Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information for

AgNO₂-mediated direct nitration of quinoxaline tertiary benzylic C-H

bond and direct conversion of 2-methyl quinoxalines into related nitriles

Degui Wu, Jian Zhang, Jianhai Cui, Wei Zhang, and Yunkui Liu*

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Email: ykuiliu@zjut.edu.cn

Contents

1. General Information	S2
2. Preparation of Substituted Quinoxalines 1a-1k, 1p, 1q, 1r, and	S2
8a-h	
3. Preparation of Substituted Quinoxalines 11–10	S3
4. Typical Experimental Procedure for the Synthesis of 2 via	S3-S4
AgNO ₂ -Mediated Nitration of Quinoxaline Benzylic C-H Bond	
5. Typical Experimental Procedure for the Conversion of 8 into 9	S4
6. Characterization of all Products	S4–S16
7. Mechanistic Studies	S16
7.1 Determination of Intermolecular Kinetic Isotope Effect between	S16-S18
1a and [D]-1a	
7.2 Effect of Radical Scavenger TEMPO on the Reaction	S18-S19
8. References	S19
9. NMR Spectra of All Products	S20-S44

1. General Information

Melting points are uncorrected. The ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III 500 at 25 °C in CDCl₃ at 500 MHz, 125 MHz, respectively, with TMS as internal standard. Chemical shifts (δ) are expressed in ppm and coupling constants *J* are given in Hz. The IR spectra were recorded on an FT-IR spectrometer. GC-MS experiments were performed with an Agilent 6890N GC system equipped with a 5973N mass-selective detector with EI source, low and high resolution mass spectra (LRMS and HRMS) were obtained on a TOF MS instrument with EI or ESI source.

2. Preparation of Substituted Quinoxalines 1a-1k, 1p, 1q, 1r, 8a-h

Scheme S1

1a–1k, **1p**, **1q**, **1r**, **8a-h** were synthesized according to the literature procedure (Scheme S1).¹ General procedure: To a suspension of \mathbf{H}^2 (2.0 mmol) and HClO₄·SiO₂.³ (0.2 g) in CH₃CN (10 mL) was added dropwise a solution of *o*-phenyldiamines **I** (2.4 mmol) in CH₃CN (2 mL) and the mixture was stirred at room temperature for 5 h. After completion (monitored by TLC), the reaction mixture was filtered and washed with CH₂Cl₂ (20 mL). The filtrate was concentrated and the residue was purified by column chromatography on silica gel (100-200 mesh) using petroleum ether-EtOAc (6:1, V/V) as the eluent to obtain pure product.

3. Preparation of Substituted Quinoxalines 11-10

Scheme S2

11–10 were synthesized according to the literature procedure (Scheme S2).⁴ General procedure: A mixture of *o*-phenyldiamines I (1 mmol) and α -dicarbonyl compound III (1 mmol) was intimately mixed with pre-activated KF-alumina (1:4) (0.5 g) (Basic; Grade: Brockmann1, and activated by heating under vacuum at 150 °C until bubbling ceases and then cooled to room temperature under vacuum) and stirred the solid mixture with a magnetic spin bar at room temperature for 1-2 hours. After the reaction was complete, the solid mixture washed with diethyl ether (3 × 10 mL) and the solid was filtered off. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (100-200 mesh) using petroleum ether-EtOAc (6:1, V/V) as the eluent to obtain pure product.

4. Typical Experimental Procedure for the Synthesis of 2 via AgNO₂-Mediated Nitration of Quinoxaline Benzylic C-H Bond

1 (0.3 mmol), AgNO₂ (55.4 mg, 0.36 mmol), $K_2S_2O_8$ (97.3 mg, 0.36 mmol), and anhydrous DCE (3.5 mL) were sequentially added to a 25-mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. Then the flask was sealed and stirred at 110 or 130 °C for 48 h. Upon completion, the resulting mixture was diluted with $CH_2Cl_2(10 \text{ mL})$ and filtered through Celite. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100-200 mesh) using petroleum ether-EtOAc as eluent (10/1-3/1, V/V) to give pure product **2**.

5. Typical Experimental Procedure for the Conversion of 8 into 9

8 (0.3 mmol), AgNO₂ (101.6 mg, 0.66 mmol), K₂S₂O₈ (178.4 mg, 0.66 mmol), and DCE (4.0 mL) were sequentially added to a 25-mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. Then the resultant mixture in the sealed tube was frozen by immersion of the flask in liquid N₂. When solvent was completely frozen, the flask was opened to the vacuum (high vacuum) and pumped for 2-3 minutes, with the flask still immersed in liquid N₂. The flask was then closed and warmed until solvent completely melted. This process was repeated three times and after the last cycle the flask was backfilled with an inert Ar gas. Then the flask was sealed and stirred at 130 °C for 72 h. Upon completion, the resulting mixture was diluted with CH_2Cl_2 (10 mL) and filtered through Celite. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100-200 mesh) using petroleum ether-EtOAc as eluent (6/1, V/V) to give pure product **9**.

6. Characterization of all Products

2-(2-nitropropan-2-yl)quinoxaline (2a)

Brown oil; $R_f = 0.5$ (petroleum ether-EtOAc= 3:1); IR (neat): v = 1524 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.97 (s, 1H), 8.16-8.10 (m, 2H), 7.84-7.82 (m, 2H), 2.19 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 152.7, 142.3, 142.0, 141.0, 130.8, 130.7, 129.7, 129.2, 90.7, 26.4; LRMS (ESI): 218.10 [M+H]⁺; HRMS (ESI) for C₁₁H₁₂N₃O₂ [M+H]⁺: calcd. 217.0930, found 217.0936.

6,7-dimethyl-2-(2-nitropropan-2-yl)quinoxaline (2b)

Yellow solid; $R_f = 0.5$ (petroleum ether-EtOAc= 3:1); mp 95-97 °C; IR (KBr): v = 1542(NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.86 (s, 1H), 7.87 (s, 1H), 7.84 (s, 1H), 2.52 (s, 3H), 2.50 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 151.7, 141.5, 141.4, 141.1, 141.0, 140.0, 128.6, 128.1, 90.7, 26.3, 20.4, 20.3; LRMS (ESI): 246.24 [M+H]⁺; HRMS (ESI) for $C_{13}H_{16}N_{3}O_{2}$ [M+H]⁺: calcd. 246.1243, found 246.1237.

6,7-dichloro-2-(2-nitropropan-2-yl)quinoxaline (2c)

Yellow solid; $R_f = 0.5$ (petroleum ether-EtOAc= 6:1); mp 114-115 °C; IR (KBr): v = 1550 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.95 (s, 1H), 8.27 (s, 1H), 8.25 (s, 1H), 2.16 (s,

6H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.7, 143.4, 140.6, 139.7, 135.64, 135.60, 130.2, 129.8, 90.5, 26.2; LRMS (ESI): 285.89 [M+H]⁺; HRMS (ESI) for C₁₁H₁₀Cl₂N₃O₂ [M+H]⁺: calcd. 286.0150, found 286.0158.

7-nitro-2-(2-nitropropan-2-yl)quinoxaline (2d)

Brown solid; $R_f = 0.6$ (petroleum ether-EtOAc= 3:1); mp 127-129 °C; IR (KBr): v = 1544 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 9.11 (s, 1H), 9.05 (d, J = 2.5 Hz, 1H), 8.60 (dd, $J_1 = 9.0$ Hz, $J_2 = 2.5$ Hz, 1H), 8.28 (d, J = 9.0 Hz, 1H), 2.21 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 155.7, 148.4, 144.7, 143.3, 140.8, 131.4, 125.6, 124.1, 90.6, 26.2; LRMS (ESI): 285.37 [M+Na]⁺; HRMS (ESI) for C₁₁H₁₀N₄O₄Na [M+Na]⁺: calcd. 285.0600, found 285.0607.

7-bromo-2-(2-nitropropan-2-yl)quinoxaline (2e)

Yellow solid; $R_f = 0.3$ (petroleum ether-EtOAc= 6:1); mp 122-123 °C; IR (KBr): v = 1598(NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.96 (s, 1H), 8.32 (d, J = 2.0 Hz, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.91 (dd, $J_1 = 9.0$ Hz, $J_2 = 2.0$ Hz, 1H), 2.17 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.6, 142.6, 141.6, 140.8, 134.4, 132.0, 130.5, 124.9, 90.6, 26.3; LRMS (ESI): 296.21 [M+H]⁺; HRMS (ESI) for C₁₁H₁₁BrN₃O₂ [M+H]⁺: calcd. 296.0035, found 296.0028.

2-(2-nitrobutan-2-yl)quinoxaline (2f)

Brown oil; $R_f = 0.5$ (petroleum ether-EtOAc= 3:1); IR (neat): v = 1524 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.93 (s, 1H), 8.15-8.09 (m, 2H), 7.83-7.81 (m, 2H), 2.74-2.70 (m, 1H), 2.61-2.57 (m, 1H), 2.11 (s, 3H), 1.01 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 152.5, 142.5, 141.7, 141.1, 130.7, 130.6, 129.7, 129.1, 94.5, 31.8, 22.9, 8.6; LRMS (ESI): 231.96 [M+H]⁺; HRMS (ESI) for C₁₂H₁₄N₃O₂ [M+H]⁺: calcd. 232.1086, found 232.1081.

6,7-dimethyl-2-(2-nitrobutan-2-yl)quinoxaline (2g)

Brown solid; $R_f = 0.5$ (petroleum ether-EtOAc= 4:1); mp 59-60 °C; IR (KBr): v = 1542 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.84 (s, 1H), 7.89 (s, 1H), 7.86 (s, 1H), 2.72-2.55 (m, 2H), 2.52-2.51 (m, 6H), 2.01 (s, 3H), 0.99 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 151.6, 141.6, 141.4, 141.2, 140.7, 140.3, 128.7, 128.0, 94.5, 30.8, 22.8, 20.34, 20.25, 8.6; LRMS (ESI): 260.16; HRMS (ESI) for C₁₄H₁₈N₃O₂ [M+H]⁺: calcd. 260.1399, found 260.1393.

6,7-dichloro-2-(2-nitrobutan-2-yl)quinoxaline (2h)

Brown solid; $R_f = 0.5$ (petroleum ether-EtOAc= 6:1); mp 80-82 °C; IR (KBr): v = 1550 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.91 (s, 1H), 8.27 (s, 1H), 8.25 (s, 1H), 2.73-2.66 (m, 1H), 2.60-2.53 (m, 1H), 2.09 (s, 3H), 1.00 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.6, 143.7, 140.5, 139.7, 135.6, 135.5, 130.2, 129.8, 94.3, 31.7, 22.9, 8.5; LRMS (ESI): 299.76 [M+H]⁺; HRMS (ESI) for C₁₂H₁₂Cl₂N₃O₂ [M+H]⁺: calcd. 300.0307, found 300.0312.

7-nitro-2-(2-nitrobutan-2-yl)quinoxaline (2i)

Brown solid; $R_f = 0.4$ (petroleum ether-EtOAc= 6:1); mp 80-82 °C; IR (KBr): v = 1550(NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 9.07 (s, 1H), 9.04 (d, J = 2.5 Hz, 1H), 8.60 (dd, $J_1 = 9.5$ Hz, $J_2 = 2.5$ Hz, 1H), 8.30 (d, J = 9.5 Hz, 1H), 2.78-2.70 (m, 1H), 2.64-2.57 (m, 1H), 2.14 (s, 3H), 1.03 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 154.8, 148.5, 145.9, 144.1, 140.0, 131.1, 126.0, 124.1, 94.4, 31.8, 23.0, 8.6; LRMS (ESI): 299.20 [M+Na]⁺; HRMS (ESI) for C₁₂H₁₂N₄O₄Na [M+Na]⁺: calcd. 299.0756, found 299.0762.

7-bromo-2-(2-nitrobutan-2-yl)quinoxaline (2j)

Yellow solid; $R_f = 0.5$ (petroleum ether-EtOAc= 4:1); mp 89-91 °C; IR (KBr): v = 1541 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.92 (s, 1H), 8.31 (d, J = 2.0 Hz, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.90 (dd, $J_1 = 9.0$ Hz, $J_2 = 2.0$ Hz, 1H), 2.74-2.61 (m, 1H), 2.59-2.54 (m, 1H), 2.10 (s, 3H), 1.01 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.4, 142.9, 141.6, 140.6, 134.2, 132.0, 130.5, 124.8, 94.4, 31.8, 22.9, 8.6; LRMS (ESI): 309.85 [M+H]⁺; HRMS (ESI) for C₁₂H₁₃BrN₃O₂ [M+H]⁺: calcd. 310.0191, found 310.0185.

7-chloro-2-(2-nitrobutan-2-yl)quinoxaline (2k)

Yellow solid; $R_f = 0.3$ (petroleum ether-EtOAc= 6:1); mp 50-51 °C; IR (KBr): v = 1550 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.93 (s, 1H), 8.14 (d, J = 2.5 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H), 7.76 (dd, $J_1 = 9.0$ Hz, $J_2 = 2.0$ Hz, 1H), 2.74-2.61 (m, 1H), 2.60-2.54 (m, 1H), 2.10 (s, 3H), 1.01 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 152.7, 143.5, 142.1, 139.6, 136.7, 131.7, 130.9, 128.1, 94.4, 31.8, 22.9, 8.6; LRMS (ESI): 265.91 [M+H]⁺; HRMS (ESI) for C₁₂H₁₃ClN₃O₂ [M+H]⁺: calcd. 266.0696, found 266.0691.

2-(2-nitropropan-2-yl)-3-phenylquinoxaline (2l)

Yellow solid; $R_f = 0.5$ (petroleum ether-EtOAc= 6:1); mp 97-98 °C; IR (KBr): v = 1550 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.19-8.15 (m 2H), 7.86-7.84 (m 2H), 7.50-7.48 (m, 3H), 7.37-7.34 (m, 2H), 1.96 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.9, 151.1, 140.9, 140.0, 138.5, 131.0, 130.4, 129.4, 129.1, 129.0, 128.9, 128.5, 91.4, 27.7; LRMS (ESI): 293.94 [M+H]⁺; HRMS (ESI) for C₁₇H₁₆N₃O₂ [M+H]⁺: calcd. 294.1243, found 294.1243.

6,7-dimethyl-2-(2-nitropropan-2-yl)-3-phenylquinoxaline (2m)

Yellow solid; $R_f = 0.4$ (petroleum ether-EtOAc= 6:1); mp 121-123 °C; IR (KBr): v = 1543 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.92 (s, 1H), 7.89 (s, 1H), 7.48-7.45 (m, 3H), 7.34-7.32 (m, 2H), 2.55 (s, 3H), 2.53 (s, 3H), 1.93 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 152.9, 150.1, 141.8, 141.1, 139.8, 139.0, 138.8, 129.0, 128.9, 128.5, 128.4, 128.0, 91.5, 27.7, 20.5, 20.3; LRMS (ESI): 321.91 [M+H]⁺; HRMS (ESI) for C₁₉H₂₀N₃O₂ [M+H]⁺: calcd. 322.1556, found 322.1560.

6,7-dichloro-2-(2-nitropropan-2-yl)-3-phenylquinoxaline (2n)

Yellow solid; $R_f = 0.5$ (petroleum ether-EtOAc= 10:1); mp 173-175 °C; IR (KBr): v =

1549 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.32 (s, 1H), 8.27 (s, 1H), 7.52-7.49 (m, 3H), 7.33-7.31 (m, 2H), 1.93 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 155.1, 152.3, 139.6, 138.7, 135.9, 135.3, 130.0, 129.7, 129.5, 128.8, 128.7, 91.3, 27.6; LRMS (ESI): 361.82 [M+H]⁺; HRMS (ESI) for C₁₇H₁₄Cl₂N₃O₂ [M+H]⁺: calcd. 362.0463, found 362.0457.

6-chloro-3-(2-nitropropan-2-yl)-2-phenylquinoxaline (20)

Yellow solid; $R_f = 0.5$ (petroleum ether-EtOAc= 6:1); mp 98-100 °C; IR (KBr): v = 1547 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.15-8.11 (m, 2H), 7.80 (d, J = 2.0 Hz, 1H), 7.51-7.49 (m, 3H), 7.34-7.32 (m, 2H), 1.94 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 154.9, 151.3, 141.1, 138.4, 138.1, 137.0, 131.5, 130.6, 129.3, 128.8, 128.6, 127.9, 91.3, 27.6; LRMS (ESI): 327.88 [M+H]⁺; HRMS (ESI) for C₁₇H₁₅ClN₃O₂: calcd. 328.0853, found 328.0859.

1-(quinoxalin-2-yl)ethanone (2q')⁵

Yellow solid; $R_f = 0.6$ (petroleum ether-EtOAc= 6:1); mp 76-78 °C (lit.⁵ mp 77 °C); IR (neat): v = 1717 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 9.51 (s, 1H), 8.23-8.21 (m, 2H), 8.20-8.18 (m, 2H), 2.88 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 199.8, 146.6, 143.9,

143.1, 141.1, 132.2, 130.7, 130.5, 129.5, 25.5; GC-MS (EI, 70eV): m/z (%) = 172 (100) [M⁺], 130 (97).

diphenyl(quinoxalin-2-yl)methanol (2r')

Yellow liquid, $R_f = 0.50$ (petroleum ether-EtOAc = 6:1); m.p. 168-170 °C; IR (neat): 3400 (O-H) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.83 (s, 1H), 8.17–8.12 (m, 2H), 7.85–7.79 (m, 2H), 7.39–7.31 (m, 10H), 6.30 (br s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 157.4, 144.9, 144.6, 141.3, 139.7, 130.5, 130.0, 129.0, 128.7, 128.2, 128.0, 127.7, 80.1; GC-MS (EI, 70 eV): m/z (%) = 312 [M⁺]; HRMS (EI) for C₂₁H₁₆N₂O: calcd. 312.1263, found 312.1267.

3-phenylquinoxaline-2-carbonitrile (9a)

Pale yellow solid, $R_f = 0.48$ (petroleum ether-EtOAc = 6:1); m.p. 168-170 °C; IR (neat): 2251 (C=N) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.20 (t, *J* = 7.0 Hz, 2H), 8.08–8.06 (m, 2H), 7.97–7.94 (m, 1H), 7.89 (t, *J* = 8.5 Hz, 1H), 7.64–7.61 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 154.2, 142.3, 140.6, 135.1, 133.5, 131.4, 130.8, 129.6, 129.5, 129.3, 129.0, 128.3, 116.6; GC-MS (EI, 70 eV): *m/z* (%) = 231 [M⁺]; HRMS (EI) for C₁₅H₉N₃: calcd. 231.0796, found 231.0790.

3-(2-methoxyphenyl)quinoxaline-2-carbonitrile (9b)

Pale yellow solid, $R_f = 0.38$ (petroleum ether-EtOAc = 6:1); m.p. 138-140 °C; IR (neat): 2237(C=N) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.20–8.17 (m, 2H), 7.92–7.88 (m, 1H), 7.87–7.83 (m, 1H), 7.60–7.58 (m, 1H), 7.567–.53 (m, 1H), 7.19–7.16 (m, 1H), 7.10 (d, J = 8.5 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 157.2, 153.4, 142.5, 140.2, 132.8, 132.2, 131.5, 131.2, 131.0, 129.44, 129.42, 124.9, 121.3, 116.3, 111.4, 55.3; GC-MS (EI, 70 eV): m/z (%) = 261 [M⁺]; HRMS (EI) for C₁₆H₁₁N₃O: calcd. 261.0902, found 261.0906.

3-(3-methoxyphenyl)quinoxaline-2-carbonitrile (9c)

Pale yellow solid, $R_f = 0.35$ (petroleum ether-EtOAc = 6:1); m.p. 167-169 °C; IR (neat): 2232 (C=N) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.22–8.19 (m, 2H), 7.98–7.94 (m, 1H), 7.9 –7. 88 (m, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 2.0 Hz, 1H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.16–7.14 (m, 1H), 3.94 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ : 159.7, 153.8, 142.1, 140.4, 136.1, 133.4, 131.2, 129.9, 129.4, 129.3, 128.2, 121.5, 116.9, 116.5, 114.1, 55.5; GC-MS (EI, 70 eV): *m/z* (%) = 261 [M⁺]; HRMS (EI) for C₁₆H₁₁N₃O: calcd. 261.0902, found 261.0908.

3-p-tolylquinoxaline-2-carbonitrile (9d)

Pale yellow solid, $R_f = 0.45$ (petroleum ether-EtOAc = 6:1); m.p. 185-186 °C; IR (neat): 2240 (C=N) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.17 (t, *J* = 7.5 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.93–9.91 (m, 1H), 7.87–7.84 (m, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 154.1, 142.4, 141.2, 140.4, 133.4, 132.3, 131.1, 129.6, 129.5, 129.4, 129.2, 128.3, 116.7, 21.4; GC-MS (EI, 70 eV): *m/z* (%) = 245 [M⁺]; HRMS (EI) for C₁₆H₁₁N₃: calcd. 245.0953, found 245.0948.

3-(4-fluorophenyl)quinoxaline-2-carbonitrile (9e)

Pale yellow solid, $R_f = 0.43$ (petroleum ether-EtOAc = 6:1); m.p. 176-178 °C; IR (neat): 2228 (C=N) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.22–8.20 (m, 2H), 8.12–8.08 (m, 2H), 8.0–7.96 (m, 1H), 7.93–7.90 (m, 1H), 7.34–7.29 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 164.5 (d, $J_{C-F} = 251.3$ Hz), 153.2, 142.4, 140.7, 133.7, 131.51, 131.50 (d, $J_{C-F} = 8.8$ Hz), 131.3 (d, $J_{C-F} = 2.5$ Hz), 129.6 ($J_{C-F} = 1.3$ Hz), 128.1, 116.6, 116.2 (d, $J_{C-F} = 22.5$ Hz); GC-MS (EI, 70 eV): m/z (%) = 249 [M⁺]; HRMS (EI) for C₁₅H₈FN₃: calcd. 249.0702, found 249.0707.

3-(4-chlorophenyl)quinoxaline-2-carbonitrile (9f)

Pale yellow solid, $R_f = 0.45$ (petroleum ether-EtOAc = 6:1); m.p. 218-220 °C; IR (neat): 2225 (C=N) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.22–8.20 (m, 2H) 8.06–8.03 (m, 2H), 8.00–7.96 (m, 1H), 7.94–7.90 (m, 1H), 7.61–7.59 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.0, 142.4, 140.8, 137.4, 133.8, 133.6, 131.6, 130.7, 129.60, 129.58, 129.3, 128.1, 116.5; GC-MS (EI, 70 eV): m/z (%) = 265 [M⁺]; HRMS (EI) for C₁₅H₈ClN₃: calcd. 265.0407, found 249.0401.

3-(4-bromophenyl)quinoxaline-2-carbonitrile (9g)

Pale yellow solid, $R_f = 0.45$ (petroleum ether-EtOAc = 6:1); m.p. 215-217 °C; IR (neat): 2236 (C=N) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.23–8.21 (m, 2H), 8.00–7.96 (m, 3H), 7.94–7.91 (m, 1H), 7.78–7.75 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.1, 142.4, 140.8, 134.0, 133.8, 132.4, 132.3, 131.7, 130.8, 129.6, 128.1,125.9, 116.5; GC-MS (EI, 70 eV): m/z (%) = 309 [M⁺]; HRMS (EI) for C₁₅H₈BrN₃: calcd. 308.9902, found 308.9908.

6,7-dimethyl-3-phenylquinoxaline-2-carbonitrile (9h)

Pale yellow solid, $R_f = 0.48$ (petroleum ether-EtOAc = 6:1); m.p. 178-180 °C; IR (neat):

2229 (C=N) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 8.05–8.03 (m, 2H), 7.96 (s, 1H), 7.93 (s, 1H), 7.63-7.58 (m, 3H), 2.574 (s, 3H), 2.566 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.7, 145.1, 142.5, 141.6, 139.9, 135.6, 130.5, 129.3, 128.9, 128.6, 128.3, 127.3, 117.0, 20.8, 20.4; GC-MS (EI, 70 eV): m/z (%) = 259 [M⁺]; HRMS (EI) for C₁₇H₁₃N₃: calcd. 259.1109, found 259.1104.

7. Mechanistic Studies

7.1 Determination of Intermolecular Kinetic Isotope Effect between 1a and [D]-1a.

Preparation of [*D*]-1a: [*D*]-1a was prepared according to a modified procedure reported by Huang.⁶ To a 25-mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal were sequentially added 1a (51.7 mg, 0.3 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol, 5 mol% based on 1a), 1,10-phenanthroline (2.7 mg, 0.015 mmol, 5 mol% based on 1a), CD₃COOD (1.5 mmol, 5 equiv relative to 1a), and anhydrous CH₂Cl₂ (3.5 mL). The flaske was sealed and heated to 120 °C for 24 h. After evaporation of the solvent of the resulting minxture under vacuum, the residue was purified by column chromatography on silica gel (100-200 mesh) using petroleum ether-EtOAc (4:1, V/V) as eluent. A mixture of [*D*]-1a and 1a with a molar ratio of 6:4 was obtained (0.25 mmol, total yield: 83.3%) on

the basis of ¹H NMR spectral analysis (Figure S1).

Figure S1. ¹H NMR Spectrum of [*D*]-1a and 1a (6:4) Mixture

Determination of intermolecular kinetic isotope effect between **1a** and **[D]-1a**: To a 25-mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal were sequentially added a mixture of **1a** and **[D]-1a** (molar ratio 4:6, total 0.25 mmol), AgNO₂ (46.2 mg, 0.3 mmol), K₂S₂O₈ (81.1 mg, 0.3 mmol), and anhydrous DCE (3.5 mL). Then the flask was sealed and stirred at 110 for 36 h. GC-MS analysis showed that 85% of the starting substrates were consumed. The resulting mixture was then diluted with CH_2Cl_2 (10 mL) and filtered through Celite. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100-200 mesh) using

petroleum ether-EtOAc as eluent (10/1, V/V) to recover the unreacted 1a and [D]-1a. ¹H NMR spectral analysis showed that 1a and [D]-1a have a molar ratio of 29:71 (Figure S2).

Figure S2. ¹H NMR Spectrum of the Unreacted [*D*]-1a and 1a (71:29) Mixture

Based on the above experimental data, the intermolecular kinetic isotope effect is calculated to be $k_{\rm H}/k_{\rm D} = [(0.25 \times 0.4 - 0.25 \times 0.15 \times 0.29) \times 6/4]/(0.25 \times 0.6 - 0.25 \times 0.15 \times 0.71)$ $\approx 1.1.$

7.2 Effect of Radical Scavenger TEMPO on the Reaction.

1a (51.7 mg, 0.3 mmol), AgNO₂ (55.4 mg, 0.36 mmol), $K_2S_2O_8$ (97.3 mg, 0.36 mmol), TEMPO (0.15 mmol or 0.6 mmol), phenanthrene (21.4 mg, 0.12 mmol, internal standard), and anhydrous DCE (3.5 mL) were sequentially added to a 25-mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. Then the flask was sealed and stirred at 110 °C for 48 h. Upon completion, the resulting mixture was analyzed by GC (38% of **2a**, TEMPO = 0.5 equiv; trace amount of **2a**, TEMPO = 2 equiv).

8. References

- 1. B. Das, K. Venkateswarlu, K. Suneel and A. Majhi, Tetrahedron Lett., 2007, 48, 5371.
- S. Kajigaeshi, T. Kakinami, T. Okamoto and S. Fujsaki, *Bull. Chem. Soc. Jpn.*, 1987, 60, 1159.
- 3. A. K. Chakraborti and R. Gulhane, Chem. Commun., 2003, 1896.
- 4. S. Paul and B. Basu, Tetrahedron Lett., 2011, 52, 6597.
- 5. E. Hayashi, Chem. Pharm. Bull., 1977, 25, 579.
- B. Qian, S. Guo, J. Shao, Q. Zhu, L. Yang, C. Xia and H. Huang, J. Am. Chem. Soc., 2010, 132, 3650.

9. NMR Spectra of All Products

S23

S27

-1.961

S32

S33

130617 CJHT53-1 CDCI3

-1.943

S35

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

S37

140617 140530-6 CDCI3

-2.478

I2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

140617 140530-1 CDCI3

8 8 222 8 8 220 8 8 220 8 8 220 8 8 205 8 205

140617 140530-4 CDCI3

140617 140530-3 CDCI3

