# A novel fluorescent probe for paraquat and cyanide in water based on pillar[5]arene/10-methylacridinium iodide molecular recognition

Pi Wang, Yong Yao and Min Xue\*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China; Fax and Tel: +86-571-8795-3189; Email address: xuemin@zju.edu.cn.

# **Electronic Supplementary Information (ESI)**

| 1. | Materials and methods                                                        | <i>S2</i>  |
|----|------------------------------------------------------------------------------|------------|
| 2. | Proton NMR spectra of <b>G</b> and <b>WP5</b>                                | <i>S3</i>  |
| 3. | NOESY NMR spectrum of $WP5 \square G$ in $D_2O$                              | <i>S4</i>  |
| 4. | Stoichiometry and association constant determination for $WP5 \supset G$ and |            |
|    | <b>WP5</b> paraquat in $H_2O$                                                | <i>S4</i>  |
| 5. | $UV$ -vis investigation of WP5 $\Box G$                                      | <i>S8</i>  |
| 6. | Electrospray ionization mass spectrum of <b>G</b> with KCN                   | <i>S8</i>  |
| 7. | References                                                                   | <i>S12</i> |

# 1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Compounds **WP5**<sup>S1</sup> and **G**<sup>S2</sup> were prepared according to the published procedures. NMR spectra were recorded with a Bruker Avance DMX 500 spectrophotometer or a Bruker Avance DMX 400 spectrophotometer using the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with a Bruker Daltonics Apex III spectrometer. 2D <sup>1</sup>H-<sup>1</sup>H NOESY spectrum was collected on a Bruker Advance DMX-500 spectrometer. Mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with an ESI interface and an ion trap analyzer. UV-vis spectra were taken on a Shimadzu UV-2550 UV-vis spectrophotometer. The fluorescence experiments were conducted on a RF-5301 spectrofluorophotometer (Shimadzu Corporation, Japan). Isothermal titration calorimetric (ITC) measurements were performed on a VP-ITC micro-calorimeter (Microcal, USA). HRMS were obtained on a Bruker 7-Tesla FT-ICRMS equipped with an electrospray source (Billerica, MA, USA). The melting points were collected on a SHPSIC WRS-2 automatic melting point apparatus.

2. Proton NMR spectra of G and WP5



*Figure S1.* <sup>1</sup>H NMR spectrum (400 Hz, DMSO-*d*<sub>6</sub>, 298 K) of **G**.



*Figure S2.* <sup>1</sup>H NMR spectrum (400 Hz, D<sub>2</sub>O, 298 K) of **WP5**.

#### 3. NOESY NMR spectrum of WP5 $\neg$ G in $D_2O$



Figure S3. Partial NOESY NMR spectrum (500 MHz, D<sub>2</sub>O, 298 K) of 10.0 mM WP5 and G.

## 4. Stoichiometry and association constant determination for WP5 $\supset$ G and WP5 $\supset$ paraquat in H<sub>2</sub>O

To determine the stoichiometries and association constants of  $WP5 \supset G$  and  $WP5 \supset paraquat$ , <sup>1</sup>H NMR titrations were done. By a non-linear curve-fitting method, the association constants between the guests and hosts were calculated. By a mole ratio plot, the stoichiometries were determinated.

# (a) Stoichiometry and association constant determination for $WP5 \supset G$ in $H_2O$

The non-linear curve-fitting was based on the equation:<sup>S3</sup>

 $\Delta \delta = (\Delta_{\infty} / [\mathbf{WP5}]_0) (0.5[\mathbf{G}]_0 + 0.5([\mathbf{WP5}]_0 + 1/K_a) - (0.5 ([\mathbf{G}]_0^2 + (2[\mathbf{G}]_0(1/K_a - [\mathbf{WP5}]_0)) + (1/K_a + [\mathbf{WP5}]_0)^2)^{0.5}))$ (Eq. S1)

Where  $\Delta \delta$  is the chemical shift change of H<sub>3</sub> on **WP5** at [**G**]<sub>0</sub>,  $\Delta_{\infty}$  is the chemical shift change of H<sub>3</sub> when the host is completely complexed, [**WP5**]<sub>0</sub> is the fixed initial concentration of the host, and [**G**]<sub>0</sub> is the varying concentration of guest **G**.



*Figure S4.* <sup>1</sup>H NMR spectra (400 MHz, D<sub>2</sub>O, 293 K) of **WP5** at a concentration of 1.00 mM with different concentrations of **G**: (a) 0.00 mM; (b) 0.196 mM; (c) 0.385 mM; (d) 0.566 mM; (e) 0.741 mM; (f) 0.909 mM; (g) 1.07 mM; (h) 1.23 mM; (i) 1.53 mM; (j) 1.94 mM; (k) 2.48 mM; (l) 3.10 mM; (m) 3.94 mM.



*Figure S5.* The chemical shift changes of  $H_3$  on **WP5** upon addition of **G**. The red solid line was obtained from the non-linear curve-fitting using Eq. S1.



Figure S6. Mole ratio plot for the complexation between WP5 and G, indicating a 1 : 1 stoichiometry.

(b) Stoichiometry and association constant determination for WP5\_paraquat in  $H_2O$  $\Delta \delta = (\Delta_{\infty}/[\text{paraquat}]_0) (0.5[\text{WP5}]_0 + 0.5([\text{paraquat}]_0+1/K_a) - (0.5 ([\text{WP5}]_0^2 + (2[\text{WP5}]_0(1/K_a - [\text{paraquat}]_0)) + (1/K_a + [\text{paraquat}]_0)^2)^{0.5}))$  (Eq. S2)

Where  $\Delta \delta$  is the chemical shift change of H<sub>K</sub> on paraquat at [**WP5**]<sub>0</sub>,  $\Delta_{\infty}$  is the chemical shift change of H<sub>K</sub> when the guest is completely complexed, [paraquat]<sub>0</sub> is the fixed initial concentration of the guest, and [**WP5**]<sub>0</sub> is the varying concentration of host **WP5**.



*Figure S7.* <sup>1</sup>H NMR spectra (400 MHz, D<sub>2</sub>O, 293 K) of paraquat at a concentration of 1.00 mM with different concentrations of **WP5**: (a) 0.00 mM; (b) 0.196 mM; (c) 0.385 mM; (d) 0.566 mM; (e) 0.741 mM; (f) 0.909 mM; (g) 1.07 mM; (h) 1.23 mM; (i) 1.53 mM; (j) 1.94 mM; (k) 2.48 mM; (l) 3.10 mM; (m) 3.94 mM.



*Figure S8.* The chemical shift changes of  $H_{\kappa}$  on paraquat upon addition of **WP5**. The red solid line was obtained from the non-linear curve-fitting using Eq. S2.



Figure S9. Mole ratio plot for the complexation between WP5 and paraquat, indicating a 1 : 1 stoichiometry.



*Figure S10.* UV-vis spectra of 10.0  $\mu$ M G in the presence of 0.200, 0.400, 0.600, 0.800, 1.00, and 1.20 equiv of **WP5** in water.

6. Electrospray ionization mass spectrum of G with KCN



*Figure S11.* Electrospray ionization mass spectrum of **G** with KCN. The peak at m/z 250.1 corresponding to  $[\mathbf{G} + \mathbf{K}]^+$  was clearly observed.



*Figure S12.* (Top): The fluorescence intensities at 490 nm and 430 nm for **G** (3.00  $\mu$ M) at varied pH values. (Bottom): The fluorescence intensities at 490 nm and 430 nm for **G** (3.00  $\mu$ M) in the presence of CN<sup>-</sup> (20.0 equiv) at varied pH values.



*Figure 13.* <sup>1</sup>H NMR spectra (400 MHz, D<sub>2</sub>O, 298 K): (a) 10.0 mM G; (b) 10.0 mM G and WP5; (c) 10.0 mM WP5.



*Figure S14.* Partial <sup>1</sup>H NMR spectra (400 MHz, D<sub>2</sub>O, 298 K): (a) **WP5** (10.0 mM); (b) a solution of **G** (10.0 mM) and **WP5** (10.0 mM), pH = 7.4; (c) a solution of 2.00 mL of aqueous HCl solution (37%), and 0.5 mL of **G** (10.0 mM) and **WP5** (10.0 mM), pH = 6.0; (d) a solution of 1.5 mg of NaOH, 2.00 mL of aqueous HCl solution (37%), and 0.5 mL of **G** (10.0 mM) and **WP5** (10.0 mM), pH = 7.4; (e) **G** (10.0 mM).



*Figure S15.* Partial <sup>1</sup>H NMR spectra (400 MHz, DMSO- $d_6$ , 298 K): (a) **G** (10.0 mM); (b) **G** (10.0 mM) upon the addition of KCN (1.00 equiv).



*Figure S16.* Fluorescence intensity ratio ( $F_{432}$  / $F_{490}$ ) of **G** (3.00 µM) upon addition of 20 equiv. of various anion specie in Tris-HCl buffer (10.0 mM, pH = 6.0). From left to right: (1) no anion (blank); (2) **G** + CN<sup>-</sup>; (3) **G** + F<sup>-</sup>; (4) **G** + Cl<sup>-</sup>; (5) **G** + Br<sup>-</sup>; (6) **G** + I<sup>-</sup>; (7) **G** + NO<sub>3</sub><sup>-</sup>; (8) **G** + HSO<sub>4</sub><sup>-</sup>; (9) **G** + SCN<sup>-</sup>; (10) **G** + AcO<sup>-</sup>; (11) **G** + C<sub>6</sub>H<sub>5</sub>CO<sub>2</sub><sup>-</sup>; (12) **G** + N<sub>3</sub><sup>-</sup>; (13) **G** + CH<sub>3</sub>S<sup>-</sup>; (14) **G** + ClO<sub>4</sub><sup>-</sup>; (15) **G** + H<sub>2</sub>PO<sub>4</sub><sup>-</sup>.



*Figure S17.* The energy-minimized structures of WP5 $\supset$ G obtained by PM6 semiempirical molecular orbital methods: (a) WP5 $\supset$ G (top view), (b) WP5 $\supset$ G (side view).

References:

- S1. T. Ogoshi, M. Hashizume, T. Yamagishi and Y. Nakamoto, Chem. Commun., 2010, 46, 3708-3710.
- S2 J. Joseph, E. Kuruvilla, T. Achuthan, A. D. Ramaiah and G. B. Schuster, *Bioconjugate Chem.*, 2004, **15**, 1230–1235.
- P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M.Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, 118, 4931–4951.