Supporting Information

Copper-mediated S-N formation via oxygen-activated

radical process: A new synthesis method for sulfonamide

Xin Huang, Jichao Wang, Zhangqin Ni, Sichang Wang and Yuanjiang Pan*

Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, P. R. China 310027 Fax: +86 571 87951629; Tel: +86 571 87951629; E-mail: panyuanjiang@zju.edu.cn

Table of contents

I General Information	S2
II Optimization of time, temperature, solvent and oxidant	S2
III General Procedure	S3
IV Characterization data for the products	S3
V References	S7
VI NMR Spectra for the Compounds	S8

I General Information

All reagents used in the experiments were obtained from commercial sources and used without further purification. Unless otherwise noted, all reactions were carried out at air atmosphere. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. All NMR spectra were recorded on Bruker AVANCE DMX-500 spectrometry at 500 MHz and 125 MHz for 1H and 13C NMR in CDCl₃, respectively. The NMR chemical shift was reported in ppm relative to 7.26 and 77.160 ppm of CDCl₃ solvent as the standards of 1H and 13C NMR, respectively. The HRMS of new products were tested on Agilent 6210 TOF LC/MS equipped with an electrospray source.

II Optimization of time, temperature, solvent and oxidant

Table S1: Optimization of reaction conditions for time, temperature, solvent and oxidant^a

	SI	H + N→O	CuCl(1equiv.) cinnamic acid Oxidant		
	CI ²	́Р 2а	All Condition CI	3aa	
Entry	Oxidant(equiv.)	Time(h)	Temperature(°C)	Solvent(ml)	Yield(%) ^b
1	$Cu(OAc)_2(1)$	12	110	DMF(1.5)	73
2	$Cu(OAc)_2(1)$	24	110	DMF(1.5)	83
3	$Cu(OAc)_2(1)$	36	110	DMF(1.5)	84
4	$Cu(OAc)_2(1)$	24	90	DMF(1.5)	35
5	$Cu(OAc)_2(1)$	24	130	DMF(1.5)	81
6	$Cu(OAc)_2(1)$	24	110	H ₂ O(1.5)	Trace
7°	$Cu(OAc)_2(1)$	24	110	TCE(1.5)	10
8	$Cu(OAc)_2(1)$	24	110	DMSO(1.5)	trace
9 ^d	$Cu(OAc)_2(1)$	24	110	DMA(1.5)	56
10	$Cu(OAc)_2(1)$	24	110	toluene(1.5)	36
11	$Cu(OAc)_2(1)$	24	110	1,4-dioxane(1.5)	27
12	$Cu(OAc)_2(1)$	24	110	AcOH(1.5)	8
13	/	24	110	DMF(1.5)	52
14 ^e	TBHP(2)	24	110	DMF(1.5)	20
15	DTBP(2)	24	110	DMF(1.5)	24

^a Reaction Condition: **1a** (0.5mmol), **2a** (1.5ml), CuCl (1equiv), cinnamic acid (1.0equiv), solvent (1.5 ml), air condition. ^b Isolated yields. ^c TCE (1,1,2- trichloroethane).

 $^d\,DMA$ (N,N-dimethylacetamide). $^e\,TBHP$ (tert-butyl hydroperoxide,70% in water).

III General Procedure

General Procedure for the Synthesis of N,N-dimethyl-4-chloro-sulfonamide(3aa)

Under air atmosphere, 4-Cl-thiophenol (0.5mmol,1a), CuCl (1 equiv), Cu(OAc)₂ (1 equiv) and cinnamic acid (1 equiv) in DMF(1.5ml, 2a) was stirred at 110°C for 24h in a 25ml flask. After cooling to room temperature, the mixture was washed with water and extracted with ethyl acetate then dried over Na₂SO₄. The organic layer was then evaporated under reduced pressure and the residue was separated by column chromatography on silica gel with Petroleum/Ethyl acetate mixtures (5/1) to get the desired product **3aa**.

IV Characterization data for the products

U / Ľ∕N、

4-Chloro- N,N-dimethylbenzenesulfonamide (3aa) ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J=8.0 Hz, 2H), 7.45(d, J=8.5 Hz, 2H), 2.64(s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 139.4, 134.3, 129.5, 129.3, 38.0. HRMS (ESI) calculated for C_8H_{10} CINO₂S [M+H]⁺: 220.0194; found 220.0196.

4-Bromo-N,N-dimethylbenzenesulfonamide(3ba)

¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J=8.5 Hz, 2H), 7.57(d, J=7.5 Hz, 2H), 2.65(s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 134.8, 132.5, 129.3, 127.9, 38.0. HRMS (ESI) calculated for C₈H₁₀BrNO₂S [M+H]⁺: 263.9689; found 2663.9687.

4-Fluoro-N,N-dimethylbenzenesulfonamide(3ca)

¹H NMR (500 MHz, CDCl₃) δ 7.74-7.72 (m, 2H), 7.18-7.14(m, 2H), 2.64(s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 164.3, 131.8, 130.5, 130.4, 116.5, 116.3, 38.0. HRMS (ESI) calculated for $C_8H_{10}FNO_2S$ [M+H]⁺: 204.0489; found 204.0491.

U / U_N∖

4-Nitro-N,N-dimethylbenzenesulfonamide(3da)

¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, J=7.5 Hz, 2H), 7.90(d, J=7.5 Hz, 2H), 2.71(s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 149.1, 140.7, 127.8, 123.3, 36.8. HRMS (ESI) calculated for $C_8H_{10}N_2O_4S$ [M+H]⁺: 231.0434; found 231.0435.

4-Methoxy-N,N-dimethylbenzenesulfonamide(3ea)

¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J=8.0 Hz, 2H), 6.94(d, J=7.5 Hz, 2H), 3.81(s, 3H), 2.61(s, 6H).

 ^{13}C NMR (125 MHz, CDCl₃) δ 163.1, 129.9, 127.1, 114.3, 55.7, 38.1. HRMS (ESI) calculated for C_9H_{13}NO_3S [M+H]^+: 216.0689; found 216.0689.

4-Methyl-N,N-dimethylbenzenesulfonamide(3fa)

¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J=8.0 Hz, 2H), 7.26(d, J=8.0 Hz, 2H), 2.61(s, 6H), 2.37(s, 3H).

 ^{13}C NMR (125 MHz, CDCl₃) δ 143.6, 132.5, 129.7, 127.9, 38.1, 21.6. HRMS (ESI) calculated for C_9H_{13}NO_2S [M+H]^+: 200.0740; found 200.0738.

4-Trifluoromethyl-N,N-dimethylbenzenesulfonamide(3ga)

¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J=8.0 Hz, 2H), 7.75(d, J=8.0 Hz, 2H), 2.68(s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 139.5, 134.7, 134.4, 128.3, 126.3, 124.5, 122.3, 38.0. HRMS (ESI) calculated for C₉H₁₀F₃NO₂S [M+H]⁺: 254.0457; found 254.0459.

3-Chloro-N,N-dimethylbenzenesulfonamide(3ha)

¹H NMR (500 MHz, CDCl₃) δ 7.69(s, 1H), 7.59 (d, J=7.5 Hz, 1H), 7.51(d, J=8.0 Hz, 1H), 7.44-7.41(m, 1H), 2.67(s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 137.5, 135.4, 132.9, 130.5, 127.7, 125.9, 38.0. HRMS (ESI) calculated for C₈H₁₀ClNO₂S [M+H]⁺: 220.0194; found 220.0195.

*_*0.

3-Methoxy-N,N-dimethylbenzenesulfonamide(3ia)

¹H NMR (500 MHz, CDCl₃) δ 7.39-7.36 (m, 1H), 7.27(d, J=7.5 Hz, 1H), 7.20(s, 1H), 7.05(d, J=8.5 Hz, 1H), 3.79(s, 3H), 2.64(s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 159.9, 136.6, 130.2, 119.9, 118.8, 112.7, 55.7, 38.0.

HRMS (ESI) calculated for $C_9H_{13}NO_3S$ [M+H]⁺: 216.0689; found 216.0689.

2-Chloro-N,N-dimethylbenzenesulfonamide(3ja)

¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J=7.5Hz, 1H), 7.46(d, J=8.0 Hz, 1H), 7.43-7.40(m, 1H), 7.35-7.32(m, 1H), 2.82(s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 136.2, 133.6, 132.4, 132.3, 132.2, 127.0, 37.5. HRMS (ESI) calculated for $C_8H_{10}CINO_2S$ [M+H]⁺: 220.0194; found 220.0196.

3,4-Dichloro-N,N-dimethylbenzenesulfonamide(3ka)

¹H NMR (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.57-7.52(m, 2H), 2.67(s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 137.7, 135.7, 133.9, 131.3, 129.6, 126.8, 38.0. HRMS (ESI) calculated for C₈H₉Cl₂NO₂S [M+H]⁺: 253.9804; found 253.9797.

N,N-dimethylbenzenesulfonamide(3la)¹

¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J=8.5 Hz, 2H), 7.56-7.52(m, 1H), 7.49-7.46(m, 2H), 2.63(s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 135.5, 132.8, 129.1, 127.8, 38.0. HRMS (ESI) calculated for C₈H₁₁NO₂S [M+H]⁺: 186.0583; found 186.0581.

4-Chloro-N,N-diethylbenzenesulfonamide(3ab)²

¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J=7.0 Hz, 2H), 7.46(d, J=7.5Hz, 2H), 3.25-3.21(m, 4H), 1.14-1.11(m, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 138.7, 129.3, 128.5, 42.1, 14.2. HRMS (ESI) calculated for C₁₀H₁₄ClNO₂S [M+H]⁺: 248.0507; found 248.0505.

1-(4-chloro-benzenesulfonyl)-piperidine(3ad)

¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J=8.5 Hz, 2H), 7.43(d, J=8.5Hz, 2H), 2.92-2.90(m, 4H), 1.60-1.57(m, 4H), 1.39-1.34(m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 139.2, 135.0, 129.4, 129.2, 47.0, 25.2, 23.6.

HRMS (ESI) calculated for $C_{11}H_{14}CINO_2S$ [M+H]⁺: 260.0507; found 260.0505.

4-(4-Chlorophenylsulfonyl)morpholine(3ae)

¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J=7.5 Hz, 2H), 7.46(d, J=7.5Hz, 2H), 3.69-3.67(m, 4H), 2.94-2.92(m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 139.8, 133.7, 129.6, 129.3, 66.1, 46.0.

HRMS (ESI) calculated for C₁₀H₁₂ClNO₃S [M+H]⁺: 262.0299; found 262.0298.

0 | ||_N ò

CI

N-formyl-N-methyl-4-chloro-benzenesulfonamide(3af)

¹H NMR (500 MHz, CDCl₃) δ 8.38(s, 1H), 7.28 (d, J=7.5 Hz, 2H), 7.09(d, J=8.0Hz, 2H), 3.10(s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 168.4, 135.1, 134.2, 129.8, 127.4, 35.6.

The ESI-MS spectral of **3ca** for example

V References

1 M. R. Banks, R. F. Hudson. J. Chem. Soc., Chem. Commun., 1985.

2 X. Tang, L. Huang, C. Qi, X. Wu, W. Wu and H. Jiang, Chem. Commun., 2013, 49, 6102.

VI NMR Spectra for the Compounds

S12

S21

