Supporting Information

for

Synthesis, Stability and Reactivity of the First Mononuclear Nonheme Oxoiron(IV) Species with Monoamido Ligation: A Putative Reactive Species Generated from Iron-Bleomycin Yutaka Hitomi,* Kengo Arakawa and Masahito Kodera
yhitomi@mail.doshisha.ac.jp

Fig. S1 Crystal structure of $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{dpaq})(\mathrm{MeCN})\right]^{+}$shown in 50% ellipsoids. The hydrogen atoms were omitted for clarity. Selected bond lengths (\AA): $\mathrm{Fe}-\mathrm{N} 1,1.954$ (3); $\mathrm{Fe}-\mathrm{N} 2,1.95275(3)$; $\mathrm{Fe}-\mathrm{N} 3$, 1.934 (3); Fe-N4, $1.905(3) ; \mathrm{Fe}-\mathrm{N} 5,1.974(3) ; \mathrm{Fe}-\mathrm{N} 6,1.918(3)$.

Fig. S2 UV-vis spectral changes observed during the reaction of $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{dpaq})(\mathrm{MeCN})\right]^{+}\left(0.60 \times 10^{-4}\right.$ $\mathrm{M})$ with O_{2} in $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ at $25^{\circ} \mathrm{C}$. The inset shows the time courses of reaction monitored at 480 nm (red) and 720 nm (blue) due to the formation of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}$.

Fig. S3 Experimental (left) and theoretically calculated (right) infrared spectra of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\text { dpaq })\right]^{+}$prepared using (a) ${ }^{16} \mathrm{O}_{2}$ and (b) ${ }^{18} \mathrm{O}_{2}$ and (c) the differential spectrum.

Fig. S4 ESI-MS spectrum (a) of the reaction mixture of $\left[\mathrm{Fe}^{\mathrm{IV}}\left({ }^{16} \mathrm{O}\right)(\text { dpaq })\right]^{+}$with 100 equiv. of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ in $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$. The isotope pattern shown in panel a is assignable to a mixture of four species; $\quad\left[\mathrm{Fe}^{\mathrm{IV}}\left({ }^{16} \mathrm{O}\right)(\text { dpaq })\right]^{+}, \quad\left[\mathrm{Fe}^{\mathrm{IV}}\left({ }^{18} \mathrm{O}\right)(\text { dpaq })\right]^{+}, \quad\left[\mathrm{Fe}^{\mathrm{III}}(\text { dpaq })\left({ }^{16} \mathrm{OH}\right)\right]^{+}$, and $\left[\mathrm{Fe}^{\mathrm{III}}(\text { dpaq })\left({ }^{18} \mathrm{OH}\right)\right]^{+}$ (15.7:27.8: $16.2: 40.3$), whose simulated spectrum is shown in panel b.

Fig. S5 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\text { dpaq })\right]^{+}\left(4.6 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K . The effective magnetic moment was calculated by the modified Evans method. The effective magnetic moment was calculated by the modified Evans method using the following equations: ${ }^{[S 1, S 2]}$

$$
\begin{aligned}
& \mu_{\text {meas }}=0.0618(\Delta v T / 2 f M)^{1 / 2}=0.618 \times\left[(18.9 \times 298) / 2 \times 500 \times 4.6 \times 10^{-3}\right]^{1 / 2} \\
& \quad=2.16 \\
& \chi_{\text {meas }}=\mu_{\text {meas }}{ }^{2} /\left(3 k_{B} / N_{A} \beta^{2}\right) T=\mu_{\text {meas }}{ }^{2} / 8 T=2.16^{2} /(8 \times 298)=1.96 \times 10^{-3} \\
& \chi_{D} \approx-(M W / 2) 10^{-6}=-(698.79 / 2) 10^{-6}=-4.22 \times 10^{-4} \\
& \chi_{P}=\chi_{\text {meas }}-\chi_{D}=1.96 \times 10^{-3}-\left(-4.22 \times 10^{-4}\right)=2.54 \times 10^{-3} \\
& \mu_{e f f}=\left[\left(3 k_{B} / N_{A} \beta^{2}\right)\left(\chi_{P} T\right)\right]^{1 / 2}=\left(8 \times 2.54 \times 10^{-3} \times 298\right)^{1 / 2}=2.46 \text { B. } M . \\
& N=-1+\left(1+\mu_{e f f}\right)^{1 / 2}=-1+\left(1+2.46^{2}\right)^{1 / 2}=1.65
\end{aligned}
$$

, where $\mu_{\text {meas }}$ is the measured magnetic moment, Δv is the difference in frequency (Hz) between the two signals, T is the absolute temperature, f is the NMR oscillator frequency $(\mathrm{MHz}), M$ is the molar concentration of the metal complex, $\chi_{\text {meas }}$ is the measured magnetic susceptibility, k_{B} is the Boltzmann constant, N_{A} is Avogadro's number, β is Bohr magneton, χ_{D} is the diamagnetic magnetic susceptibility, $M W$ is the molecular weight of the sample, χ_{P} is the paramagnetic magnetic susceptibility, $\mu_{\text {eff }}$ is the effective magnetic moment, and N is the number of unpaired electrons.

Fig. S6 (a) UV-vis spectral changes of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}\left(1.25 \times 10^{-4} \mathrm{M}\right)$ in $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ at $25^{\circ} \mathrm{C}$. (b) The time courses monitored at 410 and 680 nm .

Fig. S7 ESI-MS spectrum (a) of the reaction mixture of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}\left(1.25 \times 10^{-4} \mathrm{M}\right)$ with 800 equiv. of ethylbenzene. The isotope pattern shown in panel a is assignable to $\left\{\left[\mathrm{Fe}^{\mathrm{III}}{ }_{2}(\mu-\mathrm{O})(\mathrm{dpaq})_{2}\right] \mathrm{ClO}_{4}\right\}^{+}$, whose simulated spectrum is shown in panel b .

Fig. S8 (a) UV-vis spectral changes in the reaction of $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{dpaq})(\mathrm{MeCN})\right]^{+}\left(0.60 \times 10^{-4} \mathrm{M}\right)$ with 3 equiv. of NaOH aq. in MeCN at $25{ }^{\circ} \mathrm{C}$. (b) ESI-MS spectra of a reaction mixture of $\left[\mathrm{Fe}^{\text {III }}(\mathrm{dpaq})(\mathrm{MeCN})\right]^{+}\left(0.60 \times 10^{-4} \mathrm{M}\right)$ and 3 equiv. of NaOH aq. in MeCN .

Fig. S9 Plot of $k_{\text {obs }}$ vs [ethylbenzene]. Blue and red dots show the data points for ethylbenzene and ethylbenzene- d_{10}, respectively.

Fig. S10 (a) Plots of k_{obs} vs the concentrations of triphenylmethane (○), cumene (ロ), ethylbenzene (\bullet) and toluene ($\mathbf{\square}$). (b) Plot of $k_{\text {obs }}$ vs [2,3-dimethylbutane].

Fig. S11 Cyclic voltammograms of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}\left(1.0 \times 10^{-3} \mathrm{M}\right)$ in deaerated MeCN containing TBAP $(0.10 \mathrm{M})$ with an Au working electrode at 298 K . Scan rate: $10 \mathrm{mV} \mathrm{s}^{-1}$ (black), $50 \mathrm{mV} \mathrm{s}^{-1}$ (red), $100 \mathrm{mV} \mathrm{s}^{-1}$ (blue). Peaks marked with asterisk are the cathodic peak of $\left[\mathrm{Fe}^{\text {III }}(\mathrm{dpaq})(\mathrm{OH})\right]^{+}$.

Table S1 Summary of the X-ray Crystallographic Data of $\mathrm{Fe}^{\text {II }}$ (dpaq) Complex.

Compound	$\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{dpaq})(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{Et}_{3} \mathrm{NH} \cdot \mathrm{MeCN}$	
Formula	$\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{Fe} \mathrm{N}_{8} \mathrm{O}_{9}$	
formula weight	820.49	
crystal system	Monoclinic	
space group	$\mathrm{P} 21 / \mathrm{c}$	
a, \AA	$12.1581(2)$	
b, \AA	$23.2662(3)$	
c, \AA	$13.2420(5)$	
α, deg	90.00	
β, deg	$100.4240(10)^{\circ}$	
γ, deg	90.00	
$V, \AA{ }^{3}$	$2789.7(2)$	
Z	4	
$F(000)$	1400	
$D_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{-3}$	1.479	
$T, \mathrm{~K}$	$123(2)$	
crystal size, mm	0.100 .100 .10	
$\mu($ MoK $\alpha)$, cm ${ }^{-1}$	0.71073	
$2 \theta_{\text {max }}$, deg	25.35	
no. of reflns measd	21288	
no. of reflns obsd	$6520>2$ sigma (I)	
no. of variables	387	
R^{a}	0.0721	
$R_{w}{ }^{b}$	0.1542	
GOF	0.853	
${ }^{a} R=\Sigma \\| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| \Sigma\left\|F_{\mathrm{o}}\right\| .{ }^{b} R_{\mathrm{w}}=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w F_{\mathrm{o}}^{2}\right]^{1 / 2}$		

Table S2 Selected Bond Lengths $\left(\AA\right.$) and Angles (deg) for $\mathrm{Fe}^{\mathrm{II}}$ (dpaq) Complex.

$\mathrm{Fe}(1)-\mathrm{N}(1)$	$1.954(3)$
$\mathrm{Fe}(1)-\mathrm{N}(2)$	$1.952(3)$
$\mathrm{Fe}(1)-\mathrm{N}(3)$	$1.934(3)$
$\mathrm{Fe}(1)-\mathrm{N}(4)$	$1.905(3)$
$\mathrm{Fe}(1)-\mathrm{N}(5)$	$1.974(3)$
$\mathrm{Fe}(1)-\mathrm{N}(6)$	$1.918(3)$
$\mathrm{C}(20)-\mathrm{O}(1)$	$1.227(6)$
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(2)$	$96.45(19)$
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(3)$	$96.76(18)$
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(4)$	$82.8(2)$
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(5)$	$167.33(19)$
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(6)$	$96.1(2)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(3)$	$166.7(2)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(4)$	$92.34(18)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(5)$	$83.28(19)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(6)$	$86.58(18)$
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(4)$	$90.67(18)$
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(5)$	$84.13(18)$
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(6)$	$90.66(19)$
$\mathrm{N}(4)-\mathrm{Fe}(1)-\mathrm{N}(5)$	$84.5(2)$
$\mathrm{N}(4)-\mathrm{Fe}(1)-\mathrm{N}(6)$	$178.37(19)$
$\mathrm{N}(5)-\mathrm{Fe}(1)-\mathrm{N}(6)$	$96.6(2)$

Table S3 Summary of data for the reactions of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}$with various hydrocarbons.

substrates	$\mathrm{BDE}_{\mathrm{C}-\mathrm{H}}(\mathrm{kcal} / \mathrm{mol})$	$k_{2}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	product (yield \%)
triphenylmethane (1)	81	0.048	triphenylmethanol (48)
cumene (1)	84.5	0.0062	cumyl alcohol (48)
ethylbenzene (2)	87	0.0097	1-phenylenthanol (19)
			acetophenone (9.0)
ethylbenzene- d_{10}		0.00030	
		$(\mathrm{KIE=32)}$	
toluene (3)	0.0039	benzyl alcohol (7)	
			benzaldehyde (17)
2,3-dimethylbutane (2)	96.5	0.00046	2-hydroxyl-2,3-dimethylbutane (37)
self-decay			
in MeCN/CH2Cl $\mathrm{Cl}_{2}(1: 1)$	98.6 for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.00016\left(\mathrm{~s}^{-1}\right)$	
in MeCN		$0.000033\left(\mathrm{~s}^{-1}\right)$	

Experimental Procedure

General. All chemicals used in this study were commercial products of the highest available purity and were further purified by the standard methods. The ligand H -dpaq was prepared according to the reported procedure. ${ }^{[S 3]}$ Isopropyl 2-iodoxybenzoate was synthesized according to literature procedures and all data were in agreement with published ones. ${ }^{[S 4]}$ FT-IR spectra were recorded on a Shimadzu IRAffinity-1 spectrometer equipped with a MIRacle 10 single reflection ATR accessory, and UV-visible spectra were taken on an Agilent 8543 UV-visible spectroscopy system equipped with a Unisoku thermostated cell holder designed for low temperature measurements (USP-203). ${ }^{1}$ H-NMR spectra were recorded on a JEOL JMN-ECA 500 spectrometer. ESI-MS (electrospray ionization mass spectra) measurements were performed on a JEOL JMS-T100CS spectrometer. Elemental analyses were recorded with a Perkin-Elmer Elemental Analyzer 2400 II. The GC-MS analysis was performed with a Shimadzu GC-MS-QP5000 gas chromatography equipped with a Shimadzu CBP1 capillary column ($25 \mathrm{~m} \times 0.32 \mathrm{~mm}$).

Synthesis of Iron Complexes

Caution: Perchlorate salts of metal complexes are potentially explosive and should be handled in small quantities with care.

Synthesis of $\mathbf{F e}^{\text {II }}$ (dpaq) Complex

$\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.57 \mathrm{~g}, 1.6 \mathrm{mmol})$ was placed in a glass vial, and $\mathrm{MeCN}(5.0 \mathrm{~mL})$ was added to form a yellow solution. This solution was then added to a second vial containing H-dpaq ${ }^{[S 3]}(0.50 \mathrm{~g}$, 1.3 mmol) in $\mathrm{MeCN}(15 \mathrm{~mL})$. To the mixture was added triethylamine ($0.25 \mathrm{~mL}, 2.0 \mathrm{mmol}$). The mixture turned to red. 3 h later the reaction mixture was added excess diethylether. The resulting red crystals were collected, and after vacuum-drying a red crystalline material was isolated weighing $0.383 \mathrm{~g}(47 \%)$. FT-IR (ATR, $\left.\mathrm{cm}^{-1}\right) 1600(\mathrm{C}=\mathrm{O}), 1093$ and $621\left(\mathrm{ClO}_{4}{ }^{-}\right)$; Anal. Calcd for [Fe (dpaq) $(\mathrm{MeCN})] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{25.5} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{FeN}_{6} \mathrm{O}_{5}\right): \mathrm{C}, 49.30 ; \mathrm{H}, 3.89 ; \mathrm{N}, 13.53$. Found: C , 49.45; H, 3.80; N, 13.08. UV-vis (MeCN): $480 \mathrm{~nm}\left(7385 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 350 \mathrm{~nm}\left(6576 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. ESI-MS, positive mode: $m / z 438.08\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{dpaq})\right]^{+}$.

X-ray Structure Determination:

The single crystal suitable for X-ray analysis was obtained according to the above procedure. Crystal, data collection, and refinement parameters are given in Tables S1 and S2. A suitable crystal for single-crystal X-ray diffraction was selected and mounted on a RIGAKU R-Axis Rapid diffractometer with graphite-monochromated Mo K_{α} radiation ($\lambda=0.71075 \AA$).

Synthesis of $\mathrm{Fe}^{\mathrm{IV}}(\mathbf{O})$ (dpaq) Complex

Method I: To a 0.125 mM solution of $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{dpaq})(\mathrm{MeCN})\right] \mathrm{ClO}_{4}$ in $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 1)$ was added 0.5 equivalents of isopropyl 2-iodoxybenzoate $(50 \mu \mathrm{~L})$ at $-40^{\circ} \mathrm{C}$. The characteristic band of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}$at 720 nm reached a maximum after 30 min .
Method II: $\left[\mathrm{Fe}^{\text {II }}(\right.$ dpaq $\left.)(\mathrm{MeCN})\right] \mathrm{ClO}_{4}(2.45 \mathrm{mg}, 4.25 \mu \mathrm{~mol})$ was dissolved in 85 mL of $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 / 1)$ and allowed to stir until the reaction mixture became homogeneous. The resulting red solution was treated with O_{2} causing a color change to brown. The solvent was removed in vacuo at $-20^{\circ} \mathrm{C}$ to afford $2 \mathrm{mg}(92 \%)$ of the solid product. FTIR (ATR, $\left.\mathrm{cm}^{-1}\right) v(\mathrm{C}=\mathrm{O}) 1604, v\left(\mathrm{Fe}={ }^{16} \mathrm{O}\right) 804, v\left(\mathrm{Fe}={ }^{18} \mathrm{O}\right)$ 777; Anal. Calcd for $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\right.$ dpaq $\left.)\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{23.5} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{FeN}_{6} \mathrm{O}_{5}\right): \mathrm{C}, 47.34 ; \mathrm{H}, 3.55$; N, 11.75. Found: C, 47.53 ; H, 3.82; N, 11.85. UV-vis (MeCN): $686 \mathrm{~nm}\left(713.5 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$), 912 nm $\left(113.6 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. ESI-MS, positive mode: $m / z 454.04\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{dpaq})(\mathrm{O})\right]^{+}, 456.04\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{dpaq})\left({ }^{18} \mathrm{O}\right)\right]^{+}$.

NMR Measurements for Spin State Determination: ${ }^{1} \mathrm{H}$ NMR spectra were measured with a JEOL JMN-ECA500 $(500 \mathrm{MHz})$ NMR spectrometer. The spin state of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\text { dpaq })\right]^{+}$was determined using the modified ${ }^{1} \mathrm{H}$ NMR method of Evans at 298 K . A $25 \mu \mathrm{~L}$ Drumond microdispenser replacement tube (sealed capillary) containing $80 \mu \mathrm{~L}$ of $\mathrm{CD}_{3} \mathrm{CN}$ (with 1.0% TMS) was inserted into a normal NMR tube containing $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}\left(600 \mu \mathrm{~L}, 4.6 \times 10^{-3} \mathrm{M}\right)$ dissolved in $\mathrm{CD}_{3} \mathrm{CN}$ (with 1.0% TMS).

Fig. S12 ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\text { dpaq })\right]^{+}$generated by the reaction of $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{dpaq})(\mathrm{MeCN})\right]^{+}\left(4.6 \times 10^{-3} \mathrm{M}\right)$ with 0.5 equiv. of isopropyl 2-iodoxybenzoate (a), $\left[\mathrm{Fe}^{\text {III }}(\mathrm{dpaq})(\mathrm{MeCN})\right]^{2+}(\mathrm{b})$, and $\left[\mathrm{Fe}^{\text {II }}(\mathrm{dpaq})(\mathrm{MeCN})\right]^{+}$(c) in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K .

Reactivity Studies:

A solution of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\text { dpaq })\right]^{+}(0.125 \mathrm{mM})$ in $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 1)$ was prepared by the reaction of $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{dpaq})(\mathrm{MeCN})\right]^{+}$with 0.5 equiv. of isopropyl 2-iodoxybenzoate. Substrates were added to the stirred solutions under Ar. The decay of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}$was monitored on an Agilent 8543 UV-visible spectroscopy system at $25^{\circ} \mathrm{C}$. The solutions at the end of the reaction were then analyzed by GC/MS (with nitrobenzene as a quantification standard). The data obtained from these studies are collected in Table S3. The k_{1} value was calculated by using the following equations:

, where A is the concentration of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}$, B is the concentration of substrate, C is the concentration of $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{dpaq})\right]^{+}, \mathrm{D}$ is the concentration of $\left[\mathrm{Fe}^{\mathrm{III}}{ }_{2}(\mu-\mathrm{O})(\mathrm{dpaq})_{2}\right]^{2+}$.

Electrochemical Measurements: Cyclic voltammetric measurements were performed on a BAS CV-50W electrochemical analyzer in deaerated MeCN containing $0.1 \mathrm{M} n$ - $\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ as a supporting electrolyte and $1 \mathrm{mM}\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}$. The Au working electrode (BAS) was polished with BAS polishing alumina suspension and rinsed with MeCN before use. The counter electrode was a platinum wire. All potentials were reported with respect to the ferrocene/ferrocenium redox couple $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$.

Density Functional Calculations:

The structure of $S=1\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}$was fully optimized using the BP method in combination with $\mathrm{TZV}(2 \mathrm{pf})$ basis sets on $\mathrm{Fe}, \mathrm{TZV}(2 \mathrm{~d})$ basis sets on C, N, and O , and $\mathrm{TZP}(\mathrm{p})$ basis sets on H . The vibrational frequencies of the fully optimized complex were again calculated with BP/TZVP, showing no imaginary frequencies. All of these calculations were performed using the program ORCA version 2.8. ${ }^{[55]}$

Fig. S13 Fully optimized structures of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{dpaq})\right]^{+}$for $S=1$, obtained with BP/TZVP. Structural data are given in Table S4.

Table S4. Coordinates $\left[\AA\right.$ A of $S=1\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\text { dpaq })\right]^{+}$fully optimized.

Atom	Coordinates		
	x	y	z
Fe	-0.61206	0.073779	0.528363
H	0.495741	-0.92236	3.170272
C	1.327656	-1.02772	2.472463
N	1.082062	-0.64348	1.214637
C	3.599282	-1.64344	1.918878
C	2.073349	-0.73929	0.259324
C	2.585994	-1.53531	2.854772
C	3.370956	-1.24363	0.575876

C	1.731539	-0.30934	-1.06064
H	2.738871	-1.83727	3.890672
H	5.330298	-1.69292	-0.25057
H	4.578059	-2.03531	2.202369
C	2.707638	-0.38939	-2.05698
H	2.464975	-0.06416	-3.0667
C	3.991897	-0.88935	-1.74211
H	4.735793	-0.94238	-2.53905
C	4.332136	-1.30981	-0.46678
C	-0.1854	0.614195	-2.27452
O	0.282965	0.73981	-3.40569
N	0.422129	0.141982	-1.15162
N	-2.11719	0.82885	-0.58191
C	-1.65111	1.023657	-2.00789
H	-1.7625	2.080974	-2.28736
H	-2.29339	0.443065	-2.68434
C	-3.21316	-0.18242	-0.47512
H	-3.99689	-0.0097	-1.22961
H	-3.65371	-0.07642	0.528071
C	-2.46727	2.121601	0.083652
H	-3.01813	1.871945	1.003218
H	-3.10731	2.746194	-0.55936
N	-0.17155	2.009869	0.815282
C	0.122144	4.770969	1.010198
C	0.987071	2.541772	1.247719
C	-1.19891	2.831954	0.476471
C	-1.07818	4.218324	0.556177
C	1.168077	3.918558	1.365058
H	1.777358	1.838399	1.503658
H	-1.91566	4.853941	0.266473
H	2.12102	4.307133	1.723037
H	0.238313	5.853198	1.082587
O	-1.48012	0.01047	1.968532
N	-1.36991	-1.68547	-0.07101
C	-2.69642	-3.91815	-1.07324
C	-0.77702	-2.89397	-0.05231

C	-2.62314	-1.564	-0.58132
C	-3.30808	-2.66237	-1.0977
C	-1.41312	-4.03467	-0.53845
H	0.227154	-2.93429	0.364758
H	-4.30878	-2.53284	-1.5105
H	-0.89855	-4.99452	-0.50084
H	-3.21487	-4.79187	-1.46927

References

S1. G. A. Bain, J. F. Berry, J. Chem. Educ., 2008, 85, 532.
S2. D. F. Evans, D. A Jakubovic, J. Chem. Soc., Dalton Trans., 1988, 2927.
S3. Y. Hitomi, K Arakawa, T Funabiki, M Kodera, Angew. Chem., Int. Ed., 2012, 51, 3448.
S4. V. V. Zhdankin, A. Y. Koposov, D. N. Litvinov, M. J. Ferguson, R. McDonald, T. Luu, R. R. Tykwinski, J. Org. Chem., 2005, 70, 6484.

S5. F. Neese, ORCA—An ab Initio, Density Functional, and Semiempirical Program Package (Universität Bonn, Bonn, Germany) Version 2.8, 2010.

