Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2014

Supporting Information

n-Bu₄NI/TBHP-catalyzed direct amination of allylic and benzylic C(sp³)–H with anilines under metal-free conditions

Xusheng Zhang,^a Min Wang,^{*a} Pinhua Li,^a and Lei Wang^{*a,b}

^a Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P R China
Tel: + 86-561-3802-069 Fax: + 86-561-3090-518 E-mail: leiwang@chnu.edu.cn
^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

Table of Contents for Supporting Information

1. General considerations	1
2. Procedures for Catalytic C-H Amination Reactions	1
3. LC-HRMS of TEMPO with allylic radical generated from cyclohexene	2
4. Characterization data for the products	
5. ¹ H and ¹³ C NMR spectra of the products	12
6. References	

1. General considerations

All ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometers (400 MHz and 100 MHz respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). The chemicals and solvents were purchased from commercial suppliers either from Aldrich, USA or Shanghai Chemical Company, China. Products were purified by flash chromatography on 100–200 mesh silica gels, SiO₂.

2. Procedures for Catalytic C-H Amination Reactions

The Schlenk tube equipped with a stir bar was charged with 4-aminobenzonitrile (0.50 mmol), TBAI (0.10 mmol), cyclohexene (2.0 mL) and TBHP (1.5 mmol) was added by syringe. The reaction mixture was stirred at 90 °C for 10 h. The organic phase was concentrated under reduced pressure to yield the crude product, which was further purified by flash chromatography on silica gel with ethyl acetate-petroleum ether (100:1 \rightarrow 9:1) to provide the corresponding product.

3. LC-HRMS of TEMPO with allylic radical generated from cyclohexene under the standard reaction conditions

Calculated: [M+H] = 238.2171

Found: [M+H] = 238.2166

Counts vs. Mass-to-Charge (m/z)

4. Characterization data for the products

4-(Cyclohex-2-en-1-ylamino)benzonitrile (3a)^[1]

White solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.41–7.38 (m, 2H), 6.58–6.55 (m, 2H), 5.93–5.89 (m, 1H), 5.71–5.67 (m, 1H), 4.30–4.28 (m, 1H), 4.02–4.01 (m, 1H), 2.06–2.04 (m, 2H), 1.93–1.87 (m, 1H), 1.73–1.70 (m, 1H), 1.69–1.62 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 150.37, 133.75, 131.34, 127.04, 120.59, 112.44, 98.19, 47.40, 28.50, 24.96, 19.41.

N-(Cyclohex-2-en-1-yl)-4-nitroaniline (3b)^[2]

Yellow soild. ¹H NMR (400 MHz, CDCl₃) δ: 8.08–8.05 (m, 2H), 6.54–6.53 (m, 2H), 5.93 (s, 1H), 5.69 (s, 1H), 4.59 (s, 1H), 4.07 (s, 1H), 2.06 (s, 2H), 1.93 (s, 1H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 152.42, 152.40, 131.74, 126.62, 126.53, 111.29, 47.73, 28.53, 24.91, 19.36.

1-(4-(Cyclohex-2-en-1-ylamino)phenyl)ethanone (3c)^[1]

Yellow soild. ¹H NMR (400 MHz, CDCl₃) δ: 7.82 (d, *J* = 8.60 Hz, 2H), 6.57 (d, *J* = 8.60 Hz, 2H), 5.92– 5.89 (m, 1H), 5.73–5.71 (m, 1H), 4.29–4.28 (s, 1H), 4.07 (s, 1H), 2.50 (s, 3H), 2.05 (s, 2H), 1.95–1.90 (m, 1H), 1.73–1.64 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 196.19, 151.18, 131.06, 130.89, 127.42, 126.48, 111.67, 47.46, 28.69, 25.95, 25.00, 19.47.

CI

4-Chloro-N-(cyclohex-2-en-1-yl)aniline (3d)^[1]

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 7.12 (d, *J* = 8.72 Hz, 2H), 6.55 (d, *J* = 8.68 Hz, 2H), 5.88– 5.86 (m, 1H), 5.75–5.72 (m, 1H), 3.95 (s, 1H), 3.65 (s, 1H), 2.05 (s, 2H) , 1.93–1.87 (m, 1H), 1.73–1.59 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 145.76, 130.44, 129.10, 128.14, 121.60, 114.29, 48.08, 28.76, 25.11, 19.61.

4-Bromo-N-(cyclohex-2-en-1-yl)aniline (3e)^[1]

Yellow soild. ¹H NMR (400 MHz, CDCl₃) δ: 7.25 (d, *J* = 8.72 Hz, 2H), 6.50 (d, *J* = 8.72 Hz, 2H), 5.88– 5.86 (m, 1H), 5.74–5.72 (m, 1H), 3.94 (s, 1H), 3.67 (s, 1H), 2.05 (s, 2H), 1.92–1.89 (m, 1H), 1.71–1.70 (m, 1H), 1.68–1.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 146.17, 131.97, 130.50, 128.06, 114.77, 108.54, 47.96, 28.70, 25.11, 19.59.

N-(cyclohex-2-en-1-yl)-2-iodoaniline (3f)

Colorless oil. IR (film, cm⁻¹): 3392 (v_{N-H}), 740 (v_{C=C-H}). ¹H NMR (400 MHz, CDCl₃) δ : 7.69–7.67 (m, 1H), 7.23–7.19 (m, 1H), 6.65–6.63 (m, 1H), 6.46–6.42 (m, 1H), 5.93–5.90 (m, 1H), 5.80–5.77 (m, 1H), 4.19 (s, 1H) 4.04 (s, 1H), 2.14–2.02 (m, 2H), 1.95–1.87 (m, 1H), 1.78–1.65 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 146.36, 139.26, 130.71, 129.35, 127.89, 118.37, 111.12, 85.90, 48.27, 28.64, 25.14, 19.54. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₂H₁₅IN: 300.0249, Found: 300.0246.

2-(3,4-Dimethylphenyl)-1-methyl-1*H*-indole (3g)^[3]

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 7.27–7.23 (m, 1H), 6.93–6.91 (m, 1H), 6.82 (s, 1H), 6.76–6.74 (m, 1H), 5.91–5.89 (m, 1H), 5.76–5.73 (m, 1H), 4.02 (s, 1H), 3.86 (s, 1H), 2.06 (s, 2H), 1.96–1.91 (m, 1H), 1.78–1.60 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 147.24, 131.52 (q, *J* = 31.47 Hz), 130.61,

129.55, 127.71, 124.25 (q, *J* = 270.69 Hz), 115.94, 113.30 (q, *J* = 3.95 Hz), 109.09 (q, *J*= 3.91 Hz), 47.66, 28.58, 24.96, 19.43.

N-(Cyclohex-2-en-1-yl)aniline (3h)^[1]

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 7.21–7.17 (m, 2H), 6.72–6.68 (m, 1H), 6.65–6.63 (m, 2H), 5.88–5.86 (m, 1H), 5.78–5.76 (m, 1H), 4.01 (s, 1H), 3.65 (s, 1H), 2.05 (s, 2H), 1.96–1.90 (m, 1H), 1.74–1.65 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 147.20, 130.11, 129.31, 128.60, 117.15, 113.25, 47.89, 28.92, 25.17, 19.67.

N-(Cyclohex-2-en-1-yl)pyridin-2-amine (3i)^[1]

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.08–8.07 (m, 1H), 7.42–7.38 (m, 1H), 6.56–6.53 (m, 1H), 6.40–6.38 (m, 1H), 5.88–5.86 (m, 1H), 5.75–5.72 (m, 1H), 4.52 (s, 1H), 4.32 (s, 1H), 2.04–1.94 (m, 3H), 1.73–1.60 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 157.83, 148.07, 137.24, 130.22, 128.28, 112.52, 107.00, 46.37, 29.14, 24.93, 19.60.

N-(Cyclohex-2-en-1-yl)pyridin-3-amine (3j)^[4]

Yellow soild. ¹H NMR (400 MHz, CDCl₃) δ: 8.03–8.02 (m, 1H), 7.94–7.93 (m, 1H), 7.09–7.06 (m, 1H), 6.90–6.88 (m, 1H), 5.90–5.88 (m, 1H), 5.74–5.72 (m, 1H), 3.99 (s, 1H), 3.70 (s, 1H), 2.05 (s, 2H), 1.95–1.89 (m, 1H), 1.77–1.59 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 143.17, 138.51, 136.47, 130.80, 127.77, 123.73, 118.87, 47.66, 28.66, 25.05, 19.50.

4-(Cyclopent-2-en-1-ylamino)benzonitrile (3k)

Yellow oil. IR (film, cm⁻¹): 3567 (v_{N-H}), 2211 ($v_{C=N}$), 741 ($v_{C=C-H}$). ¹H NMR (400 MHz, CDCl₃) δ : 7.40 (d, J = 8.32 Hz, 2H), 6.57 (d, J = 8.36 Hz, 2H), 6.03 (s, 1H), 5.80–5.79 (m, 1H), 4.55 (s, 1H), 4.33 (s, 1H) , 2.53–2.45 (m, 1H) , 2.39–2.30 (m, 2H) 1.71–1.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 150.64, 135.35, 133.59, 130.38, 120.51, 112.43, 98.12, 58.71, 31.10, 30.90. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₂H₁₃N₂: 185.1079, Found: 185.1084.

N-(Cyclopent-2-en-1-yl)-4-nitroaniline (31)^[5]

Yellow soild. ¹H NMR (400 MHz, CDCl₃) δ: 8.06 (d, *J* = 9.00 Hz, 2H), 6.54 (d, *J* = 9.04 Hz, 2H), 6.06– 6.05 (m, 1H), 5.80–5.79 (m, 1H), 4.65 (s, 1H), 4.62–4.61 (m, 1H), 2.55–2.47 (m, 1H), 2.43–2.34 (m, 2H), 1.73–1.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 152.66, 137.56, 135.77, 130.00, 126.36, 111.27, 58.97, 31.13, 30.93.

1-(4-(Cyclopent-2-en-1-ylamino)phenyl)ethanone (3m)

Yellow soild. m.p. 86–87 °C. IR (KBr, cm⁻¹): 3654 (v_{N-H}), 1646 ($v_{C=O}$), 733 ($v_{C=C-H}$). ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (d, J = 8.56 Hz, 2H), 6.58 (d, J = 8.56 Hz, 2H), 6.03–6.02 (m, 1H), 5.82–5.81 (m, 1H), 4.61 (s, 1H), 4.30 (s, 1H), 2.50 (s, 4H), 2.39–2.36 (m, 2H) 1.71–1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.18, 151.46, 135.06, 130.73, 126.38, 111.66, 58.79, 31.09, 31.05, 25.86. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₃H₁₅NO:202.1232 Found: 202.1227.

4-Chloro-N-(cyclopent-2-en-1-yl)aniline (3n)

Yellow oil. IR (film, cm⁻¹): 3420 (v_{N-H}), 736 ($v_{C=C-H}$). ¹H NMR (400 MHz, CDCl₃) δ : 7.12 (d, *J* = 8.60 Hz, 2H), 6.56 (d, *J* = 8.60 Hz, 2H), 6.00–5.99 (m, 1H), 5.83–5.82 (m, 1H), 4.51 (s, 1H), 3.69 (s, 1H) , 2.52–2.45 (m, 1H), 2.40–2.29 (m, 2H), 1.70–1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 146.12, 134.41, 131.36, 128.96, 121.62, 114.24, 59.45, 31.04, 30.95. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₁H₁₃ClN: 194.0737, Found: 194.0737.

3-Chloro-N-(cyclopent-2-en-1-yl)aniline (30)

Yellow oil. IR (film, cm⁻¹): 3411 (v_{N-H}), 726 (v_{C=C-H}). ¹H NMR (400 MHz, CDCl₃) δ : 7.10–7.06 (m, 1H), 6.68–6.66 (m, 1H), 6.62 (s, 1H), 6.51–6.49 (m, 1H), 6.02–6.01 (m, 1H), 5.84–5.83 (m, 1H), 4.53–4.52 (m, 1H), 3.76 (s, 1H), 2.54–2.46 (m, 1H), 2.41–2.33 (m, 2H), 1.69–1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 148.71, 134.90, 134.54, 131.25, 130.09, 116.86, 112.68, 111.49, 59.20 31.07, 31.03. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₁H₁₃ClN: 194.0737, Found: 194.0730.

2-Chloro-N-(cyclopent-2-en-1-yl)aniline (3p)

Yellow oil. IR (film, cm⁻¹): 3420 (v_{N-H}), 740 ($v_{C=C-H}$). ¹H NMR (400 MHz, CDCl₃) δ : 7.30–7.28 (m, 1H), 7.20–7.16 (m, 1H), 6.79–6.77 (m, 1H), 6.68–6.64 (m, 1H), 6.05 (s, 1H), 5.90 (s, 1H), 4.61 (s, 1H), 4.34 (s, 1H), 2.59–2.51 (m, 1H), 2.44–2.40 (m, 2H) 1.76–1.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 143.43, 134.66, 131.22, 129.12, 127.67, 119.09, 116.88, 111.78, 59.11, 31.18, 31.14. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₁H₁₃CIN: 194.0737, Found: 194.0735.

N-(Cyclopent-2-en-1-yl)pyridin-2-amine (3q)

Yellow soild. m.p. 79–80 °C. IR (KBr, cm⁻¹): 3247 (v_{N-H}), 735 ($v_{C=C-H}$). ¹H NMR (400 MHz, CDCl₃) δ : 8.07 (d, *J* = 4.56 Hz, 1H), 7.42–7.38 (m, 2H), 6.57–6.53 (m, 1H), 6.41–6.39 (m, 1H), 5.97–5.96 (m, 1H), 5.82–5.81 (m, 1H), 4.80 (s, 1H) , 4.63 (s, 1H) , 2.50–2.45 (m, 1H), 2.41–2.30 (m, 2H), 1.68–1.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.23, 148.15, 137.24, 134.13, 131.62, 112.57, 106.78, 57.75, 31.39, 31.00. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₀H₁₃N₂: 161.1079, Found: 161.1076.

4-(Cyclohex-2-en-1-yl(methyl)amino)benzonitrile (3r)^[1]

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 7.45 (d, *J* = 8.64 Hz, 2H), 6.71 (d, *J* = 8.64 Hz, 2H), 5.99–5.97 (m, 1H), 5.58–5.55 (m, 1H), 4.48 (s, 1H), 2.85 (s, 3H), 2.07 (s, 2H), 1.91–1.82 (m, 2H), 1.73–1.55 (m, 2H); ¹³C NMR (100 MHz,CDCl₃) δ: 151.94, 133.35, 131.64, 128.12, 120.60, 111.62, 97.03, 54.39, 32.44, 25.74, 24.58, 21.09.

1-(4-((3-Methylcyclohex-2-en-1-yl)amino)phenyl)ethanone (3s)

Yellow soild. m.p. 101–102 °C. IR (KBr, cm⁻¹): 3363 (v_{N-H}), 1645 ($v_{C=O}$), 730 ($v_{C=C-H}$). ¹H NMR (400 MHz, CDCl₃) δ : 7.81 (d, J = 8.52 Hz, 2H), 6.56 (d, J = 8.52 Hz, 2H), 5.45 (s, 1H), 4.28 (d, J = 6.60 Hz, 1H), 4.04 (s, 1H), 2.49 (s, 3H), 2.08–1.62 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.02, 151.21, 138.69, 130.77, 126.21, 121.60, 111.52, 47.79, 29.86, 28.24, 25.79, 23.56, 19.55. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₂₀NO: 230.1545, Found: 230.1539.

4-((3-Methylcyclohex-2-en-1-yl)amino)benzonitrile (3t)

Yellow oil. IR (film, cm⁻¹): 3358 (v_{N-H}), 2208 ($v_{C=N}$), 731 ($v_{C=C-H}$). ¹H NMR (400 MHz, CDCl₃) δ : 7.38 (d, J = 8.68 Hz, 2H), 6.55 (d, J = 8.64 Hz, 2H), 5.42 (s, 1H), 4.27 (d, J = 7.32 Hz, 1H), 3.98 (s, 1H), 2.08–

1.54 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 150.37, 138.99, 133.59, 121.23, 120.49, 112.30, 97.90, 47.76, 29.82, 28.06, 23.56, 19.49. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₄H₁₇N₂: 212.1392, Found: 212.1396.

4-((1-Phenylethyl)amino)benzonitrile (4a)^[6]

Yellow soild. ¹H NMR (400 MHz, CDCl₃) δ: 7.36–7.24 (m, 7H), 6.46 (d, *J* = 7.60 Hz, 2H), 4.68 (s, 1H), 4.52 (q, *J* = 6.40 Hz, 2H), 1.53 (d, *J* = 6.40 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 150.18, 143.52, 133.44, 128.78, 127.26, 125.52, 120.22, 112.81, 98.83, 52.99, 24.53.

1-(4-((1-Phenylethyl)amino)phenyl)ethanone (4b)^[6]

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.74 (d, J = 7.64 Hz, 2H), 7.34–7.24 (m, 5H), 6.48 (d, J = 7.68 Hz, 2H), 4.59–4.58 (m, 2H), 2.45 (s, 3H), 1.56 (d, J = 5.68 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.27, 151.09, 144.03, 130.61, 128.81, 127.22, 126.85, 125.68, 112.13, 53.06, 25.91, 24.63.

1-(4-((1-Phenylpropyl)amino)phenyl)ethanone (4c)

Yellow soild. m.p. 83–84 °C. IR (KBr, cm⁻¹): 3309 (v_{N-H}), 1650 ($v_{C=0}$). ¹H NMR (400 MHz, CDCl₃) δ : 7.74 (d, *J* = 8.40 Hz, 2H), 7.36–7.30 (m, 4H), 7.27–7.25 (m, 1H), 6.50 (d, *J*= 8.40 Hz, 2H), 4.62 (s, 1H), 4.34–4.31 (m, 1H), 2.45 (s, 3H), 1.92–1.83 (m, 2H), 0.99 (t, *J* = 7.36 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.11, 151.26, 142.61, 130.50, 128.56, 127.13, 126.22, 112.00, 59.18, 31.25, 25.78, 10.59. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₂₀NO: 254.1545, Found: 254.1542.

1-(4-((2-Phenylpropan-2-yl)amino)phenyl)ethanone (4d)

Yellow soild. m.p. 73–74 °C. IR (KBr, cm⁻¹): 3359 (v_{N-H}), 1654 (v_{C=O}). ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, *J* = 8.04 Hz, 2H), 7.47–7.45 (m, 2H), 7.37–7.33 (m, 2H), 7.27–7.26 (m, 1H), 6.31 (d, *J* = 8.08 Hz, 2H), 4.72 (s, 1H), 2.43 (s, 3H), 1.70 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.18, 150.14, 146.12, 130.04, 128.63, 126.59, 126.33, 125.22, 113.71, 56.02, 30.46, 25.75. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₇H₂₀NO: 254.1545, Found: 254.1543.

1-(4-((2-(*p*-Tolyl)propan-2-yl)amino)phenyl)ethanon (4e)

Yellow oil. IR (film, cm⁻¹): 3341 (v_{N-H}), 1653 (v_{C=O}). ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, *J* = 8.04 Hz, 2H), 7.35–7.33 (m, 2H), 7.17–7.15 (m, 2H), 6.33 (d, *J* = 8.00 Hz, 2H), 4.79 (s, 1H), 2.43 (s, 3H), 2.35 (s, 3H), 1.68 (s, 6H), 0.99 (t, *J* = 7.36 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.19, 150.34, 143.20, 136.14, 130.07, 129.35, 126.24, 125.19, 113.74, 55.86, 30.52, 25.77, 20.85. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₈H₂₂NO: 268.1701, Found: 268.1696.

(E)-1,2-Bis(4-methyphenyl)diazene^[7]

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.85 (d, *J* = 8.0 Hz, 4H), 7.33 (d, *J* = 8.0 Hz, 4H), 2.46 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 150.76, 141.07, 129.60, 122.63, 21.36.

(E)-1,2-Bis(4-methoxyphenyl)diazene^[7]

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.89 (d, *J* = 8.8 Hz, 4H), 7.02 (d, *J* = 8.8 Hz, 4H), 3.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 161.46, 147.00, 124.22, 114.05, 55.43.

5. ¹H and ¹³C spectra of the products

6. References

- [1] R. T. Gephart III, D. L. Huang, M. J. B. Aguila, G. Schmidt, A. Shahu, T. H. Warren, Angew. Chem. Int. Ed. 2012, 51, 6488–6492.
- [2] H.-F. Ip, Y.-M. So, H. H. Y. Sung, I. D. Williams, W.-H. Leung, Organometallics 2012, 31, 7020– 7023.
- [3] Z. He, R. Zhang, M. Hu, L. Li, C. Ni, J. Hu, Chem. Sci. 2013, 4, 3478–3483.
- [4] D. Intrieri, A. Caselli, F. Ragaini, P. Macchi, N. Casati, E. Gallo, Eur. J. Inorg. Chem. 2012, 569-580.
- [5] A. Caselli, E. Gallo, S. Fantauzzi, S. Morlacchi, F. Ragaini, S. Cenini, Eur. J. Inorg. Chem. 2008, 3009–3019.
- [6] A. M. Johns, M. Utsunomiya, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 1828–1839.
- [7] Y. Takeda, S. Okumura, S. Minakata, Angew. Chem. Int. Ed. 2012, 51, 7804 –7808.