Zn(II) and Cu(II) Complexes of Thiophene-Based Salphen-Type New Ligand: Solution-Processable High-Performance Field-Effect Transistor Materials

Ashish K. Asatkar,^a Satyaprasad P. Senanayak,^b Anjan Bedi,^a Snigdha Panda,^a K. S. Narayan,^{*b} Sanjio S. Zade^{*a}

^a Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur-741252, India E-mail: sanjiozade@iiserkol.ac.in ^bChemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India. E-mail: narayan@jncasr.ac.in

Table of contents

Sr. No.	Title	Page No.
1.	Materials and Physical measurements	S2
2.	Synthesis of ligand and complexes	S2
3.	Device Fabrication	S4
4.	Crystal data collection and refinement	S5
5.	Table S1. Selected bond lengths and angles for complex 1·Cu	S5
6.	Table S2. Crystallographic data for 1 and 1·Cu	S6
7.	Figure S1. Absorption spectra of 1 in different solvents	S7
8.	Chart S1. Various possible tautomers of ligand 1	S7
9.	Figure S2. Crystal structure of 1	S8
10.	Figure S3. Absorption spectra of 1 ·Cu and 1 ·Zn·MeOH in DMF	<u>S9</u>
11.	Figure S4. Packing diagram of complex 1·Cu	S9
12.	Figure S5. Thin film and powder XRD patterns for 1.Zn.MeOH	S9
13.	Figure S6. TGA of 1, 1·Cu and 1·Zn·MeOH	S10
14.	Figure S7. SEM images of 1 ·Cu and 1 ·Zn·MeOH	S10
15.	Figure S8. ¹ H NMR spectrum of 1	S11
16.	Figure S9. ¹³ C NMR spectrum of 1	S11

17.	Figure S10. ¹ H NMR spectrum of 1 ·Zn·MeOH	S12
18.	Figure S11. ¹³ C NMR spectrum of 1·Zn·MeOH	S12
19.	References	S13

Materials and Physical measurements:

All chemicals and solvents were received from Aldrich/Merck of reagent grade and used without any further purification. NMR spectra were recorded on a JEOL-FT NMR-AL 400 MHz or a Bruker AVANCE 500 FT-NMR spectrometer using CDCl₃/DMSO- d_{δ} as solvent and chemical shift values are reported in ppm (δ scale) relative to Me₄Si as internal standard. Infrared spectra were measured on KBr disc with a Perkin-Elmer spectrophotometer. UV-vis spectra were recorded on a Hitachi U4100 spectrophotometer, with a quartz cuvette. The mass spectra were recorded on a WATERS micromass Q-Tof microTM instrument. Elemental analyses were carried out on a Carlo-Erba model 1106 elemental analyzer. Cyclic voltammetry was performed with a computer-controlled Princeton Applied Research 263A electrochemical workstation using platinum (Pt) disk as a working electrode, Pt wire as the counter electrode and Ag/AgNO₃ (10 mM in acetonitrile) as the reference electrode. 0.1 M TBAPC was used as supporting electrolyte.

Synthesis of ligand and complexes:

2-Formyl-3-(methoxy/hydroxyl)thiophene were prepared by reported methods.^[1]

1: A solution of 1,2-diaminobenzene (42 mg, 0.39 mmol) in 2 mL dry acetonitrile was added dropwise to the solution of 2-formyl-3-hydroxy thiophene (100 mg, 0.78 mmol) in 3 mL dry acetonitrile with vigorous stirring at room temperature under N_2 atmosphere, yellow precipitate appeared within 30 min. Reaction mixture was stirred for 4 h at ambient temperature; precipitate was filtered-off and washed with cold acetonitrile. Precipitate was dissolved in dry DCM and allowed to evaporate at room temperature to get the yellow

crystals. Yield: 110 mg (86%). M. p.: 158 °C. Anal. Calc. for C₁₆H₁₂N₂O₂S₂: C, 58.52; H, 3.68; N, 8.53. Found: C, 58.65; H, 3.57; N, 7.53 %. ESI-MS: Calc. for C₁₆H₁₂N₂O₂S₂: m/z 328.0340. Found 329.0068 [M + H]⁺. IR (cm⁻¹, KBr, selected): 3430 (O-H), 1622 (C=O), 1577 (C=C), 1352, 1226. ¹H NMR (500MHz, δ, ppm, DMSO-*d*₆): 11.85 (s, 2H); 8.73 (s, 2H); 7.98 (d, J = 5.50 Hz, 2H); 7.48 (dd, J = 6.00 Hz, J = 3.50 Hz, 2H); 7.18 (dd, J = 6.00 Hz, J = 3.50 Hz, 2H), 6.59 (d, J = 5.50 Hz, 2H). ¹³C NMR (500MHz, δ, ppm, DMSO-*d*₆): 174.32, 145.65, 139.21, 136.37, 125.52, 121.96, 115.92, 111.52. UV-vis (DMF) λ_{max}/nm (ε/M⁻¹ cm⁻¹): 310 (12665), 381 (28147), 436 (13792).

1•Cu: Ligand **1** (100 mg, 0.30 mmol) was suspended in 5 mL dry methanol and a solution of cupric chloride (41 mg, 0.30 mmol) in 2 mL methanol was added dropwise with constant stirring at room temperature under N₂ atmosphere. Colour of the reaction mixture immediately turned from yellow to brownish-red. The mixture was stirred at ambient temperature for 3 h and then precipitate was filtered, washed thoroughly with methanol and dried in vacuum; shiny brownish product was obtained. The product was dissolved in DMF and allowed to evaporate slowly. After a couple of weeks, red block crystals of complex **1**•Cu suitable for X-ray diffraction were obtained. Yield: 110 mg (93%). M. p.: 352 °C. Anal. Calc. for C₁₆H₁₀N₂O₂S₂Cu: C, 49.28; H, 2.58; N, 7.18. Found: C, 49.28; H, 2.43; N, 7.32 %. ESI-MS: Calc. for C₁₆H₁₂N₂O₂S₂Cu: m/z 388.9480. Found 389.8945 [M + H]⁺. IR (cm⁻¹, KBr, selected): 1594 (C=N), 1569 (C=C), 1348, 1325. UV-vis (DMF) λ_{max}/nm (ε/M⁻¹ cm⁻¹): 306 (21176), 390 (33529), 590 (~198, shoulder).

1·Zn·MeOH: A solution of zinc acetate (56 mg, 0.30 mmol) in 2 mL dry methanol was added dropwise to the suspension of ligand **1** (100 mg, 0.30 mmol) in 5 mL methanol under vigorous stirring at room temperature under N₂ atmosphere. The mixture was stirred overnight and then precipitate was filtered, washed thoroughly with methanol and dried in vacuum to get the yellow complex. Yield: 107 mg (83%). M.P.: 140 °C (dec.). Anal. Calc. for $C_{17}H_{14}N_2O_3S_2Zn$: C, 48.17; H, 3.33; N, 6.61. Found: C, 48.37; H, 3.13; N, 6.71 %. ESI-MS:

Calc. for C₁₇H₁₄N₂O₃S₂Zn: m/z 421.9737. Found 390.9215 [(1.Zn + H]⁺, 412.8495 [1.Zn + Na]⁺. IR (cm⁻¹, KBr, selected): 3422 (O-H), 1598 (C=N), 1578 (C=C), 1497 (s), 1431 (s), 1345 (s). ¹H NMR (400MHz, δ , ppm, DMSO-*d*₆): 8.90 (s, 2H); 7.82 (d, *J* = 5.32 Hz, 2H); 7.74 (dd, *J* = 6.10 Hz, *J* = 3.04 Hz, 2H); 7.16 (dd, *J* = 6.10 Hz, *J* = 3.84 Hz, 2H), 6.59 (d, *J* = 6.12 Hz, 2H), 4.11 (q, *J* = 4.56 Hz, 1H), 3.16 (d, *J* = 4.56 Hz, 3H) . ¹³C NMR (500MHz, δ , ppm, DMSO-*d*₆): 177.1, 151.9, 138.6, 136.0, 125.2, 125.0, 115.3, 108.6, 48.60. UV-vis (DMF) λ_{max}/nm (ϵ/M^{-1} cm⁻¹): 383 (26125), 443 (11030).

Device Fabrication:

Al metal is coated as the gate electrode by physical vapor deposition (10⁻⁶ mbar, 40 nm thick) on pre-cleaned RCA treated glass substrate. Spin-on-glass dielectric layer was spin coated at 1000 rpm for 1 min and annealed at 140 °C for 15 mins. Typical dielectric thickness is estimated to be around 100 nm as measured using Filmetrics (F20 - EXR) thickness measurement set up. Capacitance of the dielectric layer was measured to be $\sim 4 \text{ nF/cm}^2$ using the inbuilt C-V meter of Keithley 4200 semiconductor parameter analyzer. The surface of the dielectric layer was coated (1500 rpm for 30 s) with a thin monolayer of hexamethyldisilazane (HMDS) and then annealed at 110°°C for 2 h. The MOCs were dissolved in a mixed solvent of (DMF + DMSO) in the ratio 1:1 at a concentration of 15 mg/ml. Films were then spin coated at 300 rpm to obtain thickness ~ 80 nm. No annealing was performed on the optimized devices. However, to remove the high boiling solvents the MOC coated devices were left in vacuum for 1 hr. Devices were then completed by coating Au source-drain (S-D) electrodes at (10⁻⁶ mbar, 40 nm thick). Electrical characterization of the devices were obtained with two identical Keithley 2400 and high impedance electrometer 6514 and cross-checked with measurements from Keithley 4200 Semiconductor characterization system. Mobility for the samples were obtained using the equation: $I_{ds} = (\mu_{FET} WC/2L) (V_g - V_{th})^2$, where I_{ds} is the drain current, W and L are, respectively, the channel width and length, C is the capacitance

per unit area of the gate insulator layer, V_{gs} and V_{th} are the gate voltage and the threshold voltage respectively. Mobility values obtained are the mean values from 10 devices fabricated for each of the molecule.

Crystal data collection and refinement:

Crystals of ligands and complexes were individually mounted on a glass pip. Intensity data were collected on a Brukar's KAPPA APEX II CCD Duo system. Mostly, data were collected at 100 K(few collected at 298 K) with graphite-monochromatic Mo K α radiation (λ = 0.71073 Å). Data reduction was performed using Bruker SAINT software.^[2] Crystal structures were solved by direct methods using SHELXL-97 and refined by full-matrix least-squares refinement on F^2 with anisotropic displacement parameters for non-H atoms using SHELXL-97.^[3] Hydrogen atoms associated with carbon atoms were refined in geometrically constrained riding positions. Hydrogen atoms associated with oxygen and nitrogen atoms were included in the located positions. Structure graphics shown in the Figures were created using the XSeed software package version 2.0.^[4] Selected bond lengths and bond angles for complex 1·Cu are mentioned in Table S1. Details of the crystal parameters, data collections and refinements are listed in Table S2.

	Bond length		Bond length
Cu1-O2	1.9099(16)	O2-C16	1.291(3)
Cu1-O1	1.9225(16)	N1-C12	1.314(3)
Cu1-N1	1.9562(18)	N1-C1	1.412(3)
Cu1-N2	1.9563(19)	N2-C3	1.310(3)
O1-C7	1.290(3)	N2-C2	1.409(3)
	Bond angle		Bond angle
O2-Cu1-O1	86.77(7)	O2-Cu1-N2	173.34(7)
O2-Cu1-N1	95.80(7)	O1-Cu1-N2	95.11(7)
O1-Cu1-N1	171.38(8)	N1-Cu1-N2	83.26(8)

Table S1. Selected bond lengths (Å) and bond angles (°) for complex 1 · Cu

	1	1·Cu
Chemical Formula	$C_{16}H_{12}N_2O_2S_2$	$C_{16}H_{10}N_2O_2S_2Cu_1$
Formula weight	345.00	391.94
Cryst system	Orthorhombic	Monoclinic
Space group	Pbca	<i>C2/c</i>
<i>a</i> (Å)	9.8208(10)	21.422(4)
<i>b</i> (Å)	17.0040(18)	7.3343(13)
<i>c</i> (Å)	17.852(2)	18.884(4)
α (°)	90	90
β (°)	90	109.604(8)
γ (°)	90	90
Vol (Å ³)	2981.1(6)	2795.0(9)
$D_{calcd}(g/cm^3)$	1.345	1.863
μ (mm ⁻¹)	0.323	1.872
θ range (°)	2.28-27	2.02-27
Ζ	7	8
range <i>h</i>	-10 to +12	-27 to +26
range k	-21 to +19	-9 to +7
range <i>l</i>	-22 to +21	-24 to +24
Reflns collected	14572	19788
Independent reflns	3255	3062
Obsd reflns	2697	2519
<i>T</i> (K)	100	100
<i>R</i> 1	0.0323	0.0279
wR2	0.0816	0.0639
GOF	1.048	1.043

Table S2. Crystallographic data for 1 and 1 ·Cu

Characterization of Ligand 1

¹H NMR spectrum of ligand **1** in DMSO- d_6 exhibited the signals for six different types of proton indicating the presence of symmetric bis(enol-imine) tautomeric form. ¹³C NMR spectrum of ligand **1** showed eight peaks which is consistent with the structure suggested by

¹H NMR spectrum. However, the single crystal X-ray diffraction (SCXRD) study displayed mix tautomeric structure (enol-imine form at one end and keto-enamine at the other end) for **1** (*vide infra*). Thus, solid state structure of **1** did not retain in solution phase. The varying feature of the absorption spectrum for **1** in different solvents (Figure S1) can be ascribed to the presence of variable proportions of the tautomers (Chart S1) in solvents of different polarity.^[5]

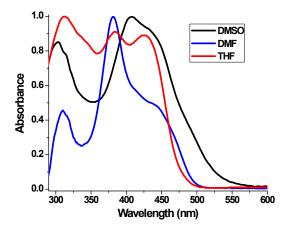
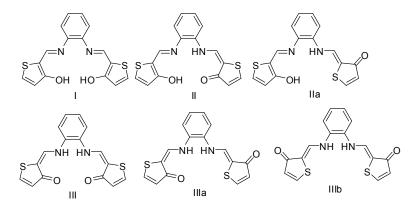



Figure S1. Absorption spectra of 1 in different solvents

Chart S1. Various possible tautomers of ligand 1

The ORTEP diagram (Figure 1) clearly indicates the non-symmetric nature of **1** in the solid state. Both intramolecular [N1-H2...O2; 2.074 Å and 137.77°] and intermolecular [O1-H1...O2; 1.815 Å and 165.26°] H-bonding interactions are present in the crystal packing. Intermolecular H-bonding construct the 1D chain along *a*-axis, while several intermolecular nonbonding interactions present in the crystal packing led to the formation of 3D supramolecular assembly.

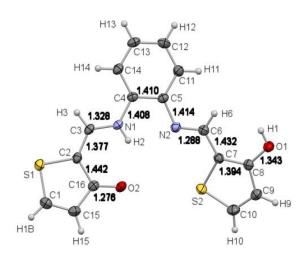


Figure S2. Crystal structure of 1

Characterization of complexes

The absorption spectra of $1 \cdot Cu$ and $1 \cdot Zn \cdot MeOH$ showed intense peaks at 392 and 382 nm (with shoulder at 444 nm), respectively, corresponding to the ligand based $\pi - \pi^*$ transitions (Figure S2).^[6] Additionally, absorption spectrum of the complex $1 \cdot Cu$ showed a shoulder at 590 nm which is indicative of d-d transition for square planar geometry around Cu(II) ion.^[7]

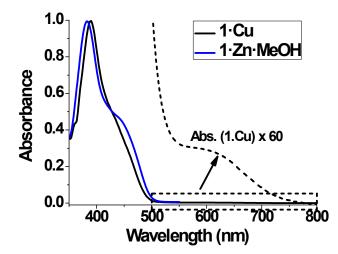


Figure S3. Absorption spectra of 1. Cu and 1. Zn. MeOH in DMF

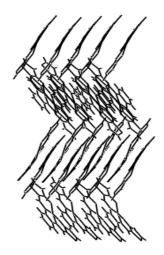


Figure S4. Packing diagram of complex 1. Cu.

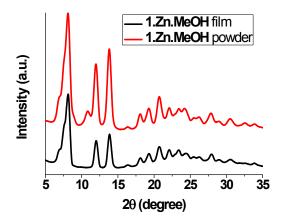


Figure S5. Thin film and powder XRD patterns for 1.Zn.MeOH

TGA was recorded for the ligand as well as the complexes to check their thermal stability (Figure S4). Compound 1 showed a temperature of 5% weight loss (T_d) 182 °C. Complex 1·Cu exhibited a good thermal stability with a T_d of 316 °C. Complex 1·Zn·MeOH displayed a typical two-step thermal degradation. Loss of ~4% of the initial mass at 170 °C (first step) is attributed to the removal of MeOH, whereas the thermal stability of the resulting species with a T_d of 301 °C is comparable with that of the 1·Cu complex. So, thermal stability of the complexes is better than that of the ligand if their application in devices is considered.

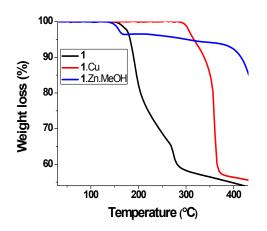


Figure S6. TGA of 1, 1. Cu and 1. Zn. MeOH

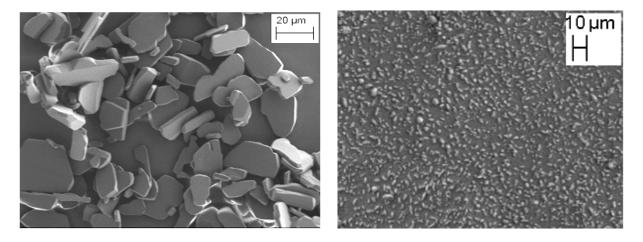


Figure S7. SEM images of 1 · Cu (left) and 1 · Zn · MeOH (right)

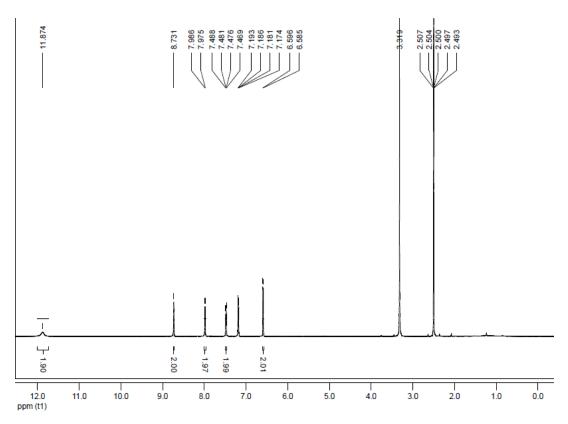


Figure S8. ¹H NMR spectrum of 1.

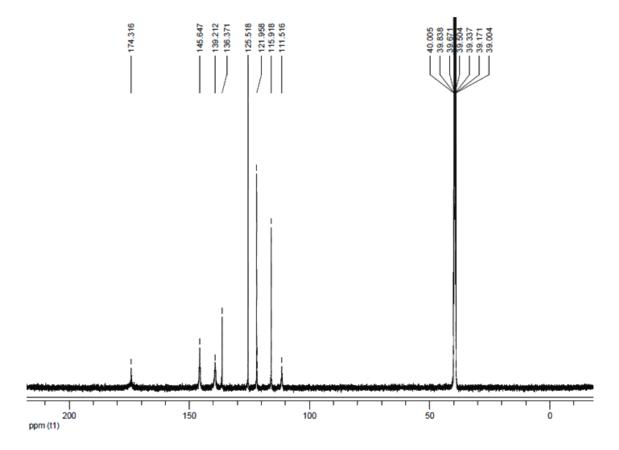


Figure S9. ¹³C NMR spectrum of 1

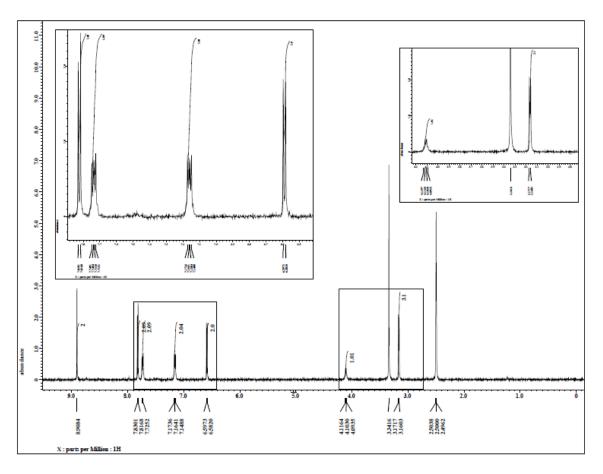


Figure S10. ¹H NMR spectrum of 1·Zn·MeOH

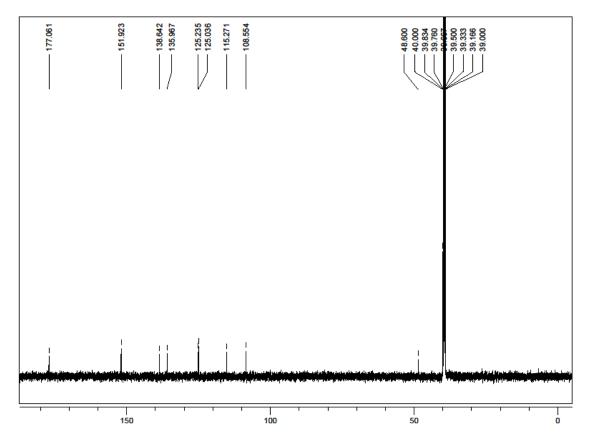


Figure S11. ¹³C NMR spectrum of 1·Zn·MeOH

References:

- 1 Y.-C. Jeong, D.-J. Ahn, W.-S. Lee, S.-H. Lee and K.-H. Ahn, *Bull. Korean Chem. Soc.*, 2011, **32**, 1063.
- 2 SAINT Plus (version 6.45); Bruker AXS Inc.: Madison, WI, 2003.
- 3 SMART (version 5.625) and SHELX-TL (version 6.12); Bruker AXS Inc.: Madison, WI, 2000.
- 4 L. J. Barbour, X-Seed, Graphical Interface to SHELX-97 and POV-Ray; University of Missouri; Columbia: Columbia, MO, 1999.
- 5 D. A. Safin, K. Robeyns and Y. Garcia, RSC Adv., 2012, 2, 11379.
- 6 O. Rotthaus, O. Jarjayes, F. Thomas, C. Philouze, E. Saint-Aman and J.-L. Pierre, *Dalton Trans.*, 2007, 889.
- 7 M. M. Bhadbhade, D. Srinivas, *Inorg. Chem.*, 1993, 32, 6122.