n-Bu₄NI-catalyzed selective dual amination of sp³ C–H bonds: oxidative domino synthesis of imidazo[1,5-*c*]quinazolines on a gram-scale

Dan Zhao, Teng Wang, Qi Shen and Jian-Xin Li*

State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. Fax: +86-25-83686419; E-mail: <u>lijxnju@nju.edu.cn</u>

Electronic Supplementary Information

Content

General information	S2
Optimization of the reaction condition	S2–S4
General procedure for the synthesis of substrates and products	S4–S6
Control experiments on the reaction mechanism	S7–S8
Substrate characterizations	S9–S13
Product and intermediate 6 characterizations	S14–S23
References	S23
Spectral copies of ¹ H- and ¹³ C-NMR of products and intermediate 6	S24–S59

General information

All commercial reagents and solvents were used without additional purification unless otherwise specified. Melting points were measured with an X-4 melting point apparatus (Bei Jing Taike Co., Ltd.) and were uncorrected. ¹H-NMR and ¹³C-NMR were determined in CDCl₃ on a Bruker DPX 300 MHz or a Bruker AVANCE III 400 MHz spectrometer at room temperature, respectively, and tetramethylsilane (TMS) served as an internal standard. Spin multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as brs (broad). Coupling constants (*J*) are given in hertz (Hz). ESI-MS was carried out on a LCMS-2020 (Shimadzu, Japan). HRMS were recorded on a LTQ-Orbitrap XL (Thermofisher, U.S.A.). All experiments were monitored by thin layer chromatography (TLC). TLC was performed on pre-coated silica gel plates (Qingdao Haiyang Chemical Co., Ltd).

Optimization of the reaction condition

 Table S1 Screening of Reaction Conditions^a

		$ \begin{array}{c} $	I + H ₂ N Ph 20 mol% XI / Oxidant Ph Additive, Solvent Temperature, Time		- N Ph N Ph 3aa		
Ent	XI	Oxidant	Additive (equiv)	Solvent	Temp.	Time	Yield ^b
ry		(equiv)			(°C)	(h)	(%)
1	<i>n</i> -Bu ₄ NI	5.5 M TBHP		DMSO	90	10	36
		in decane (4)					
2		5.5 M TBHP		DMSO	90	10	nd
		in decane (4)					
3	NIS	5.5 M TBHP		DMSO	90	10	26
		in decane (4)					
4	I_2	5.5 M TBHP		DMSO	90	10	23
		in decane (4)					
5	PhI	5.5 M TBHP		DMSO	90	10	nd
		in decane (4)					
6	KI	5.5 M TBHP		DMSO	90	10	33
		in decane (4)					
7	<i>n</i> -Bu ₄ NI	1atm air		DMSO	90	10	nd
8	<i>n</i> -Bu ₄ NI	30% Aq.		DMSO	90	10	trace
		$H_2O_2(4)$					
9	<i>n</i> -Bu ₄ NI	$(tBuO)_2(4)$		DMSO	90	10	nd
10	<i>n</i> -Bu ₄ NI	$K_2S_2O_8(4)$		DMSO	90	10	messy
11	<i>n</i> -Bu ₄ NI	70% Aq.		DMSO	90	10	37
		TBHP (4)					
12	<i>n</i> -Bu ₄ NI	70% Aq.	$K_{2}CO_{3}(2)$	DMSO	90	10	messy
		TBHP (4)					
13	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(2)$	DMSO	90	10	80
		TBHP (4)					

14	<i>n</i> -Bu ₄ NI	70% Aq.	CF ₃ COOH (2)	DMSO	90	10	messy
		TBHP (4)		51460		10	
15	n-Bu ₄ NI	70% Aq.	PhCOOH (2)	DMSO	90	10	72
16	D M	TBHP (4)		DMGO	00	10	70
16	n-Bu ₄ NI	70% Aq.	$PhCH_2COOH(2)$	DMSO	90	10	/8
17	D., MI	1 BHP (4)		DMCO	00	10	47
1 /	<i>n</i> -Bu ₄ INI	70% Aq.	$0 - C_6 H_4(COOH)_2(2)$	DMSO	90	10	47
10	n Du MI	ТВПР (4) 70% Ад		DMSO	00	10	65
18	<i>n</i> -Du ₄ INI	70% Аq. Трир (4)	$CH_3CH_2COOH(2)$	DMSO	90	10	03
10	n-Bu NI	70% Ag	СН.(СН.).СООН (2)	DMSO	90	10	78
19		7078 Aq. TBHP (4)	$CI1_3(CI1_2)_3COOII(2)$	DWBO	90	10	78
20	n-Bu.NI	70% Ag	$N_{2}H_{2}PO(2H_{2}O(2))$	DMSO	90	10	67
20		7070 Aq. TBHP (4)	112104 21120(2)	DWBO	<i>)</i> 0	10	07
21	n-Bu₄NI	70% Aa	$CH_2COOH(2)$	DMF	90	10	40
21	n Du ₄ r (1	TBHP (4)	011,00011 (2)	Dim	20	10	10
22	<i>n</i> -Bu₄NI	70% Ag	CH ₂ COOH (2)	DMA	90	10	46
	n Dugi (I	TBHP (4)		Dimi	20	10	10
23	<i>n</i> -Bu₄NI	70% Aq.	CH ₃ COOH (2)	toluene	90	10	22
		TBHP (4)					
24	<i>n</i> -Bu₄NI	70% Aq.	CH ₃ COOH (2)	CH ₃ CN	90	10	26
		TBHP (4)		-			
25	<i>n</i> -Bu ₄ NI	70% Aq.	CH ₃ COOH (2)	dioxane	90	10	26
		TBHP (4)					
26	<i>n</i> -Bu ₄ NI	70% Aq.	CH ₃ COOH (2)	DCE	90	10	23
		TBHP (4)					
27	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(2)$	NMP	90	10	40
		TBHP (4)					
28	<i>n</i> -Bu ₄ NI	70% Aq.	CH ₃ COOH (2)	H_2O	90	10	30
		TBHP (4)					
29	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(1)$	DMSO	90	10	61
		TBHP (4)					
30	<i>n</i> -Bu ₄ NI	70% Aq.	CH ₃ COOH (3)	DMSO	90	10	88
		TBHP (4)					
31	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(4)$	DMSO	90	10	86
		TBHP (4)					
32	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(3)$	DMSO	100	10	81
		TBHP (4)					
33	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(3)$	DMSO	110	10	79
		TBHP (4)					
34	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(3)$	DMSO	75	10	58
• -	P	TBHP (4)		D: (7 -	~~		0.5
35	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(3)$	DMSO	90	12	81
		TBHP (4)					

36	<i>n</i> -Bu ₄ NI	70% Aq.	CH ₃ COOH (3)	DMSO	90	15	81
		TBHP (4)					
37	<i>n</i> -Bu ₄ NI	70% Aq.	$CH_3COOH(3)$	DMSO	90	10	65
		TBHP (2)					

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), XI (20 mol%), oxidant (indicated amount), additive (indicated amount), in a tested solvent (2 mL) at a selected temperature. nd = not detected. ^{*b*} Isolated yield.

General procedure for the synthesis of substrates and products General procedure for the synthesis of 4-methylquinazolines (1a–o, 1s and 1t):

To a solution of 2-aminoacetophenone derivatives (20 mmol) and triethylamine (3.3 mL, 1.2 equiv) in dichloromethane (DCM) (60 mL) cooled in an ice-water bath, chloride (1.5 equiv) was added dropwise. The progress of the reaction was monitored by TLC. Upon completion, the solution was washed with diluted hydrochloric acid, saturated NaHCO₃, brine, and dried over anhydrous Na₂SO₄. The organic phase was concentrated in vacuo to give amide as an intermediate without further purification. The amide, 25% ammonia water (20 mL) and isopropanol (20 mL) were added to a 250 mL sealed tube. The tube was located in a preheated 90 °C oil bath and stirred for 10 h. The reaction mixture was cooled to room temperature, washed with diluted hydrochloric acid, saturated NaHCO₃, brine, and dried over anhydrous Na₂SO₄, then concentrated in vacuo. The residue was then purified by chromatography on silica gel with an eluent of petroleum ether and ethyl acetate. Products were characterized by Mp, ¹H-, ¹³C-NMR and MS (ESI).

Procedure for the synthesis of 4-methylquinazolines (1p-r):

To a solution of 2-aminoacetophenone derivatives (20 mmol) and triethylamine (3.3 mL, 1.2 equiv) in dichloromethane (DCM) (60 mL) cooled in an ice-water bath, trichloroacetyl chloride (1.2 equiv) was added dropwise. The progress of the reaction was monitored by TLC. Upon completion, the solution

was washed with diluted hydrochloric acid, saturated NaHCO₃, brine, and dried over anhydrous Na₂SO₄. The organic phase was concentrated in vacuo to give amide as an intermediate without further purification. Ammonium carbamate (5 equiv) was added to a solution of amide in methanol (40 mL). The mixture was stirred at about 40 °C for 8 h. The excess ammonium carbamate was filtered. The organic phase was concentrated in vacuo and the gray residue was recrystallized from ethyl acetate/hexanes 1/3 (v/v) to give 4-methylquinazolin-2(1H)-one (76% yield for two steps). POCl₃ (5 mL) was added drop wise to 4-methylquinazolin-2(1H)-one (10 mmol) at 0 °C. The mixture was refluxed for 3 h. Excess POCl₃ was distilled off and the residue was cooled to room temperature and then added drop wise into crushed ice. The aqueous layer was extracted with ethyl acetate, washed with saturated NaHCO₃, brine, and dried over anhydrous Na₂SO₄, then concentrated in vacuo. The residue was then purified by chromatography on silica gel with an eluent of petroleum ether and ethyl acetate to give **1p** (48% yield). To a solution of **1p** (2 mmol) in methanol (5 mL), secondary amine (1.2 equiv) and triethylamine (4 equiv) were added. The mixture was refluxed for 3 h. The solvent was distilled off and the residue was then purified by chromatography on silica gel with an eluent of petroleum ether and ethyl acetate to give 1q (87% yield) and 1r (86% yield). Products were characterized by Mp, ¹H-, ¹³C-NMR and MS (ESI).

Procedure for the synthesis of 4-methyl-2-phenylpyrimidine (1u):

To a round-bottom flask was added 2-chloro-4-methylpyrimidine (2 mmol), arylboronic acid (2 equiv), $PdCl_2(PPh_3)_2$ (4 mol%) and Na_2CO_3 (2 M, 5 mL) in dioxane (5 mL). The reaction mixture was heated to 90 °C until the 2-chloro-4-methylpyrimidine was consumed completely. The heterogeneous aqueous was concentrated in vacuo and the residue was diluted with EtOAc, washed by brine. The organic layer was dried over anhydrous Na_2SO_4 , concentrated and then purified by chromatography on silica gel with an eluent of petroleum ether and ethyl acetate to give **1u** (100% yield).

General procedure for the synthesis of substituted imidazo[1,5-*c*]quinazolines (3):

A mixture of 4-methylquinazoline **1** (0.3 mmol), benzylamine **2** or amino acid **4** (0.6 mmol), *n*-Bu₄NI (0.06 mmol), TBHP (1.2 mmol, 70% in water) and acetic acid (0.9 mmol) in 2 mL DMSO was stirred in a Schlenk tube at 90 °C. After stirring for 10 h, the reaction mixture was cooled to the room temperature, and extracted by ethyl acetate (3×5 mL). The organic phase was then washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was then purified by chromatography on silica gel with an eluent of petroleum ether and ethyl acetate. Products were characterized by Mp, ¹H-, ¹³C-NMR and HRMS (ESI).

The failure examples:

Control experiments on the reaction mechanism

Scheme S1 Control reactions A-F.

(a)

tBuOOH

tBuO + HO

Scheme S2 Plausible reaction mechanism.

Substrate characterizations

4-*Methyl-2-phenylquinazoline* (*1a*)^{*I*}. white solid, 76% yield for two steps, mp. 84 – 85 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.63 (dd, *J* = 7.9, 1.8 Hz, 2H), 8.09 (d, *J* = 8.3 Hz, 2H), 7.87 (ddd, *J* = 8.5, 6.9, 1.3 Hz, 1H), 7.64 – 7.45 (m, 4H), 3.02 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.1, 160.0, 150.2 138.2, 133.4, 130.3, 129.1, 128.48, 128.52, 126.7, 124.8, 122.8, 21.9; MS (ESI): 221.00 [M+H]⁺.

2-(4-(*Tert-butyl*)*phenyl*)-4-*methylquinazoline* (**1b**). colorless oil, 91% yield for two steps. ¹H NMR (300 MHz, CDCl₃) δ 8.65 – 8.43 (m, 2H), 8.08 (d, *J* = 8.4 Hz, 2H), 7.85 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H), 7.62 – 7.50 (m, 3H), 3.01 (s, 3H), 1.39 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.9, 160.1, 153.5, 150.3, 135.6, 133.2, 129.0, 128.3, 126.5, 125.4, 124.8, 122.8, 34.8, 31.3, 21.9; MS (ESI): 277.15 [M+H]⁺; HRMS (ESI) m/z calcd for C₁₉H₂₁N₂ [M+H]⁺ 277.1699, found 277.1696.

2-(4-Methoxyphenyl)-4-methylquinazoline $(1c)^1$. white solid, 80% yield for two steps, mp. 112 – 113 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.69 – 8.46 (m, 2H), 8.14 – 7.98 (m, 2H), 7.83 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.54 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.11 – 6.97 (m, 2H), 3.90 (s, 3H), 2.99 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.0, 161.6, 159.9, 150.3, 133.4, 130.9, 130.1, 128.9, 126.3, 124.9, 122.6, 113.8, 55.3, 21.9; MS (ESI): 251.10 [M+H]⁺.

4-*Methyl*-2-(4-(*trifluoromethyl*)*phenyl*)*quinazoline* (1*d*)². white solid, 95% yield for two steps, mp. 86 – 87 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.75 (d, *J* = 8.1 Hz, 2H), 8.20 – 8.03 (m, 2H), 7.90 (ddd, *J* = 8.5, 6.9, 1.3 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.63 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 1H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 158.6, 150.2, 141.6, 133.7, 131.8 (q, *J*_{C-F} = 32.2 Hz), 129.3, 128.8, 127.4, 125.4 (q, *J*_{C-F} = 3.8 Hz), 125.0, 124.3 (d, *J*_{C-F} = 272.2 Hz), 123.2, 21.9; MS (ESI): 289.05 [M+H]⁺.

4-*Methyl-2-(4-nitrophenyl)quinazoline (1e)*³. yellow solid, 38% yield for two steps, mp. 171 – 172 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.79 (d, *J* = 8.7 Hz, 2H), 8.33 (d, *J* = 8.7 Hz, 2H), 8.10 (t, *J* = 8.1 Hz, 2H), 7.91 (t, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 3.03 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.6, 158.0, 150.9, 150.1, 150.0, 135.6, 133.6, 129.1, 127.2, 124.8, 123.1, 123.0, 21.8; MS (ESI): 266.00 [M+H]⁺.

*2-(3-Chlorophenyl)-4-methylquinazoline (*1f)^{*4*}. yellow solid, 64% yield for two steps, mp. 106 – 107 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.65 – 8.61 (m, 1H), 8.55 – 8.47 (m, 1H), 8.13 – 8.03 (m, 2H), 7.87 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.60 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.47 – 7.43 (m, 2H), 3.01 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.4, 158.7, 150.2, 140.1, 134.6, 133.6, 130.2, 129.7, 129.2, 128.5, 127.1, 126.5, 124.9, 123.1, 21.9; MS (ESI): 255.05 [M+H]⁺.

2-(2-Fluorophenyl)-4-methylquinazoline (**1g**). white solid, 57% yield for two steps, mp. 63 – 64 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.18 – 8.06 (m, 3H), 7.90 (t, *J* = 7.8 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.52 – 7.39 (m, 1H), 7.36 – 7.14 (m, 2H), 3.03 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 162.7, 159.4, 158.9 (d, *J*_{C-F} = 3.9 Hz), 150.0, 133.6, 132.0, 131.2 (d, *J*_{C-F} = 8.5 Hz), 129.1, 127.4, 124.8, 124.1 (d, *J*_{C-F} = 3.4 Hz), 122.5, 116.7 (d, *J*_{C-F} = 22.3 Hz), 21.8; MS (ESI): 239.00 [M+H]⁺; HRMS (ESI) m/z calcd for C₁₅H₁₂FN₂ [M+H]⁺ 239.0979, found 239.0983.

2-(*Furan-2-yl*)-4-methylquinazoline (1h)⁵. white solid, 93% yield for two steps, mp. 82 – 83 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.13 – 8.00 (m, 2H), 7.84 (ddd, J = 8.5, 7.0, 1.3 Hz, 1H), 7.68 (dd, J = 1.7, 0.8 Hz, 1H), 7.55 (ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 7.45 (dd, J = 3.4, 0.8 Hz, 1H), 6.60 (dd, J = 3.4, 1.8 Hz, 1H), 2.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.6, 153.2, 152.6, 149.8, 145.0, 133.7, 128.8, 126.8, 124.9, 122.7, 113.7, 112.1, 21.8; MS (ESI): 211.05 [M+H]⁺.

*4-Methyl-2-(thiophen-2-yl)quinazoline (1i)*⁶. white solid, 89% yield for two steps, mp. 86 – 87 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.15 (dd, *J* = 3.7, 1.2 Hz, 1H), 8.07 – 7.94 (m, 2H), 7.82 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.57 – 7.44 (m, 2H), 7.18 (dd, *J* = 5.0, 3.7 Hz, 1H), 2.96 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 156.9, 150.1, 144.1, 133.6, 129.6, 128.9, 128.7, 128.2, 126.5, 125.0, 122.7, 21.8; MS (ESI): 227.05 [M+H]⁺.

*4-Methyl-2-(pyridin-3-yl)quinazoline (1j)*⁴. yellow solid, 71% yield for two steps, mp. 107 – 109 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.81 (s, 1H), 8.88 (d, *J* = 7.9 Hz, 1H), 8.72 (d, *J* = 3.6 Hz, 1H), 8.10 (t, *J* = 8.7 Hz, 2H), 7.89 (t, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.45 (dd, *J* = 7.8, 4.9 Hz, 1H), 3.03 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.1, 157.9, 150.5, 149.9, 149.8, 135.4, 133.4, 128.8, 127.0, 124.7, 122.8, 122.7, 21.7; MS (ESI): 222.00 [M+H]⁺.

1k

2,4-Dimethylquinazoline (1k)⁷. yellow oil, 45% yield for two steps. ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J* = 8.3 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.87 – 7.80 (m, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 2.93 (s, 3H), 2.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 163.4, 149.8, 133.5, 128.1, 126.5, 124.8, 122.1, 26.3, 21.6; MS (ESI): 159.00 [M+H]⁺.

11

4-Methyl-2-propylquinazoline (11)⁷. colorless oil, 73% yield for two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.3 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 3.08 – 3.01 (m, 2H), 2.93 (s, 3H), 2.01 – 1.86 (m, 2H), 1.05 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 166.8, 149.9, 133.5, 128.5, 126.6, 124.9, 122.5, 42.0 , 22.4, 21.7, 14.1; MS (ESI): 187.10 [M+H]⁺.

2-(*Tert-butyl*)-4-methylquinazoline (1m)⁸. white solid, 93% yield for two steps, mp. 49 – 50 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.07 – 8.00 (m, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.80 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.53 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 2.92 (s, 3H), 1.50 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 172.6, 167.2, 149.7, 132.7, 128.8, 126.2, 124.6, 122.1, 39.3, 29.5, 21.8; MS (ESI): 201.10 [M+H]⁺.

2-*Cyclopropyl-4-methylquinazoline* (*1n*). yellow solid, 92% yield for two steps, mp. 55 – 57 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, *J* = 8.3 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.71 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.47 – 7.35 (m, 1H), 2.79 (s, 3H), 2.30 (tt, *J* = 8.2, 4.8 Hz, 1H), 1.31 – 1.11 (m, 2H), 1.13 – 0.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.3, 149.9, 133.2, 128.0, 125.8, 124.8, 122.5, 21.7, 18.4, 10.3; MS (ESI): 185.10 [M+H]⁺; HRMS (ESI) m/z calcd for C₁₂H₁₃N₂ [M+H]⁺ 185.1073 , found 185.1073.

2-*Cyclohexyl-4-methylquinazoline* (10)³. yellow solid, 66% yield for two steps, mp. 46 – 48 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.08 – 8.00 (m, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.81 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.54 (ddd, *J* = 8.2, 6.9, 1.1 Hz, 1H), 3.04 – 2.95 (m, 1H), 2.92 (s, 3H), 2.08 – 2.04 (m, 2H), 1.95 – 1.67 (m, 5H), 1.57 – 1.31 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 167.8, 150.0, 133.1, 128.6, 126.3, 124.8, 122.6, 47.9, 31.9, 26.4, 26.0, 21.7; MS (ESI): 227.15 [M+H]⁺.

2-*Chloro-4-methylquinazoline* (*1p*)⁹. yellow solid, 48% yield, mp. 110 – 112 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, *J* = 8.4 Hz, 1H), 8.01 – 7.86 (m, 2H), 7.65 (ddd, *J* = 8.2, 6.7, 1.4 Hz, 1H), 2.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 156.8, 151.4, 134.9, 128.2, 127.9, 125.3, 122.8, 21.7; MS (ESI): 179.10 [M+H]⁺.

4-Methyl-2-(piperidin-1-yl)quinazoline (1q)¹⁰. yellow solid, 87% yield, mp. 74 – 75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.2, 0.7 Hz, 1H), 7.59 (ddd, J = 8.1, 6.7, 1.4 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.14 (ddd, J = 8.1, 6.7, 1.4 Hz, 1H), 4.14 – 3.51 (m, 4H), 2.75 (s, 3H), 1.75 – 1.57 (dt, J = 9.3, 3.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 158.6, 152.2, 133.3, 126.1, 125.2, 121.6, 118.7, 44.9, 26.0, 25.0, 21.9; MS (ESI): 228.15 [M+H]⁺.

4-(4-Methylquinazolin-2-yl)morpholine (1r)¹⁰. yellow solid, 86% yield, mp. 48 – 50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 8.2, 0.8 Hz, 1H), 7.63 (ddd, J = 8.2, 6.7, 1.4 Hz, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.21 (ddd, J = 8.1, 6.7, 1.3 Hz, 1H), 4.06 – 3.89 (m, 4H), 3.85 – 3.70 (m, 4H), 2.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 158.5, 151.9, 133.6, 126.3, 125.3, 122.4, 119.2, 67.1, 44.5, 21.9; MS (ESI): 230.15 [M+H]⁺.

8-*Methyl-6-phenyl-[1,3]dioxolo[4,5-g]quinazoline (1s)*¹. white solid, 21% yield for two steps, mp. 185 – 187 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.63 – 8.44 (m, 2H), 7.56 – 7.39 (m, 3H), 7.29 (s, 1H), 7.23 (s, 1H), 6.09 (s, 2H), 2.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 159.2, 153.4, 149.8, 147.9, 138.4, 130.0, 128.5 128.2, 119.6, 105.4, 102.1, 100.3, 22.2; MS (ESI): 265.10 [M+H]⁺.

4-Methyl-2-phenylpyrido[2,3-*d*]*pyrimidine* (1*t*). red solid, 70% yield for two steps, mp. 97 – 99 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.21 (dd, *J* = 4.3, 1.9 Hz, 1H), 8.81 – 8.65 (m, 2H), 8.44 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.64 – 7.44 (m, 4H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 163.5, 158.6, 157.6, 137.4, 134.4, 131.2, 129.2, 128.5, 122.3, 117.6, 21.6; HRMS (ESI) m/z calcd for C₁₄H₁₂N₃ [M+H]⁺ 222.1026, found 222.1021.

4-*Methyl-2-phenylpyrimidine* (1*u*)¹¹. yellow oil, 100% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.64 (d, J = 5.1 Hz, 1H), 8.50 – 8.32 (m, 2H), 7.57 – 7.39 (m, 3H), 7.04 (d, J = 5.0 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 164.4, 156.8, 137.8, 130.5, 128.5, 128.2, 118.6, 24.4; MS (ESI): 171.10 [M+H]⁺.

Product and intermediate 6 characterizations

3,5-Diphenylimidazo[1,5-c]quinazoline (**3aa**). yellow solid, 88% yield, mp. 142 – 145 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.13 – 8.05 (m, 1H), 8.04 (s, 1H), 7.95 – 7.88 (m, 1H), 7.60 – 7.53 (m, 2H), 7.34 (d, *J* = 7.4 Hz, 2H), 7.23 – 6.97 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 142.7, 138.1, 133.8, 131.4, 130.3, 129.9, 129.2, 128.6, 128.5, 128.2, 128.0, 127.7, 127.4, 121.7, 120.6, 119.3; HRMS (ESI) m/z calcd for C₂₂H₁₆N₃ [M+H]⁺ 322.1339, found 322.1338.

5-Phenyl-3-(o-tolyl)imidazo[1,5-c]quinazoline (**3ab**). yellow solid, 83% yield, mp. 146 – 148 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.12 – 8.06 (m, 1H), 8.05 (s, 1H), 7.94 – 7.86 (m, 1H), 7.63 – 7.49 (m, 2H), 7.35 – 7.27 (m, 2H), 7.19 – 7.10 (m, 1H), 7.08 – 6.93 (m, 4H), 6.92 – 6.84 (m, 2H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 141.6, 138.0, 137.0, 133.1, 131.6, 130.8, 129.7, 129.6, 129.5, 128.8, 128.5, 128.4, 128.2, 127.3, 125.1, 121.7, 120.3, 119.4, 20.1; HRMS (ESI) m/z calcd for $C_{23}H_{18}N_3$ [M+H]⁺ 336.1495, found 336.1495.

5-Phenyl-3-(m-tolyl)imidazo[*1*,*5-c*]*quinazoline* (*3ac*). yellow solid, 75% yield, mp. 193 – 196 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.11 – 8.03 (m, 1H), 8.01 (s, 1H), 7.96 – 7.84 (m, 1H), 7.62 – 7.48 (m, 2H), 7.40 – 7.30 (m, 2H), 7.24 – 7.15 (m, 1H), 7.12 – 6.87 (m, 5H), 6.83 (s, 1H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 142.8, 138.1, 136.9, 133.9, 131.2, 130.2, 129.8, 128.8, 128.40, 128.37, 128.1, 127.6, 127.5, 126.3, 121.7, 120.6, 119.3, 20.9; HRMS (ESI) m/z calcd for C₂₃H₁₈N₃ [M+H]⁺ 336.1495, found 336.1492.

5-*Phenyl-3-(p-tolyl)imidazo*[1,5-*c*]*quinazoline* (**3***a***d**). white solid, 71% yield, mp. 204 – 206 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.11 – 8.03 (m, 1H), 8.01 (s, 1H), 7.93 – 7.85 (m, 1H), 7.61 – 7.48 (m, 2H), 7.36 – 7.29 (m, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 6.82 (d, *J* = 8.0 Hz, 2H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 142.9, 138.1, 138.0, 133.9, 130.1,

129.6, 129.0, 128.7, 128.6, 128.41, 128.36, 128.2, 128.1, 127.7, 121.7, 120.6, 119.4, 21.2; HRMS (ESI) m/z calcd for $C_{23}H_{18}N_3$ [M+H]⁺ 336.1495, found 336.1496.

3-(4-(Tert-butyl)phenyl)-5-phenylimidazo[1,5-c]quinazoline (**3ae**). yellow solid, 76% yield, mp. 188 – 189 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.12 – 8.04 (m, 1H), 8.02 (s, 1H), 7.97 – 7.87 (m, 1H), 7.61 – 7.50 (m, 2H), 7.32 – 7.26 (m, 2H), 7.19 – 7.10 (m, 1H), 7.07 – 6.98 (m, 6H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 146.4, 142.9, 138.1, 133.8, 130.1, 129.6, 128.9, 128.7, 128.5, 128.44, 128.37, 128.2, 127.6, 124.4, 121.7, 120.6, 119.5, 34.5, 31.2; HRMS (ESI) m/z calcd for C₂₆H₂₄N₃ [M+H]⁺ 378.1965, found 378.1968.

3-(4-Methoxyphenyl)-5-phenylimidazo[1,5-c]quinazoline (**3af**). yellow solid, 75% yield, mp. 189 – 190 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.12 – 8.02 (m, 1H), 8.00 (s, 1H), 7.94 – 7.85 (m, 1H), 7.61 – 7.49 (m, 2H), 7.33 (d, *J* = 7.2 Hz, 2H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 2H), 7.04 (d, *J* = 8.7 Hz, 2H), 6.55 (d, *J* = 8.7 Hz, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 146.3, 142.6, 138.0, 133.8, 130.5, 130.0, 129.8, 128.8, 128.4, 128.3, 128.2, 127.7, 124.0, 121.7, 120.5, 119.4, 113.0, 55.3; HRMS (ESI) m/z calcd for C₂₃H₁₈N₃O [M+H]⁺ 352.1444, found 352.1446.

3-(4-Fluorophenyl)-5-phenylimidazo[1,5-c]quinazoline (**3ag**). yellow solid, 85% yield, mp. 180 – 182 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.12 – 8.04 (m, 1H), 8.02 (s, 1H), 7.95 – 7.86 (m, 1H), 7.62 – 7.51 (m, 2H), 7.37 – 7.30 (m, 2H), 7.29 – 7.21 (m, 1H), 7.17 – 7.05 (m, 4H), 6.78 – 6.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J_{C-F} = 249.1 Hz), 146.0, 141.6, 138.1, 133.7, 131.0 (d, J_{C-F} = 8.5 Hz), 130.4, 130.1, 128.8, 128.6, 128.3, 127.9, 127.8 (d, J_{C-F} = 3.4 Hz), 121.8, 120.7, 119.3, 114.5 (d, J_{C-F} = 22.0 Hz); HRMS (ESI) m/z calcd for C₂₂H₁₅FN₃ [M+H]⁺ 340.1245, found 340.1245.

3-(4-Chlorophenyl)-5-phenylimidazo[1,5-c]quinazoline (**3ah**). yellow solid, 76% yield, mp. 196 – 197 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.14 – 8.05 (m, 1H), 8.02 (s, 1H), 7.96 – 7.87 (m, 1H), 7.62 – 7.49 (m, 2H), 7.37 – 7.24 (m, 3H), 7.13 (t, *J* = 7.6 Hz, 2H), 7.09 – 6.96 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 141.4, 138.1, 134.1, 133.6, 130.5, 130.3, 130.1, 130.0, 128.7, 128.62, 128.58, 128.2, 127.9, 127.6, 121.8, 120.8, 119.2; HRMS (ESI) m/z calcd for C₂₂H₁₅ClN₃ [M+H]⁺ 356.0949, found 356.0948.

3-(4-Bromophenyl)-5-phenylimidazo[1,5-c]quinazoline (3ai). yellow solid, 80% yield, mp. 185 – 188 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.11 – 8.04 (m, 1H), 8.02 (s, 1H), 7.96 – 7.88 (m, 1H), 7.62 – 7.51 (m, 2H), 7.36 – 7.27 (m, 3H), 7.21 – 7.06 (m, 4H), 7.04 – 6.91 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 141.5, 138.1, 133.7, 130.58, 130.55, 130.47, 130.1, 128.8, 128.7, 128.6, 128.3, 128.0, 122.4, 121.8, 120.9, 119.2; HRMS (ESI) m/z calcd for C₂₂H₁₅BrN₃ [M+H]⁺ 400.0444, found 400.0441.

5-Phenyl-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-c]quinazoline (**3a**j). yellow solid, 77% yield, mp. 170 – 173 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.13 – 8.07 (m, 1H), 8.06 (s, 1H), 7.96 – 7.89 (m, 1H), 7.63 – 7.54 (m, 2H), 7.35 – 7.27 (m, 4H), 7.25 – 7.19 (m, 3H), 7.13 – 7.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 141.0, 138.2, 135.0, 133.6, 130.9, 130.2, 129.8(dd, *J*_{C-F} = 65.2, 32.6 Hz), 129.4, 128.8, 128.71, 128.65, 128.3, 128.0, 124.2 (q, *J*_{C-F} = 3.7 Hz), 123.8 (d, *J*_{C-F} = 272.2 Hz), 121.9, 121.0, 119.1; HRMS (ESI) m/z calcd for C₂₃H₁₅F₃N₃ [M+H]⁺ 390.1213, found 390.1215.

3-(Naphthalen-1-yl)-5-phenylimidazo[1,5-c]quinazoline (*3ak*). yellow solid, 90% yield, mp. 83 – 86 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.21 – 8.06 (m, 2H), 7.97 – 7.83 (m, 1H), 7.72 – 7.53 (m, 4H), 7.51 – 7.44 (m, 1H), 7.44 – 7.33 (m, 2H), 7.28 – 7.23 (m, 1H), 7.21 – 7.12 (m, 1H), 7.01 (brs, 2H), 6.90 – 6.82 (m, 1H), 6.65 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 140.8, 138.2, 133.11, 133.06, 132.2, 130.0, 129.3, 129.23, 129.21, 128.61, 128.60, 128.4, 128.1, 127.7, 126.6, 125.9, 125.3, 124.5, 121.8, 120.7, 119.5; HRMS (ESI) m/z calcd for C₂₆H₁₈N₃ [M+H]⁺ 372.1495, found 372.1493.

3-(*Furan-2-yl*)-5-phenylimidazo[1,5-c]quinazoline (**3al**). yellow oil, 62% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 8.02 (m, 1H), 8.01 (s, 1H), 7.95 – 7.87 (m, 1H), 7.61 – 7.52 (m, 2H), 7.52 – 7.44 (m, 2H), 7.39 – 7.31 (m, 1H), 7.30 – 7.20 (m, 2H), 6.86 (dd, *J* = 1.8, 0.8 Hz, 1H), 6.49 (dd, *J* = 3.4, 0.7 Hz, 1H), 6.19 (dd, *J* = 3.4, 1.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 144.0, 143.4, 138.2, 134.1, 133.4, 130.4, 129.8, 128.8, 128.6, 128.3, 127.9, 127.7, 121.8, 121.0, 118.9, 112.0, 110.9; HRMS (ESI) m/z calcd for C₂₀H₁₄N₃O [M+H]⁺ 312.1131, found 312.1131.

5-Phenyl-3-(thiophen-2-yl)imidazo[1,5-c]quinazoline (**3am**). yellow solid, 76% yield, mp. 129 – 131 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.14 – 8.04 (m, 1H), 8.03 (s, 1H), 7.97 – 7.84 (m, 1H), 7.66 – 7.51 (m, 2H), 7.47 – 7.40 (m, 2H), 7.35 – 7.27 (m, 1H), 7.25 – 7.16 (m, 3H), 6.58 (dd, J = 5.1, 3.7 Hz, 1H), 6.33 (dd, J = 3.7, 1.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 138.1, 136.2, 133.9, 132.2, 130.5, 130.1, 129.9, 128.64, 128.59, 128.3, 128.2, 127.9, 127.0, 126.8, 121.8, 121.1, 119.1; HRMS (ESI) m/z calcd for C₂₀H₁₄N₃S [M+H]⁺ 328.0903, found 328.0906.

3an'

3-(*Pyridin-2-yl*)*imidazo*[1,2-*a*]*pyridine* (**3an**')¹². yellow solid, 51% yield, mp. 68 – 70 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.96 (d, *J* = 7.3 Hz, 1H), 8.63 (d, *J* = 4.3 Hz, 1H), 8.35 (d, *J* = 8.1 Hz, 1H), 7.77 (td, *J* = 8.0, 1.7 Hz, 1H), 7.59 (s, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 7.19 (dd, *J* = 6.4, 5.0 Hz, 1H), 6.86 (dd, *J* = 8.5, 6.8 Hz, 1H), 6.73 (t, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 148.1, 136.5, 135.4, 132.9, 126.0, 121.7, 121.6, 121.0, 120.1, 118.0, 113.5; MS (ESI): 196.05 [M+H]⁺.

5-Phenylimidazo[1,5-c]quinazoline (**3ao**). yellow solid, 23% yield, mp. 140 – 142 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.27 (s, 1H), 8.04 – 7.96 (m, 1H), 7.95 – 7.87 (m, 3H), 7.86 (s, 1H), 7.66 – 7.58 (m, 3H), 7.57 – 7.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 138.5, 133.0, 131.4, 130.1, 129.3,

128.7, 128.6, 128.5, 122.1, 121.1, 119.0; HRMS (ESI) m/z calcd for $C_{16}H_{12}N_3$ [M+H]⁺ 246.1026, found 246.1027.

3-(Tert-butyl)-5-phenylimidazo[*1*,*5-c*]*quinazoline* (*3ap*). yellow solid, 83% yield, mp. 109 – 112 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.88 (m, 1H), 7.83 – 7.73 (m, 2H), 7.67 – 7.59 (m, 2H), 7.56 – 7.39 (m, 5H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 147.1, 138.5, 137.4, 131.2, 130.4, 128.8, 128.6, 128.2, 128.1, 127.6, 121.3, 119.8, 118.7, 35.9, 31.1; HRMS (ESI) m/z calcd for C₂₀H₂₀N₃ [M+H]⁺ 302.1652, found 302.1651.

5-(4-(*Tert-butyl*)*phenyl*)-3-*phenylimidazo*[1,5-*c*]*quinazoline* (**3ba**). white solid, 96% yield, mp. 176 – 179 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.10 – 8.04 (m, 1H), 8.02 (s, 1H), 7.96 – 7.86 (m, 1H), 7.61 – 7.50 (m, 2H), 7.24 – 7.18 (m, 2H), 7.13 – 7.04 (m, 5H), 7.03 – 6.93 (m, 2H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 146.4, 142.7, 138.2, 131.7, 130.8, 130.3, 129.3, 128.4, 128.3, 128.2, 127.8, 127.3, 124.7, 121.7, 120.5, 119.3, 34.6, 31.1; HRMS (ESI) m/z calcd for C₂₆H₂₄N₃ [M+H]⁺ 378.1965, found 378.1965.

5-(4-Methoxyphenyl)-3-phenylimidazo[1,5-c]quinazoline (**3**ca). yellow solid, 97% yield, mp. 146 – 148 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.12 – 8.03 (m, 1H), 8.01 (s, 1H), 7.94 – 7.82 (m, 1H), 7.60 – 7.48 (m, 2H), 7.30 – 7.23 (m, 2H), 7.19 – 7.10 (m, 3H), 7.10 – 7.02 (m, 2H), 6.68 – 6.43 (m, 2H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 146.0, 142.7, 138.3, 131.7, 130.4, 130.3, 129.3, 128.4, 128.2, 128.0, 127.9, 127.4, 126.2, 121.7, 120.6, 119.2, 113.1, 55.4; HRMS (ESI) m/z calcd for $C_{23}H_{18}N_3O$ [M+H]+ 352.1444, found 352.1443.

3-Phenyl-5-(4-(trifluoromethyl)phenyl)imidazo[1,5-c]quinazoline (3da). yellow solid, 79% yield,

mp. 219 – 222 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.15 – 8.06 (m, 1H), 8.05 (s, 1H), 7.94 – 7.87 (m, 1H), 7.65 – 7.52 (m, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.19 – 7.11 (m, 1H), 7.11 – 6.97 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 142.3, 137.9, 137.1, 131.7 (dd, *J*_{C-F} = 66.4, 33.6 Hz), 131.2, 130.2, 129.3, 129.1, 129.0, 128.7, 128.5, 128.4, 127.7, 124.6 (q, *J*_{C-F} = 3.7 Hz), 123.5 (d, *J*_C = 272.4 Hz), 121.9, 120.9, 119.5; HRMS (ESI) m/z calcd for C₂₃H₁₅F₃N₃ [M+H]⁺ 390.1213, found 390.1214.

5-(4-Nitrophenyl)-3-phenylimidazo[1,5-c]quinazoline (3ea). yellow solid, 80% yield, mp. 251 – 254 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.15 – 8.07 (m, 1H), 8.07 (s, 1H), 7.98 – 7.86 (m, 3H), 7.67 – 7.55 (m, 2H), 7.54 – 7.47 (m, 2H), 7.19 – 7.10 (m, 3H), 7.10 – 7.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 143.8, 142.1, 139.7, 137.8, 131.0, 130.1, 129.7, 129.3, 129.2, 128.8, 128.7, 128.4, 127.8, 122.7, 121.9, 121.1, 119.4; HRMS (ESI) m/z calcd for $C_{22}H_{15}N_4O_2$ [M+H]⁺ 367.1190, found 367.1189.

5-(3-Chlorophenyl)-3-phenylimidazo[1,5-c]quinazoline (**3fa**). yellow solid, 90% yield, mp. 185 – 188 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.12 – 8.05 (m, 1H), 8.03 (s, 1H), 7.93 – 7.83 (m, 1H), 7.67 – 7.49 (m, 2H), 7.32 (t, J = 1.8 Hz, 1H), 7.26 – 7.06 (m, 7H), 7.01 (t, J = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 142.4, 137.9, 135.3, 133.9, 131.3, 130.2, 130.0, 129.1, 129.0, 128.8, 128.6, 128.5, 128.3, 127.7, 126.9, 121.8, 120.8, 119.4; HRMS (ESI) m/z calcd for C₂₂H₁₅ClN₃ [M+H]⁺ 356.0949, found 356.0949.

5-(2-Fluorophenyl)-3-phenylimidazo[1,5-c]quinazoline (**3ga**). yellow solid, 98% yield, mp. 185 – 187 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.13 – 8.05 (m, 1H), 8.01 (s, 1H), 7.95 – 7.86 (m, 1H), 7.65 – 7.48 (m, 3H), 7.23 – 6.98 (m, 7H), 6.58 – 6.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1 (d, $J_{C-F} = 250.1$ Hz), 142.8, 141.8, 137.8, 132.3 (d, $J_{C-F} = 8.3$ Hz), 130.48 (d, $J_{C-F} = 2.6$ Hz), 130.46, 129.7, 129.5, 128.9, 128.5, 128.3, 127.1, 124.3 (d, $J_{C-F} = 3.3$ Hz), 123.1 (d, $J_{C-F} = 14.5$ Hz), 121.9, 120.5, 119.7, 115.3 (d, $J_{C-F} = 20.6$ Hz); HRMS (ESI) m/z calcd for C₂₂H₁₅FN₃ [M+H]⁺ 340.1245, found 340.1242.

5-(*Furan-2-yl*)-3-phenylimidazo[1,5-c]quinazoline (**3ha**). yellow solid, 94% yield, mp. 220 – 222 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 8.01 (m, 1H), 8.00 (s, 1H), 7.93 – 7.83 (m, 1H), 7.61 – 7.48 (m, 2H), 7.44 – 7.32 (m, 2H), 7.30 – 7.17 (m, 3H), 6.93 – 6.86 (m, 1H), 6.86 – 6.78 (m, 1H), 6.26 (dd, *J* = 3.5, 1.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 143.8, 143.0, 137.7, 137.0, 131.9, 130.3, 128.7, 128.5, 128.2, 128.1, 127.93, 127.85, 121.8, 120.8, 119.5, 114.6, 111.5; HRMS (ESI) m/z calcd for C₂₀H₁₄N₃O [M+H]⁺ 312.1131, found 312.1129.

3-Phenyl-5-(thiophen-2-yl)imidazo[*1*,*5-c*]*quinazoline* (*3ia*). yellow solid, 76% yield, mp. 213 – 216 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.12 – 7.99 (m, 2H), 7.94 – 7.83 (m, 1H), 7.65 – 7.47 (m, 2H), 7.34 – 7.25 (m, 3H), 7.24 – 7.10 (m, 3H), 6.68 (dd, *J* = 3.8, 1.1 Hz, 1H), 6.57 (dd, *J* = 5.0, 3.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 140.5, 138.0, 134.7, 132.0, 131.1, 130.7, 128.6, 128.51, 128.50, 128.3, 128.1, 127.7, 126.6, 121.7, 120.9, 119.2; HRMS (ESI) m/z calcd for C₂₀H₁₄N₃S [M+H]⁺ 328.0903, found 328.0897.

3-Phenyl-5-(pyridin-3-yl)imidazo[*1*,*5-c*]*quinazoline* (*3ja*). yellow solid, 98% yield, mp. 204 – 206 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.68 (d, *J* = 1.8 Hz, 1H), 8.42 (dd, *J* = 4.9, 1.5 Hz, 1H), 8.12 – 8.05 (m, 1H), 8.04 (s, 1H), 7.97 – 7.85 (m, 1H), 7.66 – 7.54 (m, 2H), 7.54 – 7.46 (m, 1H), 7.21 – 7.04 (m, 5H), 6.94 (dd, *J* = 7.9, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 149.3, 143.4, 142.2, 137.9, 135.5, 130.9, 130.13, 130.10, 129.6, 129.0, 128.7, 128.6, 128.3, 127.9, 122.1, 121.8, 120.9, 119.4; HRMS (ESI) m/z calcd for C₂₁H₁₅N₄ [M+H]⁺ 323.1291, found 323.1287.

3ka

5-*Methyl-3-phenylimidazo[1,5-c]quinazoline (3ka)*. white solid, 76% yield, mp. 154 – 155 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.01 – 7.90 (m, 1H), 7.85 (s, 1H), 7.78 – 7.68 (m, 1H), 7.60 – 7.53 (m, 2H), 7.53 – 7.41 (m, 5H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 141.9, 137.7, 132.8, 130.7,

129.7, 129.3, 128.4, 128.1, 127.9, 127.3, 121.7, 119.9, 119.5, 24.7; HRMS (ESI) m/z calcd for $C_{17}H_{14}N_3$ [M+H]⁺ 260.1182, found 260.1179.

3-Phenyl-5-propylimidazo[*1*,5-*c*]*quinazoline* (*3la*). yellow solid, 55% yield, mp. 78 – 81 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.94 (m, 1H), 7.87 (s, 1H), 7.78 – 7.71 (m, 1H), 7.60 – 7.42 (m, 7H), 2.74 – 2.47 (m, 2H), 1.65 – 1.52 (m, 2H), 0.63 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 141.6, 137.7, 133.0, 130.4, 129.6, 129.5, 128.3, 128.1, 127.8, 127.5, 121.6, 120.0, 119.3, 37.3, 20.4, 13.4; HRMS (ESI) m/z calcd for C₁₉H₁₈N₃ [M+H]⁺ 288.1495, found 288.1495.

5-(*Tert-butyl*)-3-phenylimidazo[1,5-c]quinazoline (**3ma**). yellow oil, 91% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.99 – 7.85 (m, 2H), 7.80 – 7.70 (m, 1H), 7.60 – 7.51 (m, 2H), 7.51 – 7.35 (m, 5H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 143.1, 137.0, 135.3, 131.8, 131.0, 129.4, 128.2, 128.1, 127.9, 127.5, 121.1, 120.7, 119.2, 40.2, 30.0; HRMS (ESI) m/z calcd for C₂₀H₂₀N₃ [M+H]⁺ 302.1652, found 302.1651.

5-*Cyclopropyl-3-phenylimidazo*[*1*,5-*c*]*quinazoline* (*3na*). yellow solid, 91% yield, mp. 112 – 114 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 7.91 (m, 1H), 7.88 (s, 1H), 7.70 – 7.62 (m, 3H), 7.51 – 7.41 (m, 5H), 1.74 (tt, *J* = 8.1, 4.9 Hz, 1H), 1.42 – 1.31 (m, 2H), 0.83 – 0.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 141.8, 137.8, 133.1, 130.3, 129.7, 129.3, 128.2, 128.0, 127.3, 127.2, 121.6, 120.1, 119.1, 15.6, 10.8; HRMS (ESI) m/z calcd for C₁₉H₁₆N₃ [M+H]⁺ 286.1339, found 286.1339.

5-Cyclohexyl-3-phenylimidazo[1,5-c]quinazoline (**3**0*a*). white solid, 87% yield, mp. 153 – 156 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.94 (m, 1H), 7.89 (s, 1H), 7.81 – 7.73 (m, 1H), 7.60 – 7.43 (m, 7H), 2.88 – 2.72 (m, 1H), 1.82 – 1.71 (m, 2H), 1.67 – 1.42 (m, 5H), 1.22 – 1.03 (m, 1H), 0.75 – 0.51

(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 141.3, 137.8, 133.6, 130.2, 129.7, 129.5, 128.21, 128.19, 127.7, 127.6, 121.6, 119.9, 119.3, 40.7, 30.9, 25.7, 25.6; HRMS (ESI) m/z calcd for C₂₂H₂₂N₃ [M+H]⁺ 328.1808, found 328.1809.

N-Benzyl-3-phenylimidazo[*1*,5-*c*]*quinazolin-5-amine* (*3pa*'). yellow solid, 8% yield, mp. 33 – 35 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.7 Hz, 1H), 7.82 (s, 1H), 7.63 – 7.54 (m, 3H), 7.49 – 7.34 (m, 5H), 7.32 – 7.21 (m, 3H), 7.13 – 7.05 (m, 2H), 5.12 (brs, 1H), 4.64 (d, *J* = 5.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 139.9, 139.5, 137.4, 131.2, 131.1, 130.5, 130.1, 128.57, 128.56, 127.7, 127.5, 125.1, 123.9, 121.8, 120.1, 116.6, 45.8; HRMS (ESI) m/z calcd for C₂₃H₁₉N₄ [M+H]⁺ 351.1604, found 351.1603.

3-Phenyl-5-(piperidin-1-yl)imidazo[*1*,*5-c*]*quinazoline* (*3qa*). yellow solid, 37% yield, mp. 163 – 165 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.88 (s, 1H), 7.73 – 7.63 (m, 3H), 7.49 – 7.40 (m, 4H), 7.37 (td, *J* = 7.7, 1.1 Hz, 1H), 3.33 (brs, 2H), 2.72 (brs, 2H), 1.36 (brs, 4H), 0.71 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 142.3, 139.2, 131.8, 131.6, 130.5, 128.7, 128.3, 127.3, 126.4, 125.7, 121.6, 120.9, 118.3, 50.5, 24.0, 23.7; HRMS (ESI) m/z calcd for C₂₁H₂₁N₄ [M+H]⁺ 329.1761, found 329.1763.

4-(3-Phenylimidazo[*1*,*5-c*]*quinazo*l*in-5-yl*)*morpholine* (*3ra*). yellow solid, 48% yield, mp. 173 – 175 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.90 (s, 1H), 7.75 – 7.64 (m, 3H), 7.52 – 7.43 (m, 4H), 7.40 (td, *J* = 7.6, 1.3 Hz, 1H), 3.80 – 2.50 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 141.9, 138.8, 131.8, 131.6, 130.5, 129.1, 128.5, 127.5, 126.6, 126.2, 121.7, 121.1, 118.4, 64.9, 49.7; HRMS (ESI) m/z calcd for C₂₀H₁₉N₄O [M+H]⁺ 331.1553, found 331.1552.

3,5-Diphenyl-[1,3]dioxolo[4,5-g]imidazo[1,5-c]quinazoline (**3sa**). yellow solid, 35% yield, mp. 201 – 203 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.39 (s, 1H), 7.32 – 7.28 (m, 3H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.13 – 6.97 (m, 7H), 6.10 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 148.4, 144.5, 141.6, 134.2, 133.8, 131.5, 130.8, 129.7, 129.1, 128.6, 127.9, 127.7, 127.4, 119.2, 114.4, 107.2, 101.9, 99.9; HRMS (ESI) m/z calcd for C₂₃H₁₆N₃O₂ [M+H]⁺ 366.1237, found 366.1234.

3,5-Diphenylimidazo[1,5-c]pyrido[3,2-e]pyrimidine (**3ta**). yellow solid, 69% yield, mp. 220 – 223 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.81 (d, *J* = 3.2 Hz, 1H), 8.40 (d, *J* = 6.6 Hz, 1H), 8.09 (s, 1H), 7.50 (dd, *J* = 7.8, 4.7 Hz, 1H), 7.42 (d, *J* = 7.4 Hz, 2H), 7.22 – 7.11 (m, 4H), 7.10 – 6.98 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 149.6, 149.3, 143.4, 133.0, 131.0, 130.49, 130.48, 129.8, 129.1, 129.0, 128.4, 127.55, 127.52, 123.3, 122.2, 114.7; HRMS (ESI) m/z calcd for C₂₁H₁₅N₄ [M+H]⁺ 323.1291, found 323.1290.

(2-Phenylquinazolin-4-yl)methyl acetate (**6**). yellow solid, 52% yield, mp. 87 – 90 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.68 – 8.56 (m, 2H), 8.12 (d, J = 8.4 Hz, 1H), 8.08 – 7.99 (m, 1H), 7.89 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.60 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.57 – 7.48 (m, 3H), 5.77 (s, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 163.6, 160.1, 151.1, 137.8, 133.9, 130.7, 129.5, 128.6, 127.4, 123.8, 121.3, 64.2, 20.9; MS (ESI): 279.05 [M+H]⁺; HRMS (ESI) m/z calcd for C₁₇H₁₅N₂O₂ [M+H]⁺ 279.1128, found 279.1127.

References

- 1. K. Karnakar, J. Shankar, S. N. Murthy, K. Ramesh and Y. V. D. Nageswar, Synlett, 2011, 1089.
- 2. Y.-C. Chen and D.-Y. Yang, Tetrahedron, 2013, 69, 10438.
- 3. F. Portela-Cubillo, J. S. Scott and J. C. Walton, Chem. Commun., 2008, 2935.
- 4. Z.-H. Zhang, X.-N. Zhang, L.-P. Mo, Y.-X. Li and F.-P. Ma, Green Chem., 2012, 14, 1502.
- 5. F. Portela-Cubillo, J. S. Scott and J. C. Walton, J. Org. Chem., 2009, 74, 4934.
- R. Alonso, A. Caballero, P. J. Campos, D. Sampedro and M. A. Rodríguez, *Tetrahedron*, 2010, 66, 4469.
- 7. C. Huang, Y. Fu, H. Fu, Y. Jiang and Y. Zhao, Chem. Commun., 2008, 6333.
- 8. W. L. F. Armarego and J. I. C. Smith, J. Chem. Soc. C, 1966, 234.
- 9. I. Mangalagiu, T. Benneche and K. Undheim, Tetrahedron Lett., 1996, 37, 1309.
- 10. X. Huang, H. Yang, H. Fu, R. Qiao and Y. Zhao, Synthesis, 2009, 2679.
- 11. X. Zheng, B. Song and B. Xu, Eur. J. Org. Chem., 2010, 4376.
- 12. B. Liu, Y. Huang, J. Lan, F. Song and J. You, Chem. Sci., 2013, 4, 2163.

Spectral copies of ¹H- and ¹³C-NMR of products and intermediate 6

--2.34

0

