Supplementary information

for

Unexpected neutral aza-macrocyclic complexes of sodium

Matthew Everett, Andrew Jolleys, William Levason, David Pugh, Gillian Reid

School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

Tel.: +44 (0)23 8059 3609; e-mail G.Reid@soton.ac.uk

Experimental

All preparations were carried out under a dry dinitrogen atmosphere using standard Schlenk and glove box techniques. 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane ($\mathrm{Me}_{4} \mathrm{Cyclam}$) was obtained from Sigma, stored in a glove box and used as received. $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}, \mathrm{N}^{\prime \prime}$ pentamethyldiethylenetriamine (pmdta) was purchased from Sigma and distilled over CaH_{2}. 1,4,7-trimethyl-1,4,7-triazacyclononane (Me_{3} tacn) was synthesised according to a literature procedure. ${ }^{1}$ NaBAr ${ }^{\mathrm{F}}$.2(thf) was synthesised by a slight modification of Brookhart's procedure. ${ }^{2}$ In our hands, the last vestiges of colour were removed by dissolving the tan-coloured product in thf, adding hexane to precipitate a white solid, then drying in vacuo to remove excess thf. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried by distillation from CaH_{2}, thf was distilled from a purple solution of sodium benzophenone ketyl, hexane and toluene were distilled over sodium.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions at 293 K using Bruker AV-300 and DPX-400 spectrometers and are referenced to the residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resonance. ${ }^{23} \mathrm{Na}$ NMR spectra were obtained at 293 K on a Bruker DPX-400 spectrometer with an approximate 0.25 mM concentration of compound in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and referenced to a 0.1 mol dm ${ }^{-3}$ solution of NaCl in $\mathrm{D}_{2} \mathrm{O} .{ }^{3}$ Microanalyses were undertaken by Stephen Boyer at London Metropolitan University.

Crystals were obtained as described below. Details of the crystallographic data collection and refinement are in Table S1. Diffractometer: Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn $724+$ detector mounted at the window of an $F R-E+$ SuperBright molybdenum rotating anode generator ($\lambda_{1}=0.71073 \AA$) with VHF Varimax optics (70 or $100 \mu \mathrm{~m}$ focus). Cell determination, data collection, data reduction, cell refinement and absorption correction: CrystalClear-SM Expert 2.0 r7. ${ }^{4}$ Structure solution and refinement were carried out using WinGX and software packages within. ${ }^{5}$ All compounds contained positional disorder of some of the CF_{3} groups; a common issue with weakly-coordinating anions containing CF_{3} groups, but especially [BAr $\left.{ }^{\mathrm{F}}\right]^{-} .{ }^{6}$ Some
positional disorder was also noted for the thf molecule in compound 1, and for the macrocyclic ring in compounds $\mathbf{2 b}, \mathbf{3}$ and the by-product [Me_{3} tacnH][BAr ${ }^{\mathrm{F}}$] (below). This disorder was modelled satisfactorily using suitable restraints. H atoms attached to C atoms were placed in geometrically assigned positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA(\mathrm{CH}), 0.98 \AA\left(\mathrm{CH}_{3}\right)$ or $0.99 \AA\left(\mathrm{CH}_{2}\right)$ and refined using a riding model, with $U_{i s o}(\mathrm{H})=1.2 U_{e q}(\mathrm{C})\left(\mathrm{CH}, \mathrm{CH}_{2}\right)$ or $1.5 U_{e q}(\mathrm{C})\left(\mathrm{CH}_{3}\right)$. The NH proton in [Me_{3} tacnH][BAr${ }^{\mathrm{F}}$] was initially located in the Fourier difference map but added as an idealised proton (AFIX 13) with an $\mathrm{N}-\mathrm{H}$ distance of 0.93 Å and $U_{\text {iso }}(H)=1.2 U_{\text {eq }}(\mathrm{N})$. enClFer was used to prepare CIFs for publication. ${ }^{7}$ CCDC reference numbers 987718 -987721 contain crystallographic data in CIF format.

General synthetic method:
NaBAr ${ }^{\mathrm{F}}$.2(thf) ($240 \mathrm{mg}, 0.23 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and a solution of the amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The reaction was stirred for 4 hours then the product was precipitated by the addition of hexane (30 mL). Crystals were obtained by layering a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the product with hexane.

(tetrahydrofuran)(pmdta)sodium ($\mathbf{\kappa}^{1}$-tetrakis\{3,5-bis(trifluoromethyl)phenyl\}borate) (1)

40 mg (0.23 mmol) of pmdta was used. Yield: 144 mg of a white solid, 71%.
$\boldsymbol{\delta}_{\mathrm{H}}\left(400.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $7.74(8 \mathrm{H}, \mathrm{s}, \mathrm{BAr} \mathrm{H} 2 / 6)$, $7.59\left(4 \mathrm{H}, \mathrm{s}, \mathrm{BAr}{ }^{\mathrm{F}} \mathrm{H} 4\right), 3.69-3.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.42-$ $2.74\left(7 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NCH}_{3}\right.$ and $\left.\mathrm{CH}_{2}\right), 2.32-2.42\left(4 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}_{2}\right), 2.22\left(12 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.85-1.92(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0 . 6} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 161.38\left(\mathrm{C}, \mathrm{q}, J_{\mathrm{C}-\mathrm{B}}=49.9 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 1\right), 135.44\left(\mathrm{CH}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 2 / 6\right), 129.51\left(\mathrm{BAr}^{\mathrm{F}}\right.$ $\mathrm{C} 3 / 5), 125.24\left(\mathrm{C}, \mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.13\left(\mathrm{CH}, \mathrm{BAr}{ }^{\mathrm{F}} \mathrm{C} 4\right)$, $69.22\left(\mathrm{OCH}_{2}\right), 57.64,48.80\left(\mathrm{NCH}_{2}\right) 45.89$, $45.26\left(\mathrm{NCH}_{3}\right), 26.02\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathrm{Na}}\left(\mathbf{1 0 5 . 8} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right):$ 2.1 ppm.
Analysis: Calc. for $\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{OBF}_{24} \mathrm{Na}$ (1131.62): C, 47.76; H, 3.83; N, 3.71. Found: C, 47.57; H, 3.75; N, 3.81 .

(tetrahydrofuran)(Me3tacn)sodium tetrakis\{3,5-bis(trifluoromethyl)phenyl\}borate (2a)

$40 \mathrm{mg}(0.23 \mathrm{mmol})$ of Me_{3} tacn was used. Yield: 179 mg of a white crystalline solid, 88%.
$\boldsymbol{\delta}_{\mathrm{H}}\left(\mathbf{4 0 0 . 1} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $7.73\left(8 \mathrm{H}, \mathrm{s}, \mathrm{BAr}^{\mathrm{F}} \mathrm{H} 2 / 6\right)$, $7.58\left(4 \mathrm{H}, \mathrm{s}, \mathrm{BAr}^{\mathrm{F}} \mathrm{H} 4\right)$, 3.69-3.76 (4H, m, OCH 2$), 2.54-$ $2.64\left(6 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.28-2.49\left(15 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right.$ and $\left.\mathrm{NCH}_{3}\right), 1.84-1.91\left(4 \mathrm{H}, \mathrm{m}\right.$, thf $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0 . 6} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 162.35\left(\mathrm{C}, \mathrm{q}, J_{\mathrm{C}-\mathrm{B}}=49.9 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 1\right), 135.42\left(\mathrm{CH}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 2 / 6\right)$, 129.65 ($\mathrm{BAr}^{\mathrm{F}}$ $\mathrm{C} 3 / 5), 125.23\left(\mathrm{C}, \mathrm{q}, J_{C-F}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.11\left(\mathrm{CH}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 4\right), 69.24\left(\mathrm{OCH}_{2}\right), 54.70,54.20\left(\mathrm{NCH}_{2}\right) 47.95$, $46.70\left(\mathrm{NCH}_{3}\right), 25.99\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$.

$\delta_{\mathrm{Na}}\left(\mathbf{1 0 5 . 8} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 3.7 \mathrm{ppm}$.

Analysis: Calc. for $\mathrm{C}_{45} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{OBF}_{24} \mathrm{Na}$ (1129.77): C, 47.84; H, 3.66; N, 3.72. Found: C, 47.75; H, 3.75; N, 3.70.

Bis(Me ${ }_{3}$ tacn)sodium tetrakis\{3,5-bis(trifluoromethyl)phenyl\}borate (2b)

$80 \mathrm{mg}(0.46 \mathrm{mmol})$ of Me_{3} tacn was used. Yield: 206 mg of a white solid, 93%.
$\boldsymbol{\delta}_{\mathrm{H}}\left(\mathbf{4 0 0 . 1} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.75\left(8 \mathrm{H}, \mathrm{s}, \mathrm{BAr}{ }^{\mathrm{F}} \mathrm{H} 2 / 6\right)$, 7.59 ($4 \mathrm{H}, \mathrm{s}, \mathrm{BAr}^{\mathrm{F}} \mathrm{H} 4$), 2.51-2.68 (16H, m), 2.30-2.51 (26H, br s) ppm.
$\boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0 . 6} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 162.56\left(\mathrm{C}, \mathrm{q}, J_{\mathrm{C}-\mathrm{B}}=49.9 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 1\right), 135.44\left(\mathrm{CH}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 2 / 6\right)$), $129.55(\mathrm{C}, \mathrm{qq}$, $\left.{ }^{2} J_{C-F}=31.6,2.9 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} / 5\right), 125.25\left(\mathrm{C}, \mathrm{q}, J_{C-F}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.11\left(\mathrm{CH}\right.$, septet, ${ }^{3} J_{C-F}=3.7 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}}$ $\mathrm{C} 4), 60.00\left(\mathrm{CH}_{2}\right), 54.98\left(\mathrm{CH}_{2}\right) 48.09\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathrm{Na}}\left(\mathbf{1 0 5 . 8} \mathbf{~ M H z}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 6.2 \mathrm{ppm}$.
Analysis: Calc. for $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{BF}_{24} \mathrm{Na}$ (1228.94): C, 48.87; H, 4.43; $\mathrm{N}, 6.84$. Found: C, 49.68; $\mathrm{H}, 4.35$; N , 6.70.

Figure S1. ORTEP representation of the major component of the disordered cation in the asymmetric unit of compound $\mathbf{2 b}$. The other cation was not disordered and a picture is shown in the main manuscript, along with relevant bond lengths and angles (Figure 2). Thermal ellipsoids at 50\% probability. The BAr ${ }^{F}$ anion, which does not interact with the Na^{+}centre, and the H atoms are omitted for clarity. Symmetry code: $-x, y,-z+0.5$.

(tetrahydrofuran)(Me ${ }_{4}$ cyclam)sodium tetrakis\{3,5-bis(trifluoromethyl)phenyl\}borate (3)

$60 \mathrm{mg}(0.23 \mathrm{mmol})$ of $\mathrm{Me}_{4} \mathrm{Cyclam}$ was used. Yield: 199 mg of a white solid, 91%.
$\boldsymbol{\delta}_{\mathrm{H}}$ ($\mathbf{3 0 0 . 1} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $7.69\left(8 \mathrm{H}, \mathrm{s}, \mathrm{BAr}^{\mathrm{F}} \mathrm{H} 2 / 6\right)$, $7.57\left(4 \mathrm{H}, \mathrm{s}, \mathrm{BAr}{ }^{\mathrm{F}} \mathrm{H} 4\right), 3.68-3.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.56-$ 2.67 ($4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.40\left(8 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.31-2.36 (4H, m, NCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.17 (12 H , s, $\left.\mathrm{NCH}_{3}\right), 1.75-1.93\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and thf $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.46-1.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{7 5 . 5} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 161.33\left(\mathrm{C}, \mathrm{q}, J_{\mathrm{C}-\mathrm{B}}=49.8 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 1\right)$, $135.39\left(\mathrm{CH}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 2 / 6\right)$, 128.46 ($\mathrm{BAr}^{\mathrm{F}}$ $\mathrm{C} 3 / 5), 125.19\left(\mathrm{C}, \mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.07\left(\mathrm{CH}, \mathrm{BAr}^{\mathrm{F}} \mathrm{C} 4\right), 68.70\left(\mathrm{OCH}_{2}\right), 57.14\left(\mathrm{NCH}_{2}\right) 42.64\left(\mathrm{NCH}_{3}\right)$, $25.88\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 23.59\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$.
$\boldsymbol{\delta}_{\mathrm{Na}}\left(\mathbf{1 0 5 . 8} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: 11.4 ppm .

Analysis: Calc. for $\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{OBF}_{24} \mathrm{Na}$ (1214.76): C, 49.41; H, 4.32; N, 4.61. Found: C, 49.35; H, 4.24; N, 4.61.

1H-1,4,7-trimethyl-1,4,7-triazacyclononane tetrakis\{3,5-bis(trifluoromethyl)phenyl\}borate

These crystals were obtained from a synthesis of compound $\mathbf{2 a}$ which had been inadvertently exposed to air. A few crystals were grown by layering a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the hydrolysed product with hexane.

Figure S2. ORTEP representation of $\left[\mathrm{Me}_{3} \operatorname{tacnH}\right]\left[\mathrm{BAr}{ }^{\mathrm{F}}\right]$. Thermal ellipsoids at 50% probability, hydrogen atoms (bar NH) are omitted for clarity.

Compound	[Na (pmdta)(thf)(BAr ${ }^{F}$)] (1)	[$\mathrm{Na}\left(\mathrm{Me}_{3} \mathrm{tacn}\right)_{2}$] [BAr ${ }^{\text { }}$ (2b)	$\left[\mathrm{Na}\left(\mathrm{Me}_{4} \mathrm{Cyclam}\right)(\mathrm{thf})\right]$ [BAr] (3)	[Me_{3} tacnH][$\mathrm{BAr}^{\text {F }}$]
Formula	$\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{BF}_{24} \mathrm{~N}_{3} \mathrm{NaO}$	$\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{BF}_{24} \mathrm{~N}_{6} \mathrm{Na}$	$\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{BF}_{24} \mathrm{~N}_{4} \mathrm{NaO}$	$\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{BF}_{24} \mathrm{~N}_{3}$

$\mathrm{M} / \mathrm{g} \mathrm{mol}^{-1}$	1131.62	1228.79	1214.76	1035.52
Crystal system	monoclinic	monoclinic	triclinic	triclinic
$\begin{aligned} & \text { Space group } \\ & \text { (No.) } \end{aligned}$	Cc (9)	C2/c (15)	$P-1$ (2)	P1 (1)
a/Å	14.492(4)	43.057(2)	12.784(2)	9.677(1)
$b / \AA ̊$	14.229(4)	12.624(1)	12.896(2)	10.771(1)
$c / A ̊$	24.850(7)	21.279(2)	18.089(2)	10.824(1)
$\alpha /{ }^{\circ}$	90	90	91.602(2)	83.284(6)
$\beta /{ }^{\circ}$	103.181(4)	100.930(7)	98.258(3)	82.174(6)
Y/ ${ }^{\circ}$	90	90	114.446(2)	82.924(6)
U / \AA^{3}	4989(2)	11356(1)	2674.1(7)	1103.5(3)
Z	4	8	2	1
$\begin{aligned} & \mu(\mathrm{Mo}-\mathrm{K} \alpha) \\ & / \mathrm{mm}^{-1} \end{aligned}$	0.160	0.147	0.155	0.163
F(000)	2296	5024	1240	522
Total reflections	11845	50872	27281	10486
Unique reflections	8832	10019	12176	7226
$R_{\text {int }}$	0.024	0.100	0.021	0.021
Goodness-of-fit on F^{2}	1.050	1.057	1.062	1.031
$R_{1}{ }^{\text {b }}\left[I_{0}>2 \sigma\left(I_{0}\right)\right]$	0.072	0.092	0.058	0.051
R_{1} (all data)	0.087	0.164	0.067	0.064
$w R_{2}{ }^{\text {b }} \quad\left[I_{0} \quad>\right.$	0.161	0.235	0.136	0.105

$\left.2 \sigma\left(I_{o}\right)\right]$				
$w R_{2}$ (all data)	0.173	0.271	0.142	0.112

Table S1: crystallographic data for the compounds reported in this paper. All datasets were collected at $\mathbf{1 0 0 (2)}$ K. Note: for compound $\mathbf{2 b}$, positional disorder of the $\left[\mathrm{BAr}^{\mathrm{F}}\right]^{-}$anion and one of the macrocycle rings was severe. This required the use of a lot of restraints resulting in high weighted Rfactors. Other indicators of data quality such as the standard uncertainties on the unit cell lengths and the $\mathrm{C}-\mathrm{C}$ bond lengths were acceptable.

References

1) K. Wieghardt, P. Chaudhuri, B. Nuber, J. Weiss, Inorg. Chem., 1982, 21, 3086.
2) M. Brookhart, B. Grant, A. F. Volpe Jr., Organometallics, 1992, 11, 3920
3) ${ }^{23} \mathrm{Na}: 100 \%, \mathrm{I}=3 / 2, \equiv=26.42 \mathrm{MHz}, \mathrm{R}_{\mathrm{c}}=524, \mathrm{Q}=0.10 \times 10^{-28} \mathrm{~m}^{2}$.
4) CrystalClear-SM Expert 2.0 r13, Rigaku Corporation, Tokyo, Japan, 2011.
5) L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849.
6) A. B. Chaplin, A. S. Weller, Eur. J. Inorg. Chem., 2010, 5124.
7) F. H. Allen, O. Johnson, G. P. Shields, B. R. Smith, M. Towler, J. Appl. Cryst., 2004, 37, 335
