Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supplementary information

for

Unexpected neutral aza-macrocyclic complexes of sodium

Matthew Everett, Andrew Jolleys, William Levason, David Pugh, Gillian Reid

School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

Tel.: +44 (0)23 8059 3609; e-mail G.Reid@soton.ac.uk

Experimental

All preparations were carried out under a dry dinitrogen atmosphere using standard Schlenk and glove box techniques. 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (Me₄cyclam) was obtained from Sigma, stored in a glove box and used as received. N,N,N',N'', Pentamethyldiethylenetriamine (pmdta) was purchased from Sigma and distilled over CaH₂. 1,4,7-trimethyl-1,4,7-triazacyclononane (Me₃tacn) was synthesised according to a literature procedure.¹ NaBAr^{F.}2(thf) was synthesised by a slight modification of Brookhart's procedure.² In our hands, the last vestiges of colour were removed by dissolving the tan-coloured product in thf, adding hexane to precipitate a white solid, then drying *in vacuo* to remove excess thf. CH₂Cl₂ was dried by distillation from CaH₂, thf was distilled from a purple solution of sodium benzophenone ketyl, hexane and toluene were distilled over sodium.

¹H and ¹³C{¹H} NMR spectra were recorded in CD_2Cl_2 solutions at 293 K using Bruker AV-300 and DPX-400 spectrometers and are referenced to the residual CH_2Cl_2 resonance. ²³Na NMR spectra were obtained at 293 K on a Bruker DPX-400 spectrometer with an approximate 0.25 mM concentration of compound in CH_2Cl_2 and referenced to a 0.1 mol dm⁻³ solution of NaCl in D_2O .³ Microanalyses were undertaken by Stephen Boyer at London Metropolitan University.

Crystals were obtained as described below. Details of the crystallographic data collection and refinement are in Table S1. Diffractometer: *Rigaku AFC12* goniometer equipped with an enhanced sensitivity (HG) *Saturn724+* detector mounted at the window of an *FR-E+ SuperBright* molybdenum rotating anode generator ($\lambda_1 = 0.71073$ Å) with VHF *Varimax* optics (70 or 100 µm focus). Cell determination, data collection, data reduction, cell refinement and absorption correction: CrystalClear-SM Expert 2.0 r7.⁴ Structure solution and refinement were carried out using WinGX and software packages within.⁵ All compounds contained positional disorder of some of the CF₃ groups; a common issue with weakly-coordinating anions containing CF₃ groups, but especially [BAr^F]⁻.⁶ Some

positional disorder was also noted for the thf molecule in compound **1**, and for the macrocyclic ring in compounds **2b**, **3** and the by-product [Me₃tacnH][BAr^F] (below). This disorder was modelled satisfactorily using suitable restraints. H atoms attached to C atoms were placed in geometrically assigned positions, with C—H distances of 0.95 Å (CH), 0.98 Å (CH₃) or 0.99 Å (CH₂) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ (CH, CH₂) or $1.5U_{eq}(C)$ (CH₃). The NH proton in [Me₃tacnH][BAr^F] was initially located in the Fourier difference map but added as an idealised proton (AFIX 13) with an N–H distance of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(N)$. enCIFer was used to prepare CIFs for publication.⁷ CCDC reference numbers 987718-987721 contain crystallographic data in CIF format.

General synthetic method:

NaBAr^F·2(thf) (240 mg, 0.23 mmol) was suspended in CH_2CI_2 (5 mL) and a solution of the amine in CH_2CI_2 (2 mL) was added. The reaction was stirred for 4 hours then the product was precipitated by the addition of hexane (30 mL). Crystals were obtained by layering a concentrated CH_2CI_2 solution of the product with hexane.

(tetrahydrofuran)(pmdta)sodium (κ¹-tetrakis{3,5-bis(trifluoromethyl)phenyl}borate) (1)

40 mg (0.23 mmol) of pmdta was used. Yield: 144 mg of a white solid, 71%.

δ_H (400.1 MHz, CD₂Cl₂): 7.74 (8H, s, BAr^F H2/6), 7.59 (4H, s, BAr^F H4), 3.69–3.75 (4H, m, OCH₂), 2.42–2.74 (7H, br m, NCH₃ and CH₂), 2.32–2.42 (4H, br m, CH₂), 2.22 (12H, br s, N(CH₃)₂), 1.85–1.92 (4H, m, OCH₂C<u>H₂</u>) ppm.

δ_c (100.6 MHz, CD₂Cl₂): 161.38 (C, q, *J*_{C-B} = 49.9 Hz, BAr^F C1), 135.44 (CH, BAr^F C2/6), 129.51 (BAr^F C3/5), 125.24 (C, q, *J*_{C-F} = 272 Hz, CF₃), 118.13 (CH, BAr^F C4), 69.22 (OCH₂), 57.64, 48.80 (NCH₂) 45.89, 45.26 (NCH₃), 26.02 (OCH₂<u>C</u>H₂) ppm.

 δ_{Na} (105.8 MHz, CD₂Cl₂): 2.1 ppm.

Analysis: Calc. for C₄₅H₄₃N₃OBF₂₄Na (1131.62): C, 47.76; H, 3.83; N, 3.71. Found: C, 47.57; H, 3.75; N, 3.81.

(tetrahydrofuran)(Me₃tacn)sodium tetrakis{3,5-bis(trifluoromethyl)phenyl}borate (2a)

40 mg (0.23 mmol) of Me₃tacn was used. Yield: 179 mg of a white crystalline solid, 88%.

δ_H (400.1 MHz, CD₂Cl₂): 7.73 (8H, s, BAr^F H2/6), 7.58 (4H, s, BAr^F H4), 3.69–3.76 (4H, m, OCH₂), 2.54–2.64 (6H, m, NCH₂), 2.28–2.49 (15H, m, NCH₂ and NCH₃), 1.84–1.91 (4H, m, thf OCH₂C<u>H₂</u>) ppm.

δ_c (100.6 MHz, CD₂Cl₂): 162.35 (C, q, *J*_{C-B} = 49.9 Hz, BAr^F C1), 135.42 (CH, BAr^F C2/6), 129.65 (BAr^F C3/5), 125.23 (C, q, *J*_{C-F} = 272 Hz, CF₃), 118.11 (CH, BAr^F C4), 69.24 (OCH₂), 54.70, 54.20 (NCH₂) 47.95, 46.70 (NCH₃), 25.99 (OCH₂<u>C</u>H₂) ppm.

δ_{Na} (105.8 MHz, CD₂Cl₂): 3.7 ppm.

Analysis: Calc. for C₄₅H₄₁N₃OBF₂₄Na (1129.77): C, 47.84; H, 3.66; N, 3.72. Found: C, 47.75; H, 3.75; N, 3.70.

Bis(Me₃tacn)sodium tetrakis{3,5-bis(trifluoromethyl)phenyl}borate (2b)

80 mg (0.46 mmol) of Me₃tacn was used. Yield: 206 mg of a white solid, 93%.

δ_H (400.1 MHz, CD₂Cl₂): 7.75 (8H, s, BAr^F H2/6), 7.59 (4H, s, BAr^F H4), 2.51–2.68 (16H, m), 2.30–2.51 (26H, br s) ppm.

δ_c (100.6 MHz, CD₂Cl₂): 162.56 (C, q, J_{C-B} = 49.9 Hz, BAr^F C1), 135.44 (CH, BAr^F C2/6), 129.55 (C, qq, ${}^{2}J_{C-F}$ = 31.6, 2.9 Hz, BAr^F C3/5), 125.25 (C, q, J_{C-F} = 272 Hz, CF₃), 118.11 (CH, septet, ${}^{3}J_{C-F}$ = 3.7 Hz, BAr^F C4), 60.00 (CH₂), 54.98 (CH₂) 48.09 (CH₃) ppm.

δ_{Na} (105.8 MHz, CD₂Cl₂): 6.2 ppm.

Analysis: Calc. for C₅₀H₅₄N₆BF₂₄Na (1228.94): C, 48.87; H, 4.43; N, 6.84. Found: C, 49.68; H, 4.35; N, 6.70.

Figure S1. ORTEP representation of the major component of the disordered cation in the asymmetric unit of compound **2b**. The other cation was not disordered and a picture is shown in the main manuscript, along with relevant bond lengths and angles (Figure 2). Thermal ellipsoids at 50% probability. The BAr^F anion, which does not interact with the Na⁺ centre, and the H atoms are omitted for clarity. Symmetry code: -x, y, -z + 0.5.

(tetrahydrofuran)(Me₄cyclam)sodium tetrakis{3,5-bis(trifluoromethyl)phenyl}borate (3)

60 mg (0.23 mmol) of Me₄cyclam was used. Yield: 199 mg of a white solid, 91%.

δ_H (300.1 MHz, CD₂Cl₂): 7.69 (8H, s, BAr^F H2/6), 7.57 (4H, s, BAr^F H4), 3.68–3.75 (4H, m, OCH₂), 2.56–2.67 (4H, m, NC<u>H₂CH₂CH₂N), 2.40 (8H, br s, NCH₂CH₂N), 2.31–2.36 (4H, m, NC<u>H₂CH₂CH₂N), 2.17 (12H, s, NCH₃), 1.75–1.93 (6H, m, CH₂CH₂CH₂ and thf OCH₂C<u>H₂), 1.46–1.55 (2H, m, CH₂CH₂CH₂) ppm.</u></u></u>

δ_c (**75.5 MHz, CD**₂**Cl**₂): 161.33 (C, q, J_{C-B} = 49.8 Hz, BAr^F C1), 135.39 (CH, BAr^F C2/6), 128.46 (BAr^F C3/5), 125.19 (C, q, J_{C-F} = 272 Hz, CF₃), 118.07 (CH, BAr^F C4), 68.70 (OCH₂), 57.14 (N<u>C</u>H₂) 42.64 (NCH₃), 25.88 (OCH₂<u>C</u>H₂), 23.59 (CH₂<u>C</u>H₂CH₂) ppm.

 $δ_{Na}$ (105.8 MHz, CD₂Cl₂): 11.4 ppm.

Analysis: Calc. for C₅₀H₅₂N₄OBF₂₄Na (1214.76): C, 49.41; H, 4.32; N, 4.61. Found: C, 49.35; H, 4.24; N, 4.61.

1H-1,4,7-trimethyl-1,4,7-triazacyclononane tetrakis{3,5-bis(trifluoromethyl)phenyl}borate

These crystals were obtained from a synthesis of compound **2a** which had been inadvertently exposed to air. A few crystals were grown by layering a concentrated CH_2Cl_2 solution of the hydrolysed product with hexane.

Figure S2. ORTEP representation of [Me₃tacnH][BAr^F]. Thermal ellipsoids at 50% probability, hydrogen atoms (bar NH) are omitted for clarity.

Compound	[Na(pmdta)(thf)(BAr ^F)] (1)	[Na(Me₃tacn)₂] [BAr ^F] (2b)	[Na(Me₄cyclam)(thf)] [BAr ^F] (3)	[Me₃tacnH][BAr ^F]
Formula	$C_{45}H_{43}BF_{24}N_3NaO$	$C_{50}H_{54}BF_{24}N_6Na$	$C_{50}H_{52}BF_{24}N_4NaO$	$C_{41}H_{34}BF_{24}N_3$

M/g mol ^{−1}	1131.62	1228.79	1214.76	1035.52
Crystal system	monoclinic	monoclinic	triclinic	triclinic
Space group	<i>Cc</i> (9)	C2/c (15)	P-1 (2)	P1 (1)
(No.)				
a/Å	14.492(4)	43.057(2)	12.784(2)	9.677(1)
b/Å	14.229(4)	12.624(1)	12.896(2)	10.771(1)
c/Å	24.850(7)	21.279(2)	18.089(2)	10.824(1)
α/°	90	90	91.602(2)	83.284(6)
β/°	103.181(4)	100.930(7)	98.258(3)	82.174(6)
γ/°	90	90	114.446(2)	82.924(6)
U/Å ³	4989(2)	11356(1)	2674.1(7)	1103.5(3)
Z	4	8	2	1
μ(Μο-Κα)	0.160	0.147	0.155	0.163
/mm ⁻¹				
F(000)	2296	5024	1240	522
Total	11845	50872	27281	10486
reflections				
Unique	8832	10019	12176	7226
reflections				
R _{int}	0.024	0.100	0.021	0.021
Goodness-of-fit	1.050	1.057	1.062	1.031
on <i>F</i> ²				
$R_{1^{b}}[I_{o} > 2\sigma(I_{o})]$	0.072	0.092	0.058	0.051
R ₁ (all data)	0.087	0.164	0.067	0.064
wR_2^b $[I_o >$	0.161	0.235	0.136	0.105

2σ(<i>l_o</i>)]				
wR_2 (all data)	0.173	0.271	0.142	0.112

Table S1: crystallographic data for the compounds reported in this paper. All datasets were collected at 100(2) K. Note: for compound **2b**, positional disorder of the [BAr^F]⁻ anion and one of the macrocycle rings was severe. This required the use of a lot of restraints resulting in high weighted R-factors. Other indicators of data quality such as the standard uncertainties on the unit cell lengths and the C–C bond lengths were acceptable.

References

- 1) K. Wieghardt, P. Chaudhuri, B. Nuber, J. Weiss, Inorg. Chem., 1982, 21, 3086.
- 2) M. Brookhart, B. Grant, A. F. Volpe Jr., Organometallics, 1992, 11, 3920.
- 3) ²³Na: 100%, I = $^{3}/_{2}$, Ξ = 26.42 MHz, R_c = 524, Q = 0.10 x 10⁻²⁸ m².
- 4) CrystalClear-SM Expert 2.0 r13, Rigaku Corporation, Tokyo, Japan, 2011.
- 5) L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849.
- 6) A. B. Chaplin, A. S. Weller, Eur. J. Inorg. Chem., 2010, 5124.
- 7) F. H. Allen, O. Johnson, G. P. Shields, B. R. Smith, M. Towler, J. Appl. Cryst., 2004, 37, 335.