Supporting Information

Palladium-Catalyzed $\mathbf{R}_{2}(\mathbf{O})$ P Directed $\mathbf{C}\left(\mathbf{s p}^{2}\right)$-H Acetoxylation

Heng Zhang, ${ }^{a}$ Rong-Bin Hu, ${ }^{a}$ Xiao-Yu Zhang, ${ }^{a}$ Shi-Xia Li, ${ }^{a}$ Shang-Dong Yang*a,b

${ }^{\text {a }}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China. ${ }^{\mathrm{b}}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.

Supporting Information

Table of Contents

I. General methods and materials ... S2
II. Typical procedures for the synthesis of substrates .. S2
III. General procedures for the preparation of the acetoxylated compounds...... S3

V. Characterization of the product

VII. NMR charts
VIII. Copies of HPLC spectra

I. General Methods and Materials

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker advance III 400 spectrometer $\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) in CDCl_{3} with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta=0$ for ${ }^{1} \mathrm{H}$, or to chloroform $\delta=77.0$ for ${ }^{13} \mathrm{C}$ as internal standard. ${ }^{31} \mathrm{P}$ NMR spectra and ${ }^{19} \mathrm{~F}$ NMR were recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{double}, \mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{m}$ $=$ multiplet), Coupling constants, J, are reported in hertz. Mass data were measured with Thermo Scientific DSQ II mass spectrometer. The starting materials were purchased from Aldrich, Acros Organics, J\&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Enantioselectivities were determined by high performance liquid chromatography (HPLC) analysis employing a Darcel Chiracel AD-H column. Substrates [1,1'-biphenyl]-2yldiphenylphosphine oxide were prepared according to literature methods $\mathrm{A}^{[1]}$ and methods $\mathrm{B}^{[2]}$.

II. Typical Procedures for the Synthesis of Substrates

Method A

Water (4.0 mL) and DME (30.0 mL) were poured into a round-bottomed flask, fitted with a condenser and argon flow, and bubbled through with argon. Potassium carbonate ($3.45 \mathrm{~g}, 25 \mathrm{mmol}$), 1-bromo-2-iodobenzene ($2.8 \mathrm{~g}, 10.0$ mmol), substituted phenylboronic acid (10.5 mmol), and bis(triphenylphosphine)palladium(II) chloride ($105 \mathrm{mg}, 0.15$ mmol) were added to the mixture, which was stirred at $80^{\circ} \mathrm{C}$ for 5 h in an oil bath until substrate disappeared as judged by TLC. The reaction mixture was allowed to cool to r.t., DME was evaporated, and water (40.0 mL) and ether $(20.0 \mathrm{~mL})$ were added. The layers were separated and the aqueous layer was extracted with diethylether ($3 \times 20.0 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over magnesium sulfate, filtered, and evaporated in vacuo to obtain a yellow oil, which was purified further using column chromatography on silica gel (eluent: heptane 30% EtOAc in heptane). The title compound was isolated as a white amorphous solid ($2.10 \mathrm{~g}, 90 \%$).

$4.0 \mathrm{~mL}(9.60 \mathrm{mmol})$ of $n-\mathrm{BuLi}$ in n-hexane $(2.40 \mathrm{M})$ were added dropwise to a suspension of (8.0 mmol) of 2-bromo-1, 1^{\prime}-biphenyl in 24 mL of diethyl ether at $0^{\circ} \mathrm{C}$. The resulting beige-colored suspension was stirred for an additional 2 h at $0^{\circ} \mathrm{C}$. Then, freshly distilled $\mathrm{Ph}_{2} \mathrm{PCl}(1.77 \mathrm{~g}, 8.0 \mathrm{mmol})$ was added dropwise in diethyl ether $(16.0 \mathrm{ml})$. The mixture was then stirred at r.t. for 1 h , filtered and solvent was removed in vacuo to yield a residue, which was used without futher purification. To the residue in $\mathrm{MeOH}(36.0 \mathrm{ml})$ was added dropwise at $<40^{\circ} \mathrm{C} 30 \%$ aq. $\mathrm{H}_{2} \mathrm{O}_{2}$, solution ($1.63 \mathrm{ml}, 16.0 \mathrm{~mol}$). The resulting clear solution was stirred at r.t. for 1 h , treated for 1 h with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$, solution (8.0 ml) and 1 N HCl solution $(5.0 \mathrm{ml})$, and the mixture was concentrated at the rotavapor to remove the

MeOH . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{C1}_{2}(3 \times 20 \mathrm{ml})$. The extract was washed with brine and dried over MgSO_{4}, then concentrated under reduced pressure and purified by silica gel flash chromatography to afford the product as white powder.

Method B:

An oven-dried, 100 mL Schlenk tube equipped with a magnetic stir bar, a rubber septum and a reflux condenser was charged with diphenylphosphine oxide $(6.86 \mathrm{~g}, 34.0 \mathrm{mmol}), \operatorname{Pd}(\mathrm{dba})_{2}(0.56 \mathrm{~g}, 1.2 \mathrm{mmol})$ and DPPP $(0.42 \mathrm{~g}, 1.2$ mmol) in 50.0 mL toluene. 1,2-Bromo-iodobenzene $(5.2 \mathrm{~mL}, 41 \mathrm{mmol})$, and $(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{NEt}(7.4 \mathrm{~mL}, 43 \mathrm{mmol})$ was added via syringe and the mixture refluxed at $120^{\circ} \mathrm{C}$ for 4 days. After cooling to room temperature, the product was partitioned between $100.0 \mathrm{~mL} \mathrm{CHCl}_{3}$ and $50.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The phases were separated and the organic layer was washed with brine $(50.0 \mathrm{~mL})$, dried over MgSO_{4} and evaporated in vacuo to give a pale orange precipitate. Purification by flash chromatography (2:1 EtOAc/hexane) gave the title compound as a white solid ($7.90 \mathrm{~g}, 65 \%$ yield)
To a Schlenk tube were charged (2-bromophenyl)diphenylphosphine oxide ($0.50 \mathrm{~g}, 1.4 \mathrm{mmol}$) and arylboronic acid $(1.4 \mathrm{mmol})$ together with $\mathrm{Pd}(\mathrm{dba})_{2}(24 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{PPh}_{3}(44 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.59 \mathrm{~g}, 2.8 \mathrm{mmol})$ in 5.0 mL of dioxane under an atmosphere of argon. The Schlenk tube was stirred at $105^{\circ} \mathrm{C}$ for 12 h and cooled to room temperature. The mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 20.0 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and evaporated in vacuo. The crude product was purified by flash chromatography (2:1 EtOAc/hexane).

III. General procedures for the preparation of the acetoxylated compounds:

Under air atmosphere, 2-diphenylphosphino-2'-methylbiphenyl (1a) ($73.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($4.48 \mathrm{mg}, 0.02 \mathrm{mmol}, 10.0 \mathrm{~mol} \%$) and $\operatorname{PhI}(\mathrm{OAc})_{2}(193.2 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv) were added to tube containing a magnetic stir bar. After sealed tube, $2.0 \mathrm{~mL} \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ was added using a syringe. The mixture was stirred at $100^{\circ} \mathrm{C}$ in an oil bath until substrate disappeared as judged by TLC. After cooling to room temperature, the solution was removed in vacuo to yield a residue, which was purified by silica gel using (1:1 EtOAc/hexane) to afford pure $\mathbf{2 a}$ as oil ($73 \mathrm{mg}, 86 \%$).

IV. Typical procedure for the preparation of (R)-MeO-MOP

To a mixture of $(R)-2^{\prime}$-(diphenylphosphoryl)-[1,1'-binaphthalen]-2-yl acetate (2v) (102.4 mg, 0.2 mmol$)$ in $\mathrm{CH}_{3} \mathrm{OH}$ $(1 \mathrm{~mL})$ and dioxane $(2 \mathrm{~mL})$ was added $\mathrm{NaOH}(12.0 \mathrm{mg}, 0.3 \mathrm{mmol})$. The mixture was stirred at room temperature for 24 h . The solvent was removed under reduced pressure and the crude product was purified by chromatography on silica gel with EtOAc/hexane (1:2) to yield (R)-(2'-hydroxy-[1, 1'-binaphthalen]-2-yl)diphenylphosphine oxide (2va) as a white solid $(68.8 \mathrm{mg}, 73 \%){ }^{[3]}$.

 $\mathrm{K}_{2} \mathrm{CO}_{3}(170 \mathrm{mg}, 1.23 \mathrm{mmol})$ in acetone $(3 \mathrm{~mL})$ was added $\mathrm{CH}_{3} \mathrm{I}(85.0 \mathrm{mg}, 0.60 \mathrm{mmol})$. The mixture was stirred and heated under reflux for 4 h and cooled to room temperature. The solvent was removed and the residue was dissolved in a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The aqueous solution was extracted with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel with EtOAc/hexane (1:4) to yield (R)-(2'-methoxy-[1,1'-binaphthalen]-2yl)diphenylphosphine oxide ($R-\mathbf{2 u b}$) as a white solid ($91.9 \mathrm{mg}, 95 \%$). To a mixture of $(R)-\left(2^{\prime}-\right.$ methoxy- $\left[1,1^{\prime}-\right.$ binaphthalen]-2-yl)diphenylphosphine oxide (2vb) ($96.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and triethylamine ($0.56 \mathrm{~mL}, 4.0 \mathrm{mmol}$) in xylene $(3.3 \mathrm{~mL})$ was added trichlorosilane $(0.10 \mathrm{~mL}, 1.00 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, the mixture was refluxed under Ar for 3 h . After being cooled to room temperature, the mixture was concentrated under reduced pressure. The crude product was purified by chromatography on silica gel with EtOAc/hexane (1:6) to yield (R)-(2'-methoxy-[1,1'-binaphthalen]-2yl)diphenylphosphine ((R)-MeO-MOP) as a white solid (72.1 mg, 77\%) ${ }^{[4]}$.

V. Characterization of the Products

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.78(\mathrm{~s}, 3.0 \mathrm{H}), 1.95(\mathrm{~s}, 3.0 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1.0 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.56(\mathrm{~m}, 6$ H), 7.61-7.66 (m, 2 H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.55,20.65,118.86,127.06,127.14,127.18,127.81,127.93$, $128.14,128.26,128.54,131.21,131.24,131.30,131.46,131.48,131.55,131.65,131.68,131.72,131.81,131.97$, 132.06, 132.31, 132.62, 132.66, 132.72, 132.99, 133.71, 133.75, 133.83, 139.13, 141.30, 141.38, 148.04, 169.38; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 26.65$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 427.14$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.05-1.21(\mathrm{~m}, 12.0 \mathrm{H}), 1.82(\mathrm{~s}, 3.0 \mathrm{H}), 2.06(\mathrm{~s}, 3.0 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 1 \mathrm{H})$, $2.19-2.28(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 2.0 \mathrm{H}), 7.27(\mathrm{t}, J=12.0 \mathrm{~Hz} 1 \mathrm{H}), 7.42-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{t}$, $J=20.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 15.69(\mathrm{~d} J=4.0 \mathrm{~Hz}), 16.98(\mathrm{~d} J=12.0 \mathrm{~Hz}), 20.47,20.57,26.33$, $26.99,27.48,28.14,119.12,124.66,126.76,126.86,127.21,127.83,128.19,128.82,129.80,130.61,130.73,130.76$,
$131.47,131.57,132.00,132.09,133.88,133.91,138.51,141.75,141.80,148.03,169.42 ;{ }^{31} \mathbf{P} \mathbf{~ N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ : 51.02; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 359.17$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.80(\mathrm{~s}, 3.0 \mathrm{H}), 2.10(\mathrm{~s}, 3.0 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.18(\mathrm{q}, ~, 1 \mathrm{H}), 7.22-7.27(\mathrm{q}, 1 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{t}, J=16.0 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.65-7.70(\mathrm{t}$, $J=20.0 \mathrm{~Hz}, 1.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 20.59,20.85,27.53,27.97,37027,37.55,37.86,38.13,118.70$, $125.59,125.70,126.95,127.74,130.26,131.02,131.49,131.61,132.83,132.92,134.49,134.51,137.71,143.48$, 143.51, 147.51, 169.63; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 53.30$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 387.20$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.95(\mathrm{~s}, 3 \mathrm{H}), 6.68-6.70(\mathrm{t}, 1 \mathrm{H}), 7.00-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 1 \mathrm{H})$, 7.22-7.31 (m, 4 H), 7.35-7.41 (m, 4 H$), 7.45-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.63-7.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 20.74$, 121.77, 124.80, 127.15, 127.27, 127.87, 127.99, 128.19, 128.31, 128.96, 131.11, 131.14, 131.23, 131.33, 131.41, $131.55,131.65,131.96,132.06,132.14,132.45,132.6,133.17,133.44,133.82,133.93,142.09,142.17,147.60 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.31$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 413.14$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.84(\mathrm{~s}, 6 \mathrm{H}), 6.82-6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 7.16-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $20.50,119.43,126.73,126.77,127.49,127.61,127.93,128.05,128.89,131.24,131.26,131.34,131.37,131.88$, $131.91,131.97,132.01,132.40,132.45,133.46,133.49,133.57,136.80,136.87,148.95,168.71 ;{ }^{31} \mathbf{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.33$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 471.14$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.23\left(\mathrm{q}, J_{l}=4.0 \mathrm{~Hz} J_{2}=8.0 \mathrm{~Hz}\right), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.61-$ $7.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.67,20.74,121.51,127.07,127.19,127.88,128.00,128.14,128.26$, $129.50,131.15,131.29,131.32,131.29,131.32,131.39,131.48,131.58,131.61,131.88,131.98,132.04,132.19$, $132.63,132.91,133.23,133.68,133.80,133.92,134.31,142.19,142.27,145.54,169.86 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 27.39$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 427.14$.

Yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.66(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 17.52,19.82,20.44,118.40$, $126.92,127.05,127.59,127.71,127.91,128.02,129.91,131.08,131.11,131.31,131.33,131.46,131.56,131.63$, $131.72,131.81,131.91,132.19,132.22,132.48,132.60,133.51,133.68,133.79,133.91,136.99,141.63,141.71$, 146.24, 169.57; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.33$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 441.16$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, 7.22-7.29 (m, 3 H), 7.36-7.39 (m, 4 H), 7.45-7.55 (m, 5 H), 7.60-7.65 (m, 2 H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 18.87$, $19.41,20.66,122.60,126.92,127.04,127.65,127.77,127.98,128.10,129.49,129.53,130.89,131.23,131.32,131.48$, $131.58,131.79,131.88,132.20,132.61,132.66,132.91,133.10,133.24,133.70,133.76,133.87,137.40,142.02$, $142.10,145.41,169.97 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.60$; MS (ESI): found $[\mathrm{M}+\mathrm{Na}]^{+} 463.14$.

Dark oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.60-$ $7.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.51, ~ 21.05, ~ 21.19,118.84,127.03,127.72$, 127.84, 128.01, 128.13, 128.32, 130.49, 131.14, 131.17, 131.40, 131.51, 131.66, 131.76, 131.8, 131.98, 132.51, 132.54, 132.77, 133.57, 134.16, 134.28, 136.80, 136.92, 137.38, 138.01, 138.09, 139.12, $148.08, \quad 169.28 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 23.00$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 441.16$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13\left(\mathrm{t}, J_{l}=8.0 \mathrm{~Hz} 1 \mathrm{H}\right), 7.29-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.78-$
$7.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 20.54,20.57,119.01,122.23,124.95,127.28,128.02,128.14,128.23$, $128.26,128.38,128.51,129.10$, 129.37, 129.49, 129.70, 129.82, 130.24, 130.28, 130.32, 130.37, 130.40, 130.89, $131.37,131.40,131.58,131.63,131.66,131.76,131.88,131.94,131.97,132.31,132.41,132.62,133.29,134.28$, $138.86,145.30,145.37,147.78,169.14 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 25.71 ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-62.74$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 495.13$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.88(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 6.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53\left(\mathrm{q}, J_{I}=0.4 \mathrm{~Hz}\right.$, $\left.J_{2}=8.0 \mathrm{~Hz}\right), 7.12(\mathrm{t}, J=8.0 \mathrm{~Hz}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.55(\mathrm{~m}, 4 \mathrm{H})$, 7.57-7.59 (m, 1 H$), 7.63-7.66(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.65,55.07,107.48$, 114.22, $122.30,122.33,127.11,127.23,127.75,127.84,127.87,127.96,129.30,131.10,131.13$, 131.21, 131.24, 131.45, 131.47, 131.53, 131.81, 131.91, 131.97, 132.04, 132.13, 132.22, $132.55,132.72,132.88,133.76,133.83,133.91,133.94,138.12,138.20,149.08,157.52,169.43$; ${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 27.84$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 443.14$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.98(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 6.56-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24-7.29 (m, 3H), 7.33-7.43 (M, 4H), 7.46-7.54 (m, 5 H), 7.67-7.72 (m, 2 H$) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 20.73$, $55.57,115.82,116.38,122.69,127.26,127.39,127.88,128.00,128.23,128.35,131.06,131.16,131.31,131.40$, 131.46, 131.56, 131.94, 132.03, 132.35, 132.57, 132.87, 132.91, 133.01, 133.38, 134.07, 134.18, 141.04, 142.00, $142.08,155.98,170.07 ;{ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta: 27.79$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 443.14$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$,) $\delta: 1.98(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 7.15-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 7.28-7.44(\mathrm{M}, 7 \mathrm{H}), 7.46-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 20.14,20.54$, $56.03,111.71,119.44,127.66,127.78$, $127.81,127.94,128.06,128.14,128.18,131.26,131.29,131.33,131.74$, $131.83,131.93,132.03,132.13,132.33,132.69,132.81,133.66,133.73,133.77,133.85,136.53,136.60,137.64$,

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.36-1.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~s} 3 \mathrm{H}), 4.32-4.38(\mathrm{~m}, 2 \mathrm{H}), 7.20-$
$7.23(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.45-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.60-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 14.27,20.56,61.05,123.05,125.84,127.50,127.62,127.95,128.07,128.23,128.35$, $131.11,131.22,131.35,131.45,131.57,131.89,131.99,132.26,132.58,132.92,133.27,133.71,133.82,137.31$, 137.35, 141.18, 141.26, 147.64, 165.43, 169.32; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.36$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 485.15$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.97(\mathrm{~s} 3 \mathrm{H}), 2.55(\mathrm{~s} 3 \mathrm{H}), 7.21-7.24(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 3$ H), 7.38-7.43 (m, 5 H), 7.47-7.57 (m, 5 H), 7.62-7.68 (m, 3 H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.5926 .60119 .51$ $\begin{array}{llllllllllllllllllllll}121.63 & 124.71 & 127.57 & 127.70 & 127.95 & 128.07 & 128.21 & 128.27 & 128.39 & 131.02 & 131.12 & 131.29 & 131.34 & 131.39 & 131.52\end{array}$
 $141.16147 .96169 .36 ;{ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta: 27.44$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 455.14$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.85(\mathrm{~s}, 3 \mathrm{H}), 6.69-6.74(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.30-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.64(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.54,112.39,112.61$, $117.55,117.58,121.79,122.03,127.81,127.93,128.06,128.08,128.18,128.20,129.42,129.51,131.46,131.48$, $131.50,131.53,131.56,131.59,131.77,131.87,131.96,132.06,132.12,132.24,132.34,133.04,133.16,133.69$, $133.80,135.45,135.53,149.23,149.29,158383,161.29,169.06 ;{ }^{31} \mathbf{P} \mathbf{~ N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 27.29 ;{ }^{19} \mathbf{F} \mathbf{~ N M R}$ $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-108.9(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{~F})$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 431.12$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.79(\mathrm{~s}, 3 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 1 \mathrm{H})$, 7.30-7.34 (m, 2 H), 7.36-7.42 (m, 4 H$), 7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 20.48,120.43,126.53,127.64,127.76,128.05,128.07,128.17,128.19,129.29,131.06,131.45$, $131.49,131.52,131.55,131.90,132.00,132.04,132.13,132.43,132.64,132.73,132.76,133.46,133.65,133.68$, 133.76, 134.67, 139.10, 139.17, 149.32, 168.97; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.33$; MS (ESI): found $[\mathrm{M}+\mathrm{Na}]^{+} 469.07$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.77(\mathrm{~s}, 3 \mathrm{H}), 6.92-6.94(\mathrm{~m} .1 \mathrm{H}), 7.08-7.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-$ $7.21\left(\mathrm{q}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.67(\mathrm{~m}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 20.45,121.03,124.84,127.61,127.73,128.06,128.19,129.65,129.68,130.72$, $131.48,131.50,131.73,131.99,132.05,132.09,132.15,132.23,132.51,132.78,133.55,133.60,133.72,133.81$, 134.61, 134.64, 140.94, 141.01, 149.12, 168.94; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.35$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 493.03$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.95(\mathrm{~s}, 3 \mathrm{H}), 6.73-6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.64(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 20.62,123.01,127.51,127.63,127.76,127.88,128.04,128.14,128.21,128.34,128.79,129.76,130.05$, 130.93 , 131.03, 131.30, 131.36, 131.39, 131.45, 131.56, 131.59, 131.72, 131.81, 131.88, 131.92, 132.01, 132.22, $132.80,132.96,133.26,133.62,133.73,133.97,134.01,140.57,140.65,146.44,169.31 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ : 27.24; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 447.09$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.95(\mathrm{~s}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.63-7.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 20.64, 122.27, 125.04, 127.47, 127.59, 127.95, 128.07, 128.27, 128.39, 131.09, 131.13, 131.23, 131.32, 131.45, $131.55,131.58,131.92,131.97,132.02,132.14,132.95,132.98,133.12,133.18,133.81,133.93,134.07,140.99$, $141.07,147.99,169.08 ;{ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta: 26.97$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 447.09$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.97(\mathrm{~s}, 3 \mathrm{H}), 7.01-7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.18-$ $7.28(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.83-7.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.75,120.93,125.21,126.09,126.34,127.45,127.57,127.60,127.72,127.79,127.83$, $128.59,128.63,129.62,131.03,131.06,131.09,131.18,131.57,131.59,131.66,131.69,131.84,132.34,132.45$, $132.53,132.8,133.30,133.37,133.54,134.18,134.28,139.31,139.39,145.90,169.50 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 27.45$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 463.14$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.95(\mathrm{~s}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.32(\mathrm{~m}$,
$5 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.54(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.98-8.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 20.75,121.31,125.23,125.51,125.55,126.27,127.01,127.30,127.41,127.53,127.61,127.73,127.98$, $128.10,128.19,128.71,128.82$, $129.44,129.80,130.45,130.89,130.89,130.96,131.00,131.51,131.55,131.60$, $131.64,132.10,132.45,132.66,132.77,133.14,133.48,133.66,134.48,138.68,138.76,146.93 ;{ }^{31} \mathbf{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 28.44$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 513.16 ;[\alpha]^{22}{ }_{\mathrm{D}}=+4^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess is 99% determined by HPLC (Chiralcel AD-H, Hexane/Isopropanol 90/10, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}$): major isomer: $\mathrm{t}_{\mathrm{R}}=54.90 \mathrm{~min}$.

Yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.78(\mathrm{~s}, 3 \mathrm{H}), 6.90-6.93(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.25(\mathrm{~m}, 9 \mathrm{H}), 7.27-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.93(\mathrm{~m}, 2 \mathrm{H}), 8.00-8.02(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 20.76,121.32,125.24,125.51,126.28,127.01,127.30,127.41,127.53,127.62$, 127.73 , 127.99, $128.11,128.20$, $128.71,128.82,129.81,130.45,130.89,130.94,130.97,131.51,131.55,131.61$, $131.65,132.10,132.45,132.66,133.14,133.48,133.66,134.48,138.68,138.76,146.93,168.86 ;{ }^{31} \mathbf{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 28.45; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+513.16 . ~}[\alpha]^{22}{ }_{\mathrm{D}}=-6^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess is 99% determined by HPLC (Chiralcel AD-H, Hexane/Isopropanol 90/10, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}$): major isomer: $\mathrm{t}_{\mathrm{R}}=38.72 \mathrm{~min}$.

White power. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.32-3.33(\mathrm{~d}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.20$ $(\mathrm{s}, 1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.85(\mathrm{~d}, 3 \mathrm{H}), 7.96-7.99(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 55.44,112.57,121.71,121.80,123.34,125.24,126.32,126.40,126.66,126.70,126.73,127.79$, $127.89,127.95,128.00,128.06,128.07,128.13,128.57,129.85,130.46,132.98,133.05,133.16,133.36,133.45$, $133.64,133.68,134.05,135.37,135.46,137.58,137.71,138.38,138.52,142.11,142.46,155.03,155.05 ;{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-13.95$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 469.16$. Enantiomeric excess is 99% determined by HPLC (Chiralcel AD-H, Hexane/Isopropanol 99/1, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): major isomer: t_{R} $=5.23 \mathrm{~min}$.

VI. References:

1. a) T. H. Jepsen, M. Larsen, M. Jørgensen, K. A. Solanko, A. D. Bond, A. Kadziola, M. B. Nielsen, Eur. J. Org. Chem. 2011, 53-57; b) A. Port, A. Virgili, A. Alvarez-Larena, J. F. Piniella, Tetraledron: Asymmetry, 2000, 11, 37473757 ; c) B. E. Mann, B. L. Shaw, R. M. Slade, J. Chem. Soc. (A), 1971, 2976-2980; d) R. Schmid, J. Foricher, M. Cereghetti, Helv. Chim. Acta., 1991, 74, 370-389.
2. C. Baillie, J.-L.Xiao, Tetrahedron, 2004, 60, 4159-4168.
3. M. Shi, L.-H. Chen, C.-Q. Li, J. Am. Chem. Soc. 2005, 127, 3790;
4. N. Obara, I. Yoshida, K. Tanaka ,T Kan, T. Morimoto, Tetrahedron Letters 200748 3093-3095.
VII. NMR Charts

$\begin{array}{lllllllllllllllllllllll}95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 & -5 & -10 & \mathrm{ppm}\end{array}$

$\stackrel{\square}{7}$

$\begin{array}{llllllllllllllllllllllll}95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 & -5 & -10 & \mathrm{ppm}\end{array}$

wivipmivemulw

Wmend

$\begin{array}{lllllllllllllllllllllll}95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 & -5 & -10 & \mathrm{ppm}\end{array}$

$\stackrel{\%}{\tilde{\tilde{n}}}$


```
*)
```


Math

M.

90	80	70	60	50	40	30	20	10	0	-10	ppm

$\begin{array}{lllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 \\ 20 & 10 & 0\end{array}$

性 1

11	10	9	8	7	6	5	4	3	2	1	ppm

かんと

がomeon

User name：System
Project name：A2014

Sample Information	
Sample name：zhangheng140110－5rs	Collector：System
Sample type：unknow	Collect time：2014－1－210 16：31：17
Number： 1	Group of collection：zhangheng20140103
Times of injection： 5	Processing time：2014－1－10 19：20：07
Volume of injection： $5.00 \mu \mathrm{~L}$	Processing method：zhangheng2014011005rs
Runtime： 120.0 Miuntes	Channel name：Wvin Ch1
Sample group＇s name：	Processing channel notes：PDA 230.0 nm

Empower
 进样综合报告 报告

项目名称 A2014

样品信息		
样品名称： zhangheng 140110－5rs 样品型： 末知 瓶号： 1 进样次数： 5 进样体积： 5.00 ul 运行时间： 120．0 Minutes 样品组名称	采集者： 采集时间： 采集方法组： 处理日期： 处理方法： 通道名称： 处理通道注释：	System 2014－1－10 16：31：17 zhangheng20140103 2014－1－10 19：20：07 zhangheng2014011005rs Wvin Ch1 PDA 230.0 纳米

＿－SampleName zhangheng 140110－5rs；Vial 1；Injection 5；Channel W2996 ；Date Acquired 2014－1－10 16：31：17

	处理通道	保留时间 （分饬）	面积	\％面积	盽高
1	PDA 230.0 纳米	38.217	19297959	49.95	133673
2	PDA 230.0 约米	56.250	19338567	50.05	92188

Processing channel：PDA 230.00 nm

	Processing channel	Retention time （minute）	Area	Area \％	Peak height
1	PDA 230．0 nm	38.217	19297959	49.95	133673
2	PDA 230．0 nm	56.250	19338567	50.05	92188

User name：System
Project name：A2014

	Sample Information
Sample name：zhangheng140110－4r	Collector：System
Sample type：unknow	Collect time：2014－1－210 15：14：12
Number： 1	Group of collection：zhangheng20140103
Times of injection： 4	Processing time：2014－1－10 19：14：16
Volume of injection： $5.00 \mu \mathrm{~L}$	Processing method：zhangheng2014011004r
Runtime： 120.0 Miuntes	Channel name：Wvln Ch1
Sample group＇s name：	Processing channel notes：PDA 230．0 nm

Empower

进样综合报告 报告

处理通道：PDA 230.0 纳米

	訃理迥道	保関时间 （匋镜）	面机	\％相机	峰育
1	PDA 230.0 施米	54.900	19557067	100．00	100272

Processing channel：PDA $\mathbf{2 3 0 . 0} \mathbf{~ n m}$

	Processing channel	Retention time （minute）	Area	Area \％	Peak height
1	PDA 230．0 nm	54.900	19557067	100.00	100272

User name：System
Project name：A2014

Sample Information	
Sample name：zhangheng140110－6s	Collector：System
Sample type：unknow	Collect time：2014－1－210 17：47：08
Number： 1	Group of collection：zhangheng20140103
Times of injection： 6	Processing time：2014－1－10 19：17：49
Volume of injection： $5.00 \mu \mathrm{~L}$	Processing method：zhangheng2014011006s
Runtime： 120.0 Miuntes	Channel name：Wvin Ch1
Sample group＇s name：	Processing channel notes：PDA 230.0 nm

Empower
进样综合报告 报告

	成户名称：System		A2014
样品信息			
样品名称：样品类型：瓶号： 进样次数：进样体积：运行时间：样品组名称：	```zhangheng 140110-6s 末知 1 6 5.00 ul 120.0 Minutes```	采集者： 采集时间： 采集方法组： 处理日期： 处理方法： 通道名称： 处理通道注释：	System 2014－1－10 17：47：08 zhangheng20140103 2014－1－10 19：17：49 zhangheng2014011006s Wvin Ch1 PDA 230.0 纳米

＿＿SampleName zhangheng 140110－6s；Vial 1；Injection 6；Channel W2996 ；Date Acquired 2014－1－10 17：47：08

处理通道：PDA 230.0							纳米
	处理通道	保留时间 （分钟）	面积	\％面积	览高		
1	PDA 230.0 纳米	38.723	26944821	100.00	185606		

Processing channel：PDA 230.0 nm

	Processing channel	Retention time （minute）	Area	Area \％	Peak height
1	PDA 230.0 nm	38.723	26944821	100.00	185606

Racemic－－1

Project name：A2014

	Sample Information
Sample name：zhangheng14011608	Collector：System
Sample type：unknow	Collect time：2014－1－16 14：11：11
Number： 1	Group of collection：zhangheng20140103
Times of injection： 1	Processing time：2014－1－16 14：49：17
Volume of injection： $5.00 \mu \mathrm{~L}$	Processing method：zhhP3OMers
Runtime： 120.0 Miuntes	Channel name：Wvin Ch1
Sample group＇s name：	Processing channel notes：PDA 254.0 nm

进样综合报告 报告
Empower

处理通道：PDA 254.0 纳米

	处理通道		保留时间 （分钟）	面积	\％面积	琒高
1	PDA 254．0 纳米	5.262	4138398	49.49	214263	
2	PDA 254．0 纳米	7.070	4222996	50.51	155545	

Processing channel：PDA 254.00 nm

	Processing channel	Retention time （minute）	Area	Area \％	Peak height
1	PDA 254.0 nm	5.262	4138398	49.49	214263
2	PDA 254.0 nm	7.070	422996	50.51	155545

User name：System
Project name：A2014

	Sample Information
Sample name：zhangheng14011610	Collector：System
Sample type：unknow	Collect time：2014－1－16 14：36：28
Number： 1	Group of collection：zhangheng20140103
Times of injection： 3	Processing time：2014－1－16 14：55：51
Volume of injection： $5.00 \mu \mathrm{~L}$	Processing method：zhhP3OMer2
Runtime： 120.0 Miuntes	Channel name：Wvin Ch1
Sample group＇s name：	Processing channel notes：PDA 254.0 nm

Empower 进样综合报告报告

处理通道：PDA 254.0 纳米

	处理通道	保留时间 （分钟）	面积	\％面积	峰高
1	PDA 254.0 纳米	5.232	11330312	99.82	585201
2	PDA 254.0 纳米	6.970	20160	0.18	1302

Processing channel：PDA 254.00 nm

	Processing channel	Retention time （minute）	Area	Area \％	Peak height
1	PDA 254.0 nm	5.232	11330312	99.82	585201
2	PDA 254.0 nm	6.970	20160	0.18	1302

