8 Hz, 2H), 2.01 (quin, J = 5.8 Hz, 2H), 1.90 (quin, J = 5.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 158.7, 158.5, 155.3, 154.4, 150.1, 148.0, 118.4, 118.3, 112.9, 98.4, 98.0, 55.9, 53.1, 49.5, 39.1, 31.2, 24.8, 22.6 ppm; HRMS (EI) calcd for C₂₀H₂₀N₂O₄: 352.1423 [M⁺⁻], found: 352.1426; Anal. Calcd. for C₂₀H₂₀N₂O₄ (352.38): C, 68.17; H, 5.72; N, 7.95; Found: C, 67.97; H, 5.84; N, 8.10; λ_{abs} (DCM, $\varepsilon \times$ 10⁻³) 415 (16.3), 277 (20.6) nm.

Ethyl 6-methoxy-2-oxochroman-3-carboxylate, 5b

The diethyl ether solution from the previous step was evaporated and the product was purified by the preparative TLC to yield 0.02 g (8%) of reduced coumarin **5b**. M.p. 93-94°C

¹H NMR (CDCl₃): δ 6.99 (d, J = 8.9 Hz, 1H), 6.79 (dd, J = 8.9, 2.9 Hz, 1H), 6.72 (d, J = 2.7 Hz, 1H), 4.15-4.26 (m, 2H), 3.78 (s, 3H), 3.73 (dd, J = 8.4, 6.0 Hz, 1H), 3.37 (dd, J = 16.0, 8.5 Hz, 1H), 3.13 (dd, J = 16.0, 6.0 Hz, 1H), 1.22 (t, J = 7.2 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 167.5, 164.9, 156.4, 145.3, 121.7, 117.6, 113.8, 113.3, 62.1, 55.7, 46.3, 31.6, 27.6, 22.6, 13.9 ppm; HRMS (EI) calcd for C₁₃H₁₄O₅: 250.0841 [M⁺], found: 250.0846.

3c

The crude product was recrystallized from EtOH. Yield 51%. M.p. 280-281°C

¹H NMR (CDCl₃): δ 7.79 (d, J = 9.8 Hz, 1H), 6.70-6.74 (m, 2H), 4.19 (br. s, 2H), 3.84 (s, 3H), 3.66 (br. s, 2H), 3.41 (t, J = 6.5 Hz, 2H), 2.95 (br. s, 2H), 2.08 (quin, J = 6.0 Hz, 2H), 2.00 (quin, J = 5.7 Hz, 2H), 1.90 (quin, J = 5.4 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 162.2, 158.6, 158.5, 155.6, 155.0, 150.3, 130.0, 111.1, 110.6, 100.9, 97.2, 97.1, 55.6, 52.5, 49.2, 38.8, 31.3, 24.7, 22.6 ppm; HRMS (EI) calcd for C₂₀H₂₀N₂O₄: 352.1423 [M⁺], found: 352.1425; Anal. Calcd. for C₂₀H₂₀N₂O₄ (352.38): C, 68.17; H, 5.72; N, 7.95; Found: C, 67.96; H, 5.61; N, 7.81; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 404 (19.6), 329 (12.9), 228 (22.5) nm.

The crude product was recrystallized from EtOH. Yield 61%. M.p. 247-248°C

¹H NMR (CDCl₃): δ 7.70 (d, J = 9.1 Hz, 1H), 6.40-6.55 (m, 2H), 4.16 (br. s, 2H), 3.62 (br. s, 2H), 3.33-3.45 (m, 6H), 2.94 (br. s, 2H), 2.05 (br. s, 2H), 1.97 (br. s, 2H), 1.85 (br. s, 2H), 1.19 (t, J = 6.9 Hz, 6H) ppm; ¹³C NMR (CDCl₃): δ 159.2, 158.8, 156.0, 154.5, 150.9, 150.0, 130.0, 107.0, 106.3, 98.1, 96.6, 96.5, 52.6, 49.1, 44.7, 38.6, 31.4, 24.9, 24.8, 22.8, 12.5 ppm; HRMS (EI) calcd for C₂₃H₂₇N₃O₃: 393.2052 [M⁺⁻], found: 393.2059; Anal. Calcd. for C₂₃H₂₇N₃O₃ (393.48): C, 70.21; H, 6.92; N, 10.68; Found: C, 69.96; H, 7.09; N, 10.67; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 406 (37.1), 279 (19.7) nm.

3d

3e

The crude product was recrystallized from EtOH. Yield 68%. M.p. 310°C(dec.)

¹H NMR (CDCl₃): δ 7.44 (d, *J* = 8.0 Hz, 1H), 7.07 (t, *J* = 8.2 Hz, 1H), 7.01 (d, *J* = 7.2 Hz, 1H), 4.21 (br. s, 2H), 3.92 (s, 3H), 3.68 (br. s. 2H), 3.42 (t, *J* = 6.4 Hz, 2H), 2.96 (br. s, 2H), 2.10 (quin, *J* = 5.8 Hz, 2H), 2.00 (br. s, 2H), 1.87 (br. s, 2H) ppm; ¹³C NMR (CDCl₃): δ 158.4, 157.8, 155.2, 150.5, 147.9, 143.9, 121.7, 120.1, 118.7, 113.3, 98.4, 98.3, 56.2, 52.7, 49.4, 39.0, 31.3, 24.7, 22.6 ppm; HRMS (EI) calcd for C₂₀H₂₀N₂O₄: 352.1423 [M⁺], found: 352.1424; Anal. Calcd. for C₂₀H₂₀N₂O₄ (352.38): C, 68.17; H, 5.72; N, 7.95; Found: C, 67.96; H, 5.68; N, 7.99; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 411 (17.3), 282 (27.6) nm.

The crude product was recrystallized from CH₃CN. Yield 71%. M.p. 383°C(dec.)

¹H NMR (CF₃COOD): δ 7.93 (d, *J* = 8.2 Hz, 1H), 7.71 (t, *J* = 8.2 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 1H), 4.30 (t, *J* = 6.0 Hz, 2H), 4.21 (t, *J* = 8.2 Hz, 2H), 3.61-3.67 (m, 4H), 2.39 (br. s, 2H) ppm; ¹³C NMR (CF₃COOD): δ 167.4, 162.4, 155.4, 151.4, 137.1, 134.5, 126.9, 126.7, 118.2, 110.80, 88.6, 52.6, 41.7, 40.8, 25.5, 17.6 ppm; HRMS (EI) calcd for C₁₇H₁₄N₂O₃: 294.1004 [M⁺], found: 294.1005; Anal. Calcd. for C₁₇H₁₄N₂O₃ (294.30): C, 69.38; H, 4.79; N, 9.52; Found: C, 69.10; H, 4.80; N, 9.30; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 411 (13.9), 392 (15.1), 294 (13.7), 276 (21.1), 267 (19.1) nm.

The crude product was recrystallized from CH₃CN. Yield 69%. M.p. 371°C(dec.)

¹H NMR (CF₃COOD): δ 7.50 (d, J = 2.7 Hz, 1H), 7.42 (d, J = 9.1 Hz, 1H), 7.37 (dd, J = 9.2, 2.5 Hz, 1H), 4.31 (t, J = 5.8 Hz, 2H), 4.23 (t, J = 8.2 Hz, 2H), 3.97 (s, 3H), 3.65-3.70 (m, 4H), 2.41 (quin, J = 5.7 Hz, 2H) ppm; ¹³C NMR (CF₃COOD): δ 169.7, 164.9, 159.3, 157.7, 148.4, 139.2, 122.4, 121.8, 118.6, 114.5, 113.4, 90.8, 57.8, 54.9, 44.1, 43.1, 27.8, 19.9 ppm; HRMS (EI) calcd for C₁₈H₁₆N₂O₄: 324.1110 [M⁺⁻], found: 324.1113; Anal. Calcd. for C₁₈H₁₆N₂O₄·H₂O (342.35): C, 63.15; H, 5.30; N, 8.18; Found: C, 62.89; H, 5.27; N, 8.16; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 415 (13.6), 395 (14.9), 298 (12.0) nm.

The crude product was recrystallized from CH₃CN.Yield 59%. M.p. 305-306°C(dec.)

¹H NMR (CF₃COOD): δ 7.84 (d, J = 9.1 Hz, 1H), 7.08 (dd, J = 9.0 2.6 Hz, 1H), 6.95 (d, J = 2.5 Hz, 1H), 4.27 (t, J = 5.9 Hz, 2H), 4.17 (t, J = 8.2 Hz, 2H), 3.94 (s, 3H), 3.62 (t, J = 5.8 Hz, 2H), 3.57 (t, J =

8.5 Hz, 2H), 2.37 (quin, J = 5.8 Hz, 2H) ppm; ¹³C NMR (CF₃COOD): δ 169.8, 167.0, 164.8, 157.4, 155.6, 139.5, 130.6, 116.6, 111.1, 110.9, 104.8, 90.4, 57.4, 54.8, 44.0, 43.0, 27.7, 20.1 ppm; HRMS (EI) calcd for C₁₈H₁₆N₂O₄: 324.1110 [M⁺⁻], found: 324.1115; Anal. Calcd. for C₁₈H₁₆N₂O₄·0.25H₂O (328.83): C, 65.75; H, 5.06; N, 8.52; Found: C, 65.76; H, 5.10; N, 8.39; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 400 (18.8), 384 (18.8), 321 (14.5) nm.

4d

The crude product was recrystallized from EtOH. Yield 60%. M.p. 305°C(dec.)

¹H NMR (DMSO-d₆, T = 323 K): δ 7.62 (d, *J* = 9.0 Hz, 1H), 6.56 (d, *J* = 8.3 Hz, 1H), 6.31 (s, 1H), 3.69-3.82 (m, 4H), 3.39 (q, *J* = 6.8 Hz, 4H), 3.29 (br. s, 2H), 3.22 (t, *J* = 7.9 Hz, 2H), 2.03 (br. s, 2H), 1.13 (t, *J* = 6.6 Hz, 6H) ppm; ¹³C NMR (DMSO-d₆, T = 323 K): δ 158.3, 157.4, 155.1, 155.0, 149.8, 141.2, 127.7, 107.4, 105.0, 96.8, 93.0, 88.2, 51.0, 43.6, 41.3, 36.8, 26.3, 19.1, 12.2 ppm; HRMS (EI) calcd for C₂₁H₂₃N₃O₃: 365.1739 [M⁺⁻], found: 365.1748; Anal. Calcd. for C₂₁H₂₃N₃O₃·0.2H₂O (369.03): C, 68.35; H, 6.39; N, 11.39; Found: C, 68.46; H, 6.32; N, 11.40; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 399 (38.6), 380 (30.7), 358 (31.9), 270 (15.6) nm.

4e

The crude product was recrystallized from CH₃CN. Yield 76%. M.p. 383-384°C(dec.)

¹H NMR (CF₃COOD): δ 7.52 (d, *J* = 7.9 Hz, 1H), 7.45 (t, *J* = 8.2 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 1H), 4.29 (t, *J* = 6.0 Hz, 2H), 4.19 (t, *J* = 8.2 Hz, 2H), 4.02 (s, 3H), 3.59-3.66 (m, 4H), 2.39 (quin, *J* = 5.8 Hz, 2H) ppm; ¹³C NMR (CF₃COOD): δ 169.0, 164.8, 157.8, 150.0, 143.5, 139.5, 128.9, 121.0, 119.0, 118.8, 113.7, 91.0, 58.2, 54.9, 44.1, 43.2, 27.9, 19.9 ppm; HRMS (EI) calcd for C₁₈H₁₆N₂O₄: 324.1110 [M⁺⁻], found: 324.1109; Anal. Calcd. for C₁₈H₁₆N₂O₄·0.2H₂O (327.93): C, 65.93; H, 5.04; N, 8.54; Found: C, 65.96; H, 5.00; N, 8.36; λ_{abs} (DCM, $\varepsilon \times 10^{-3}$) 410 (15.2), 390 (16.2), 277 (28.4) nm.

Scheme S1. Proposed reaction mechanism for the oxidative cyclisation

Figure S1. Crystal packing for compound 3a.

Figure S2. Absorption spectra of compounds **3a**, **3c**, **3d**, **4a**, **4c**, **4d** in DCM.