Supporting Information

Chemically Regulating Rh(I)-Bodipy Photoredox Switches

A. M. Lifschitz,^{*a*} R. M. Young,^{*a,b*} J. Mendez-Arroyo,^{*a*} V. V. Roznyatovskiy,^{*a,b*} C. M. McGuirk,^{*a*} M. R. Wasielewski^{*a,b*} and C. A. Mirkin^{*a*}

^{*a*} Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

^b Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, United States.

Table of Contents

Experimental	S3
Absorption Spectra	
Fluorescence Emission Spectra.	S10
Fluorescence Excitation Spectra.	S11
Electrochemistry	S12
Spectroelectrochemistry	S15
Transient Absorption Spectroscopy	S16
Computational	S18
NMR Spectra	S20
References	S55

Experimental

Materials and Methods. All ligands were synthesized and stored using standard Schlenk line conditions, under an inert nitrogen atmosphere. Phosphinoalkylthiol-Bodipy ligand **S3**,¹ benzyl-(2-diphenylphosphinoethyl)thioether² and (2-diphenylphosphinoethyl)-diphenylamine³ were synthesized as reported previously in the literature. The synthesis and manipulation of all Rh(I) complexes was performed in an inert-atmosphere glove box. All solvents were purchased as HPLC grade and degassed thoroughly under a stream of argon previous to use. Deuterated solvents were purchased from Cambridge Isotope Laboratories and degassed under a stream of argon prior to use. All other chemicals were purchased from Aldrich Chemical Co. and used as received. NMR spectra were recorded on a Bruker Avance 400 MHz. ¹H and ¹³C{¹H} NMR spectra were referenced to residual proton and carbon resonances in the deuterated solvents. ³¹P{¹H} NMR spectra were referenced to a 85% H₃PO₄ aqueous solution. ¹⁹F NMR spectra were referenced to a CFCl₃ sample in CDCl₃ solution. ¹¹B{¹H} NMR spectra were referenced to neat BF₃•OEt₂. All chemical shifts are reported in ppm. High Resolution electrospray ionization (ESI) mass spectra measurements were recorded on an Agilent 6120 LC-TOF instrument in positive ion mode.

UV-vis absorption measurements were performed in a Varian Cary 50 Bio spectrophotometer utilizing 10 mm cell-path quartz cuvettes (VWR). fluorescence emission and fluorescence excitation measurements were carried out in a Horiba Jovin-Yvonne Fluorolog fluorimeter and fluorescence quantum yields were derived from the comparative method using sulforhodamine B or fluorescein isothiocyanate in ethanol as standards. In particular, quantum yields were calculated from the least squares fit of integrated fluorescence emission versus absorbance values curves comprising seven dilution samples.

Electrochemical measurements were performed with an Epsilon BASi potentiostat. Cyclic voltammetry measurements were recorded in an air-tight cell comprising a glassy carbon working electrode, a Ag wire pseudo-reference electrode and a Pt wire auxiliary electrode. Samples were prepared in an inert atmosphere glove box as 5 mM solution in 0.1 M n-Bu₄NPF₆ in CH₂Cl₂. Scan rates of 100 mV/s were

used in all measurements. All cyclic voltammetry graphs show voltages versus the ferrocene/ferrocenium couple. Spectroelectrochemical measurements were performed in an air-tight, 2 mm cuvette incorporating a Pt mesh working electrode, a Ag wire pseudo-reference electrode and a Pt wire auxiliary electrode, and spectral changes were recorded in a Varian Cary 50 Bio spectrophotometer.

Transient Absorption Spectroscopy. Visible/near-infrared femtosecond transient absorption spectroscopy was performed on an instrument that is described elsewhere.⁴ Briefly, the 827 nm fundamental output of a commercial Ti:sapphire laser system (Tsunami oscillator / Spitfire amplifier, Spectra-Physics) is frequency doubled to 414 nm (~150 μ J/pulse). Depending on the desired pump wavelength, this light is either attenuated and used directly for sample excitation or it used to pump a seeded, two-stage, laboratory-constructed optical parametric amplifier (OPA); in both cases it is then chopped at 500 Hz and rotated to be at the magic angle (54.7°) to the probe. The single-filament continuum probe is generated by focusing into the appropriate non-linear medium for the desired probe range. For visible continuum (430–850 nm), ~1.5 μ J/pulse is tightly focused into a 3 mm sapphire plate, while for the NIR probe (800–1600 nm), ~5 μ J/pulse is loosely focused into a proprietary source (Ultrafast Systems, LLC). Both pump and probe are focused to ~100 μ m at the sample. After interaction, the transmitted probe is then coupled into an optical fiber and detected using the appropriate detector (customized Helios, Ultrafast Systems, LLC).

General Procedure for the Generation of Rh(I) complexes. All Rh(I) complexes were first prepared as chloride salts via dropwise addition of a solution of benzyl-(2-diphenylphosphinoethyl)thioether (33.6 mg, 0.100 mmol) in 5 mL of CH₂Cl₂ to a solution of Rh₂Cl₂ (cyclooctene)₄ (35.9 mg, 0.100 mmol) in 5 mL of CH₂Cl₂. After stirring for 5 minutes, a solution of the second ligand ligand (0.100 mmol) in 5 mL of CH₂Cl₂ was added in a dropwise fashion. The solution volume was then reduced to approximately 1 mL and the product was precipitated with pentane. The product was collected *via* vacuum filtration and washed with pentane to afford the semiopen complex (*in situ* ³¹P{¹H} NMR yields = quantitative, isolated yields >95%). In the case of complexes **1** and **S1**, multiple recrystallizations from CH2Cl2/pentane mixtures were required to isolate the semiopen heteroligated product, generally afforded in 60-70% yield depending on recrystallization conditions.

Chloride abstraction was achieved via suspension of 2 eq. of Tl(OTf) (70.7 mg, 0.200 mmol) in 3 mL of CH₂Cl₂ solution of the semiopen complexes (0.100 mmol). Complex **S4** was synthesized via chloride abstraction with TlBF₄. In all cases, the suspension was filtered through a pad of Celite after 20 minutes of vigorous stirring and the sample was recrystallized from a CH₂Cl₂/pentane mixture to afford the corresponding closed complexes (*in situ* ³¹P{¹H} NMR yields = quantitative, isolated yields >95%). Closed complexes were quantitatively converted back to their chloride salts via addition of n-Bu₄NCl (24.5 mg, 0.100 mmol) to a CH₂Cl₂ solution of closed complex (0.100 mmol). Partial displacement of phosphinoalkylamino ligands in closed complexes with a neutral moiety was achieved via the addition of 50 µl of acetonitrile to a 3 ml solution of closed complexes were converted back to their closed via the addition of 50 µl of acetonitrile to a 3 ml solution of closed complexes were converted back to their closed complex counterparts through removal of all solvent in vacuo and re-dissolution in CH₂Cl₂ (*in situ* ³¹P{¹H} NMR yields = quantitative, isolated yields >98%).

Figure S1. Previously reported ligand S3 used in the formation of complexes 1 and 2.¹

[**RhCl**(κ_2 -**P**,**S**-**Bz**)(**P**,**S**-**F**₄**ph**-**Bodipy**)] (1). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 7.68-7.07 (m, 25 H), 4.03-0.97 (m, 32 H). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ 70.9 (dd, J_{P-P} = 40 Hz, J_{P-Rh} = 185 Hz, 1 P), 31.0 (dd, J_{P-P} = 40 Hz, J_{P-Rh} = 167 Hz, 1 P). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ -132.0 (m, 2 F), -141.4 (m, 2 F), -146.0 (q, J_{F-B} = 33 Hz, 2 F). ¹¹B{¹H} NMR (128.38 MHz, 25°C, CD₂Cl₂): δ 0.05 (t, J_{B-F} = 33 Hz). HRMS (ESI+) *m*/*z* calcd for [M+H]⁺: 1171.2257; found: 1171.2262.

[**Rh**(κ_2 -**P**,**S**-**Bz**)(κ_2 -**P**,**S**-**F**₄**ph**-**Bodipy**)]**OTf** (2). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 8.30-6.40 (m, 25 H), 4.21-0.80 (m, 32 H). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ 64.3 (dd, J_{P-P} = 35 Hz, J_P. _{Rh} = 88 Hz, 1 P), 63.3 (dd, J_{P-P} = 35 Hz, J_{P-Rh} = 96 Hz, 1 P). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ - 78.9 (s, 3 F), -128.7 (m, 2 F), -136.9 (m, 2 F), -145.7 (q, J_{F-B} = 31 Hz, 2 F). ¹¹B{¹H} NMR (128.38 MHz, 25°C, CD₂Cl₂): δ 0.40 (t, J_{B-F} = 33 Hz). HRMS (ESI+) *m*/*z* calcd for [M-OTf]⁺: 1135.2491; found: 1135.2514.

Figure S2. Synthesis of ligand 3.

P,N(H)-Bodipy (3). 8-thiomethyl-Bodipy **S6** (809 mg, 2.30 mmol) was dissolved in 10 ml of anhydrous CH₂Cl₂ in a Schlenk flask and 2-(diphenylphosphino)ethylamine (1.5 eq., 834 mg, 3.64 mmol) in 2 ml of CH₂Cl₂ was added. After two days of stirring at room temperature the solvent was removed in vacuo. The crude product was re-dissolved in a 1:1 mixture of CH₂Cl₂/hexanes and passed through a silica plug. The orange eluate was collected and the solvent was evacuated in vacuo. The product was then recrystallized from a CH₂Cl₂/ether mixture to afford an orange crystalline solid (1.068 g, 2.01 mmol, 87% yield). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 7.38-7.33 (m, 10 H), 5.75 (br s, 1 H), 3.60 (m, 2H), 2.42 (br s, 12H), 2.24 (s, 6 H), 1.04 (t, J_{H-H} = 7 Hz, 8 H). ¹³C{¹H} (100.63 MHz, 25°C, CD₂Cl₂): δ 150.7 (s), 144.9 (s), 136.8 (d, J_{C-P} = 11 Hz), 132.7 (d, J_{C-P} = 19 Hz), 129.8 (s), 129.0 (s), 129.0 (s), 128.7 (s), 128.6 (s), 122.8 (s), 49.2 (d, J_{C-P} = 6 Hz), 30.8 (d, J_{C-P} = 15 Hz), 17.1 (s) , 14.7 (s) , 130.0 (s) , 11.7 (s). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ -22.2 (s). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ -145.5 (q, J_{F-B} = 34 Hz). ¹¹B{¹H} NMR (128.38 MHz, 25°C, CD₂Cl₂): δ 0.59 (t, J_{B-F} = 33 Hz). HRMS (ESI+) *m*/z calcd for [M+H]⁺: 532.2864; found: 532.2865.

[**Rh**(κ_2 -**P**,**S**-**Bz**)(κ_2 -**P**,**N**(**H**)-**Bodipy**)]**OTf** (**4**). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 7.45-6.54 (m, 25 H), 3.49-0.80 (m, 33 H). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ 66.7 (dd, J_{P-P} = 38 Hz, J_{P-Rh} =

179 Hz, 1 P), 50.0 (dd, $J_{P-P} = 38$ Hz, $J_{P-Rh} = 166$ Hz, 1 P). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ -79.2 (s, 3 F), -145.7 (m, 2 F). ¹¹B{¹H} NMR (128.38 MHz, 25°C, CD₂Cl₂): δ -0.02 (t, $J_{B-F} = 33$ Hz). HRMS (ESI+) m/z calcd for [M-OTf]⁺: 970.2943; found: 970.2940.

[**Rh**(**κ**₂-**P**,**S**-**Bz**)(**P**,**N**(**H**)-**Bodipy**)(**CH**₃**CN**)]**OTf** (**5**). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 7.63-5.90 (m, 25 H), 4.26-0.89 (m, 32 H). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ 68.6 (dd, J_{P-P} = 45 Hz, J_{P-Rh} = 173 Hz, 1 P), 25.2 (dd, J_{P-P} = 45 Hz, J_{P-Rh} = 160 Hz, 1 P). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ -79.2 (s, 3 F), -144.7 (q, J_{F-B} = 31 Hz, 2 F). ¹¹B{¹H} NMR (128.38 MHz, 25°C, CD₂Cl₂): δ - 0.32 (t, J_{B-F} = 32 Hz). HRMS (ESI+) *m/z* calcd for [M-OTf]⁺: 1011.3208; found: 1011.3192.

Figure S3. Synthesis of complexes S1 and S2 which mimic the coordination environment of 1 and 2.
[RhCl(κ₂-P,S-Bz)(P,S-F₄ph)] (S1). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 8.20-6.60 (m, 25 H), 4.23-0.88 (m, 10 H). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ 70.5 (dd, J_{P-P} = 41 Hz, J_{P-Rh} = 185 Hz, 1 P), 31.2 (dd, J_{P-P} = 41 Hz, J_{P-Rh} = 166 Hz, 1 P). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ -134.4 (m, 2 F), -139.4 (m, 2 F). HRMS (ESI+) *m/z* calcd for [M+H]⁺: 869.0491; found: 869.0472.

[**Rh**(κ_2 -**P**,**S**-**Bz**)(κ_2 -**P**,**S**-**F**₄**ph**)]**OTf** (**S2**). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 8.30-6.40 (m, 26 H), 4.29-0.88 (m, 10 H). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ 63.9 (dd, J_{P-P} = 28 Hz, J_{P-Rh} = 165 Hz, 1 P), 63.5 (dd, J_{P-P} = 18 Hz, J_{P-Rh} = 165 Hz, 1 P). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ -77.7 (s, 3 F), -130.0 (m, 2 F), -134.3 (m, 2 F). HRMS (ESI+) *m/z* calcd for [M-OTf]⁺: 833.0725; found: 833.0705.

Figure S4. Synthesis of complexes S4 and S5 which mimic the coordination environment of 4 and 5.

[**Rh**(κ_2 -**P**,**S**-**Bz**)(κ_2 -**P**,**N**(**ph**)₂)]**BF**₄ (**S4**). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 8.40-6.10 (m, 35 H), 4.40-0.75 (m, 21 H). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ 65.7 (dd, J_{P-P} = 42 Hz, J_{P-Rh} = 178 Hz, 1 P), 48.4 (dd, J_{P-P} = 42 Hz, J_{P-Rh} = 173 Hz, 1 P). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ -153.7 (s). ¹¹B{¹H} NMR (128.38 MHz, 25°C, CD₂Cl₂): δ -1.29 (s). HRMS (ESI+) *m*/*z* calcd for [M-BF₄]⁺: 820.1803; found: 820.1780.

[**Rh**(**κ**₂-**P**,**S**-**Bz**)(**P**,**N**(**ph**)₂)(**CH**₃**CN**)]**BF**₄ (**S5**). ¹H NMR (400.16 MHz, 25°C, CD₂Cl₂): δ 8.30-6.30 (m, 35 H), 4.30-3.56 (m, 6 H), 2.31-1.25 (m, 21 H). ³¹P{¹H} NMR (161.98 MHz, 25°C, CD₂Cl₂): δ 69.5 (dd, $J_{P-P} = 43 \text{ Hz}$, $J_{P-Rh} = 142 \text{ Hz}$, 1 P), 24.4 (dd, $J_{P-P} = 44 \text{ Hz}$, $J_{P-Rh} = 164 \text{ Hz}$, 1 P). ¹⁹F NMR (376.49 MHz, 25°C, CD₂Cl₂): δ -153.6 (s). ¹¹B{¹H} NMR (128.38 MHz, 25°C, CD₂Cl₂): δ -1.32 (s). HRMS (ESI+) *m/z* calcd for [M-BF₄]⁺: 861.2068; found: 861.2049.

Absorption Spectra

Figure S5. Absorption spectra of 25 μ M solutions of complexes 1 and 2 in CH₂Cl₂.

Fluorescence Emission Spectra

Figure S6. Fluorescence Emission spectra of complexes 1 and 2 in CH_2Cl_2 normalized to reflect their relative fluorescence quantum yield values ($\lambda_{ex} = 505$ nm).

Figure S7. Fluorescence Emission spectra of equimolar solutions of complexes 4 and 5 in CH_2Cl_2 normalized to reflect their relative fluorescence emission intensities ($\lambda_{ex} = 470$ nm).

Excitation Spectra

Figure S8. Fluorescence excitation spectra of 4 and 5 in CH_2Cl_2 ($\lambda_{emm} = 520$ nm).

Electrochemistry

Figure S9. Cyclic voltammograms of complexes **1** and **2** in 0.1 M $N(n-Bu)_4PF_6$ solution in CH_2Cl_2 (potential vs. ferrocene/ferrocenium, scan rate: 100 mV/s).

Figure S10. Cyclic voltammograms of model complexes **S1** and **S2** in 0.1 M $N(n-Bu)_4PF_6$ solution in CH₂Cl₂ (potential vs. ferrocene/ferrocenium, scan rate: 100 mV/s).

Figure S11. Cyclic voltammogram of Bodipy ligand **S3** in 0.1 M $N(n-Bu)_4PF_6$ solution in CH_2Cl_2 (potential vs. ferrocene/ferrocenium, scan rate: 100 mV/s).

Figure S12. Cyclic voltammograms of complexes **4** and **5** in 0.1 M $N(n-Bu)_4PF_6$ solution in CH_2Cl_2 (potential vs. ferrocene/ferrocenium, scan rate: 100 mV/s).

Figure S13. Cyclic voltammograms of model complexes S4 and S5 in 0.1 M $N(n-Bu)_4PF_6$ solution in CH₂Cl₂ (potential vs. ferrocene/ferrocenium, scan rate: 100 mV/s).

Figure S14. Cyclic voltammogram of ligand **3** in 0.1 M $N(n-Bu)_4PF_6$ solution in CH_2Cl_2 (potential vs. ferrocene/ferrocenium, scan rate: 100 mV/s).

Spectroelectrochemistry

Figure S15. Spectral changes observed upon controlled-potential, bulk electrolysis of Bodipy ligand **S3** at -1600 mV in a 0.1 M $N(n-Bu)_4PF_6$ solution in CH_2Cl_2 . Inset: current vs. time profile throughout electrolysis.

Figure S16. Spectral changes observed upon controlled-potential, bulk electrolysis of Bodipy ligand **3** at -2100 mV in a 0.1 M $N(n-Bu)_4PF_6$ solution in CH_2Cl_2 . Inset: current vs. time profile throughout electrolysis.

Transient Absorption Spectroscopy

Figure S17. Transient absorption spectra of ligand S3 in CH₂Cl₂.

Figure S18. Transient absorption spectra of complex 2 in CH_2Cl_2 .

Figure S19. Transient absorption spectra of Bodipy ligand 3 in CH₂Cl₂.

5, $\lambda_{ex} = 477$ nm (1.0 μ J/pulse)

Figure S20. Transient absorption spectra of complex 5 in CH₂Cl₂.

Computational

DFT calculations were made using the Amsterdam Density Functional (ADF2013.01) suite on a 16-core Parallel Quantum Solutions (PQS) computational cluster. Geometry optimizations were made without restraint in the ADF GUI using basis sets containing triple- ζ functions with two polarization function (TZ2P), and the local density approximations of Becke⁵ and Perdew.⁶ This was followed by single point calculations using triple- ζ functions with two polarization functions (TZ2P) and the PBE-hybrid (PBE0) functional by Ernzerhof-Scuseria⁵ and by Adamo-Barone.⁶ Kohn-Sham representations of frontier orbitals were generated by the ADF 2013.01 GUI. Electron density plots with electron density potential mapped onto them for complexes **1** and **2** in their solid state conformations were calculated at the PBE-hybrid (PBE0) level of theory and mapped with the 0.03 e⁻/Å³ isodensity value.

Figure S21. Modeling of HOMO-1, HOMO and LUMO orbitals of complexes **1** and **2** determined via single point DFT calculations.

Figure S22. Modeling of HOMO-1, HOMO and LUMO orbitals of complexes **4** and **5** determined via single point DFT calculations.

Figure S23. Electrostatic potential maps of complexes **1** and **2** depicting changes in electron density at the Rh(I) metal center upon changes in coordination sphere charge.

1, 11B{1H} NMR, CD₂Cl₂

2, 31P{1H} NMR, CD₂Cl₂

3, 19F NMR, CD2Cl2

		mant 1.1 e 16.4.6 k.bele Alek	h	Whanking and a start and a sta	16.5507/184100/14401164-074-094-09100-1-1-60-4940-4944	Ly114_Ly114447~V-1-181644142~4610~110~11-140~Ju1140~11-140~140	Manamanana ang Kang Kang Kang Kang Kang Kang	MMuhahamaragalahanan
walaneenin alaan aha	Mahhavaran Aldanan Aldan an a	Mullington of Contraction of Contrac	4					

--79.18

4, 11B{1H} NMR, CD₂Cl₂

5, 31P{1H} NMR, CD₂Cl₂ + 1 drop CD₃CN

5, 31P{1H} NMR, CD₂Cl₂

×31.80 31.55 30.78 30.52

MM

S4, 19F NMR, CD₂Cl₂

--1.29

S5, 1H NMR, CD2Cl2 + 1 drop CD3CN

~4.30 ~4.20 ~4.09 $\begin{array}{c} 2.33\\ 2.22\\ 2.15\\ 2.13\\ 1.94\\ 1.04\\ 1.03\\ 1.05\\ 1.25\\$

S5, 19F NMR, CD₂Cl₂

References

- 1. A. M. Lifschitz, C. M. Shade, A. M. Spokoyny, J. Mendez-Arroyo, C. L. Stern, A. A. Sarjeant and C. A. Mirkin, *Inorg. Chem.*, 2013, **52**, 5484.
- 2. E. Pfeiffer, M. L. Pasquier and W. Marty, *Helv. Chim. Acta*, 1984, 67, 654.
- 3. H. J. Yoon, J. Kuwabara, J. H. Kim and C. A. Mirkin, *Science*, 2010, **330**, 66.
- 4. R. M. Young, S. M. Dyar, J. C. Barnes, M. Juricek, J. F. Stoddart, D. T. Co and M. R. Wasielewski, *J. Phys. Chem. A*, 2013, **117**, 12438.
- 5. S. J. Grimme, *Comput. Chem.* 2004, **25**, 1463.
- 6. M. Ernzerhof and G. Scuseria, *Chem. Phys.* 1999, **110**, 5029.