Supporting Information

Novel syntheses of aryl quinoxaline *C*-nucleoside analogs by mild and efficient three-component sequential reactions

Fuyi Zhang,*" Yuan Xi," Yanhui Lu," Liming Wang," Linwei Liu," Jinliang Li," and Yufen Zhao".

^aThe College of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, China. Fax: +86-371-67763845; Tel: +86-371-67763845; E-mail: zhangfy@zzu.edu.cn. ^bCollege of Chemistry and Chemical Engineering, The Key Lab for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China

Contents

General	2
General procedure for the preparation of terminal sugar alkynes 1a-1g and characterization data	their 2
General procedure for the syntheses of aryl quinoxaline C-nucleoside analogs 2gg	2aa-
Characterization data for 5 and 2aa-2gg	4
¹ H-NMR, ¹³ C-NMR, DEPT-135, ¹ H- ¹ H COSY, HSQC, HMBC spectra of compounds 1e , 5 and 2a a	f new 1-2gg 21
References	74

General

Infrared spectra were recorded on a Shimadzu IR-435 instrument in the 400–4000 cm⁻¹ region. NMR spectra were recorded with a Bruker DPX-400 spectrometer. Chemical shifts are given as δ values and are referenced to Me₄Si or to the residual solvent signal 7.26 for CDCl₃. Data were given as follows: chemical shift in ppm, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant (J/Hz). ¹³C NMR spectra were recorded at 100 MHz. Internal references of carbon 77.16 was used for CDCl₃. HRMS-ESI spectra were recorded on Waters Micromass Q-Tof MicroTM spectrometer with samples dissolved in CH₃OH. Optical rotations were measured at the sodium D line (589 nm) in a microcell (10 cm, 1 mL) at 20 °C and are in units of degree·mL/(g·dm). Thin-layer chromatography (TLC) was carried out on glass plates coated with Silica GelF₂₅₄. The zones were detected with UV light when possible, or by charring with 1:9 concd H₂SO₄–EtOH followed by heating. Flash chromatography was performed with silica gel 60.

General procedure for the preparation of terminal sugar alkynes 1a-1e¹

To a mixture of zinc (3 eq), PPh₃ (3 eq) and dry CH_2Cl_2 at 0°C, a solution of CBr_4 (2 eq) in dry CH_2Cl_2 was added dropwise for 15 min with stirring and then a solution of sugar aldehyde² (1.0 eq) in dry CH_2Cl_2 was added dropwise for 10min. The mixture was stirred at rt for 6 to 8 h until TLC indicated the complete conversion of sugar aldehyde. The mixture was evaporated. Flash chromatography on silica gel (6:1 - 3:1 petroleum ether-EtOAc) gave a syrup. A dry THF solution of the syrup (1.0 eq) was treated with *n*-butyllithium (2.5 eq) at -45 °C until TLC indicated the completion of the reaction. The solution was quenched by water and then evaporated. The residue was dissolved in EtOAc, then washed with water and brine, dried over Na₂SO₄ and evaporated. Flash chromatography on silica gel (5:1 - 3:1 petroleum ether-EtOAc) gave **1a-1e**.

3-O-Benzyl-5,6-dideoxy-1,2-O-isopropylidene-a-D-xylo-hex-5-ynofuranose (1a)³

Colourless oil, 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.27 (m, 5H, Ar*H*), 5.96 (d, 1H, $J_{1, 2} =$ 3.6 Hz, H-1), 4.83 (t, 1H, $J_{4, 6} =$ 2.4 Hz, $J_{4, 3} =$ 2.8 Hz, H-4), 4.81 (d, B of AB, 1H, J = 12.4 Hz, PhC*H*_B), 4.74 (d, A of AB, 1H, J = 12.4 Hz, PhC*H*_A), 4.58 (d, 1H, $J_{2,1} =$ 3.6 Hz, H-2), 4.02 (d, 1H, $J_{3,4} =$ 2.8 Hz, H-3), 2.64 (d, 1H, $J_{6,4} =$ 2.4 Hz, H-6), 1.49, 1.31 (2 s, each 3H, 2C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 137.37 (aromatic C), 128.47, 127.95, 127.80 (5 aromatic *C*H), 111.97 (isopropylidene C), 104.74 (C-1), 82.83 (C-2), 82.43 (C-3), 77.62 (C-5), 76.58 (C-6), 72.60 (PhCH₂O), 70.70 (C-4), 26.82, 26.17 (2 *C*H₃). **6,7-Dideoxy-1,2:3,4-di-***O***-isopropylidene-***a***-D**-galacto-hept-6-ynopyranose (1b)³

Colourless oil, 76%; ¹H NMR (400 MHz, CDCl₃) δ 5.51 (d, 1H, $J_{1,2}$ = 4.8 Hz, H-1), 4.60-4.58 (m, 2H, H-3, H-5), 4.29-4.25 (m, 2H, H-2, H-4), 2.51 (d, 1H, J = 2.0 Hz, H-7), 1.48, 1.47, 1.32, 1.27 (4 s, each 3H, C H_3); ¹³C NMR (100 MHz, CDCl₃) δ 109.88, 108.87, 96.35, 78.78, 74.49, 72.56, 70.59, 70.11, 59.97, 26.06, 25.92, 24.74, 24.33.

1-O-Methyl-5,6-dideoxy-2,3-O-isopropylidene-β-D-ribo-hex-5-ynofuranoside (1c)³

White solid, 63%; ¹H NMR (400 MHz, CDCl₃) δ 4.97 (s, 1H, H-1), 4.78 (d, 1H, $J_{3, 2} = 6.0$ Hz, H-3), 4.68 (d, 1H, $J_{4, 6} = 2.8$ Hz, H-4), 4.58 (d, 1H, $J_{2, 3} = 6.0$ Hz, H-2), 3.27 (s, 3H, OCH₃), 1.34, 1.20 (2 s, each 3H, 2CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 112.48 (isopropylidene C), 109.22 (C-1), 85.28 (C-3), 85.09 (C-2), 81.46 (C-5), 74.59 (C-4), 74.07 (C-6), 54.14 (OCH₃), 26.15, 24.81 (2CH₃).

1-O-Methyl-5,6-dideoxy-2,3-O-isopropylidene-a-D-lyxo-hex-5-ynofuranoside (1d)³

Yellow solid, 74%; ¹H NMR (400 MHz, CDCl₃) δ 4.90 (s, 1H, H-1), 4.72 (d, $J_{4,3} = 4$ Hz, 1H, H-4), 4.60 (dd, 1H, $J_{3,2} = 5.6$ Hz, $J_{3,4} = 4$ Hz, H-3), 4.53 (d, 1H, $J_{2,3} = 5.6$ Hz, H-2), 3.32 (s, 3H, OCH₃), 1.50, 1.32 (2 s, each 3H, 2 CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 113.43 (isopropylidene C), 107.17 (C-1), 84.82 (C-2), 80.57 (C-4), 77.36 (C-5), 76.60 (C-6), 70.63 (C-3), 54.98 (OCH₃), 26.29, 25.30 (2 CH₃). **1,2-Dideoxy-3,4:5,6-di**-*O*-isopropylidene- β -D-arabino-hept-1-yn-3-ulo-3,7-pyranose (1e)

Colourless oil, 80%; ¹H NMR (400 MHz, CDCl₃) δ 4.53 (dd, 1H, $J_{5,4}$ = 2.0 Hz, $J_{5,6}$ = 8.0 Hz, H-5), 4.43 (d, 1H, $J_{4,5}$ = 2.0 Hz, H-4), 4.18-4.15 (m, 1H, H-6), 3.73-3.67 (m, 2H, H-7), 2.58 (s, 1H, H-1), 1.46, 1.45, 1.40, 1.29 (4 s, each 3H, 4 CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 109.59, 109.54 (2 isopropylidene C), 95.79 (C-3), 81.82 (C-2), 75.72 (C-4), 72.40 (C-1), 70.44 (C-5), 70.16 (C-6), 61.16 (C-7), 26.12, 25.99, 24.63, 24.23 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₁₃H₁₈O₅Na [M+Na]⁺: 277.1052. Found: 277.1058.

General procedure for the preparation of terminal sugar alkynes 1f-1g⁴

A mixture of sugar hemiacetal (10.0 mmol), anhydrous K_2CO_3 (3.0 eq) and MeOH (20 ml) was refluxed, to which Ohira's reagent (3.5 eq) is added dropwise for 6-8 h. TLC indicated the completion of the reaction. The mixture was evaporated to dryness and water (25 ml) was added. The solution was extracted with EtOAc, dried over Na₂SO₄ and evaporated. Flash chromatography on silica gel (6:1 - 4:1 petroleum ether-EtOAc) gave **1f-1g**.

3,4:6,7-Di-O-isopropylidene-1,2-dideoxy-D-manno-hex-1-ynitol (1f)^{5,6}

Colourless oil, 86%; ¹H NMR (400 Hz,CDCl₃) δ 4.68 (dd, 1H, $J_{3,1}$ = 1.4 Hz, $J_{3,4}$ = 7.6 Hz, H-3); 4.30 (dd, 1H, $J_{4,3}$ = 7.6 Hz, $J_{4,5}$ = 1.6Hz, H-4), 4.02-4.14 (m, 3H, H-6, H-7), 3.58 (brs, 1H, H-5), 2.56 (d, 1H, $J_{1,3}$ = 1.4 Hz,H-1), 2.23 (d, 1H, $J_{\text{OH},5}$ = 7.6 Hz, OH), 1.53, 1.45, 1.44, 1.38 (4 s, each 3H, 4 C H_3); ¹³C NMR (100 MHz, CDCl₃) δ 11.01, 109.53 (2 isopropylidene C), 80.81 (C-4), 80.56 (C-2), 76.16 (C-6), 74.88 (C-1), 69.84 (C-5), 66.81 (C-7), 66.64 (C-3), 26.82, 26.65, 26.15, 25.27 (4 CH₃).

3,4-Isopropylidene-6-O-triphenylmethyl-1,2-dideoxy-D-ribo-hex-1-ynitol (1g)^{6,7}

Colourless oil, 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.28 (m, 15H, Ar*H*), 4.72 (dd, 1H, $J_{3,1} = 2.0$ Hz, $J_{3,4} = 6.2$ Hz, H-3), 4.25-4.22 (m, 1H, H-4), 3.92-3.90 (m, 1H, H-5), 3.35-3.34 (m, 2H, H-6), 2.52 (d, 1H, $J_{OH,5} = 3.6$ Hz, OH), 2.49 (d, 1H, $J_{1,3} = 2.0$ Hz, H-1), 1.52, 1.40 (2 s, each 3H, CH₃).

General procedure for the syntheses of aryl quinoxaline C-nucleoside analogs (2aa-2gg)

A solution of aryl Iodide (0.81 mmol), $Pd(PPh_3)_2Cl_2$ (5 mol %), CuI (5 mol %) and Et₃N (3 ml) was degassed for 5 min, to which **1a-1g** (0.80 mmol) in Et₃N (4 ml) was added dropwise. The solution was stirred at rt until TLC indicated the completion of the sugar alkyne. The solution was evaporated and CH₂Cl₂ (10 ml) was added, washed with water. RuCl₃·H₂O (1.3 mol %), NaIO₄ (2.4 mmol) and MeCN (5 ml) was added, and 1, 2- phenylenediamine (0.81 mol) was added later. The solution was stirred at rt until TLC indicated the completion of the reaction. The solution was washed with brine, dried over Na₂SO₄ and evaporated. Flash chromatography on silica gel (4:1-2:1 petroleum ether-EtOAc) gave the products **2aa-2gg**.

During the synthesis of **2aa**, the intermediate **5** was isolated according the similar procedure except that 1, 2- phenylenediamine was not added.

2-(3-O-Benzyl-1,2-O-isopropylidene-α-D-xylo-tetrofuranos-4-yl)-3-biphenylylquinoxaline (2aa)

Pale yellow oil, 88%; R_f 0.35 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -70.9 (*c* 1.6, CHCl₃); FTIR (thin film): 3061, 3029, 2986, 2931, 1617, 1601, 1580, 1564, 1483, 1454, 766, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.35-8.31 (m, 1H, Ar*H*), 8.19-8.15 (m, 1H, Ar*H*), 7.82-7.78 (m, 2H, Ar*H*), 7.65-7.62 (m, 4H, Ar*H*), 7.48 (t, 2H, *J* = 7.6 Hz, Ar*H*), 7.41-7.31 (m, 3H, Ar*H*), 7.19 (t, 1H, *J* = 7.4 Hz, Ar*H*), 7.09 (t, 2H, *J* = 7.6 Hz, Ar*H*), 6.75 (d, 2H, *J* = 7.4 Hz, Ar*H*), 6.30 (d, 1H, *J*_{1',2'} = 4.0 Hz, H-1'), 5.87 (d, 1H, *J*_{4',3'} = 4.0 Hz, H-4'), 4.71 (d, 1H, *J*_{2',1'} = 4.0 Hz, H-2'), 4.46 (d, B of AB, 1H, *J* = 12.4 Hz, PhC*H*_{*B*}), 4.13 (d, A of AB, 1H, *J* = 12.4 Hz, PhC*H*_{*A*}), 3.86 (d, 1H, *J*_{3',4'} = 4.0 Hz, H-3'), 1.43, 1.33 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 153.44 (C-3), 149.43 (C-2), 141.99, 141.44, 140.35, 137.03 (6 aromatic C), 130.23, 130.00, 129.61, 129.13, 129.07, 128.93, 128.30, 127.94, 127.78, 127.59, 127.27, 127.22 (18 aromatic CH), 112.08 (isopropylidene C), 105.29 (C-1'), 83.05 (C-3'), 83.01 (C-2'), 80.03 (C-4'), 71.50 (PhCH₂O), 26.96, 26.66 (2 *C*H₃); HRMS (ESI) *m*/*z* Calcd for C₃₄H₃₁N₂O₄ [M+H]⁺: 531.2284. Found: 531.2296.

1-(3-O-Benzyl-1,2-O-isopropylidene-α-D-xylo-tetrofuranos-4-yl)-2-biphenylyl-1,2-diketone (5)

Pale yellow oil, 90%; R_f 0.30 (4:1 petroleum ether-EtOAc); FTIR (thin film): 3134, 2991, 2928, 2861, 1791, 1730 (CO), 1667, 1604, 1453, 1399, 746, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, 2H, J = 8.0 Hz, Ar*H*), 7.61 (d, 2H, J = 7.6 Hz, Ar*H*), 7.55 (d, 2H, J = 8.4 Hz, Ar*H*), 7.49 (t, 2H, J = 7.2 Hz, Ar*H*), 7.43 (d, 1H, J = 6.8 Hz, Ar*H*), 7.19-7.09 (m, 3H, Ar*H*), 6.95 (d, 2H, J = 7.2 Hz, Ar*H*), 6.14 (d, 1H, $J_{1',2'}$ = 3.2 Hz, H-1'), 5.70 (d, 1H, $J_{4',3'}$ = 4.2 Hz, H-4'), 4.68 (d, 1H, $J_{2',1'}$ = 3.2 Hz, H-2'), 4.62 (d, 1H, $J_{3',4'}$ = 4.2 Hz, H-3'), 4.53 (d, B of AB, 1H, J = 11.2 Hz, PhC*H*_B), 4.25 (d, A of AB, 1H, J = 11.2 Hz, Ph C*H*₄), 1.55, 1.36 (2 s, each 3H, 2 C*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 194.64 (C-1), 189.88 (C-2), 147.21, 139.70, 135.97 (4 aromatic C), 131.33, 129.14, 128.67, 128.38, 128.29, 128.14, 127.41, 127.26 (14 aromatic *C*H), 112.89 (isopropylidene C), 105.87 (C-1'), 83.87 (C-4'), 83.75 (C-3'), 82.14 (C-2'), 72.67 (PhCH₂O), 27.33, 26.65 (2 *C*H₃); HRMS (ESI) *m*/*z* Calcd for C₂₈H₂₇O₆ [M+H]⁺: 459.1808. Found: 459.1813.

2-(3-*O*-Benzyl-1,2-*O*-isopropylidene-α-D-*xylo*-tetrofuranos-4-yl)-3-(4-cyanophenyl)quinoxaline

(2ab)

Pale yellow oil, 73%; R_f 0.28 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -59.5 (*c* 1.4, CHCl₃); FTIR (thin film): 2986, 2956, 2933, 2227 (CN), 1606, 1483, 1455, 848, 749cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24-8.21 (m, 1H, Ar*H*), 8.13-8.10 (m, 1H, Ar*H*), 7.84-7.79 (m, 2H, Ar*H*), 7.63 (d, 2H, *J* = 8.0 Hz, Ar*H*), 7.32 (d, 2H, *J* = 8.0 Hz, Ar*H*), 7.32 (d, 2H, *J* = 8.0 Hz, Ar*H*), 7.32 (d, 2H, *J* = 8.0 Hz, Ar*H*), 7.18 (t, 1H, *J* = 7.6 Hz, Ar*H*), 7.06 (t, 2H, *J* = 7.6 Hz, Ar*H*), 6.70 (d, 2H, *J* = 7.6 Hz, Ar*H*), 6.03 (d, 1H, $J_{1',2'}$ = 4.0 Hz, H-1'), 5.64 (d, 1H, $J_{4',3'}$ = 4.0 Hz, H-4'), 4.68 (d, 1H, $J_{2',1'}$ = 4.0 Hz, H-2'), 4.48 (d, B of AB, 1H, *J* = 12.4 Hz, PhC*H*_B), 4.12 (d, A of AB, 1H, *J* = 12.4 Hz, PhC*H*_A), 3.93 (d, 1H, $J_{3',4'}$ = 4.0 Hz, H-3'), 1.42, 1.32 (2 s, each 3H, 2 C*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 152.11 (C-3), 149.29 (C-2), 143.32, 141.08, 140.75, 136.69 (4 aromatic C), 131.76, 130.64, 129.75, 129.37, 129.15, 128.89, 128.35, 128.14, 127.84 (13 aromatic *C*H), 118.51 (*C*N), 112.49 (aromatic C), 112.34 (isopropylidene C), 105.38 (C-1'), 83.18 (C-3'), 82.75 (C-2'), 81.14 (C-4'), 71.63 (PhCH₂O), 27.02, 26.51 (2 *C*H₃); HRMS (ESI) *m/z* Calcd for C₂₉H₂₆N₃O₄ [M+H]⁺: 480.1923. Found: 480.1920.

2-(3-*O*-Benzyl-1,2-*O*-isopropylidene-α-D-*xylo*-tetrofuranos-4-yl)-3-(4-chlorophenyl)quinoxaline (2ac)

Pale yellow foam, 75%; R_f 0.30 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -66.6 (*c* 1.4, CHCl₃); FTIR (thin film): 3108, 2990, 2953, 2932, 1623, 1610, 1578, 1485, 1447, 757cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.29-8.27 (m, 1H, Ar*H*), 8.12-8.10 (m, 1H, Ar*H*), 7.81-7.76 (m, 2H, Ar*H*), 7.34 (d, 2H, *J* = 8.4 Hz, Ar*H*), 7.19-7.04 (m, 5H, Ar*H*), 6.69 (d, 2H, *J* = 7.2 Hz, Ar*H*), 6.22 (d, 1H, $J_{1',2'}$ = 4.0 Hz, H-1'), 5.71 (d, 1H, $J_{4',3'}$ = 4.0 Hz, H-4'), 4.69 (d, 1H, $J_{2',1'}$ = 4.0 Hz, H-2'), 4.45 (d, B of AB, 1H, *J* = 12.4 Hz, PhC*H*_{*B*}), 4.09 (d, A of AB, 1H, *J* = 12.4 Hz, PhC*H*_{*A*}), 3.81 (d, 1H, $J_{3',4'}$ = 4.0 Hz, H-3'), 1.42, 1.32 (2 s, each 3H, 2 C*H*₃); ¹³ C NMR (100 MHz, CDCl₃) δ 152.28 (C-3), 149.31 (C-2), 141.10, 140.96, 136.89, 136.75, 135.22 (5 aromatic C), 130.32, 130.17, 130.08, 129.55, 129.06, 128.62, 128.30, 127.99, 127.66 (13 aromatic CH), 112.16 (isopropylidene C), 105.31 (C-1'), 82.93 (C-3'), 82.89 (C-2'), 80.24 (C-4'), 71.43 (PhCH₂O), 26.98, 26.59 (2 CH₃); HRMS (ESI) *m*/*z* Calcd for C₂₈H₂₆ClN₂O₄ [M+H]⁺: 489.1581. Found: 489.1585.

```
2-(3-O-Benzyl-1,2-O-isopropylidene-a-D-xylo-tetrofuranos-4-yl)-3-phenylquinoxaline (2ad)
```


Brown oil, 86%; R_f 0.35 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -60.6 (*c* 1.4, CHCl₃); FTIR (thin film): 3082, 3001, 2976, 2934, 1647, 1572, 1453, 1395, 745, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.37-8.33 (m, 1H, Ar*H*), 8.18-8.14 (m, 1H, Ar*H*), 7.83-7.79 (m, 2H, Ar*H*), 7.46-7.40 (m, 3H, Ar*H*), 7.24-7.17 (m, 3H, Ar*H*), 7.09 (t, 2H, *J* = 7.6 Hz, Ar*H*), 6.74 (d, 2H, *J* = 7.3 Hz, Ar*H*), 6.29 (d, 1H, $J_{1',2'}$ = 4.0 Hz, H-1'), 5.78 (d, 1H, $J_{4',3'}$ = 3.6 Hz, H-4'), 4.69 (d, 1H, $J_{2',1'}$ = 4.0 Hz, H-2'), 4.44 (d, B of AB, 1H, *J* = 12.4 Hz, PhC*H*_{*B*}), 4.11 (d, A of AB, 1H, *J* = 12.4 Hz, PhC*H*_{*A*}), 3.74 (d, 1H, $J_{3',4'}$ = 3.6 Hz, H-3'), 1.41, 1.33 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 153.67 (C-3), 149.32 (C-2), 141.15, 141.06, 138.08, 137.02 (4 aromatic C), 130.17, 129.94, 129.63, 129.16, 129.09, 128.58, 128.49, 128.26, 127.89, 127.52 (14 aromatic CH), 111.97 (isopropylidene C), 105.20 (C-1'), 82.98 (C-3'), 82.88 (C-2'), 79.90 (C-4'), 71.44 (PhCH₂O), 26.88, 26.61 (2 CH₃); HRMS (ESI) *m/z* Calcd for C₂₈H₂₇N₂O₄ [M+H]⁺: 455.1971. Found: 455.1980.

2-(1,2:3,4-di-*O*-isopropylidene-α-D-*galaacto*-pentopyranos-5-yl)-3-(4-chlorophenyl)quinoxaline (2ba)

Brown oil, 76%; R_f 0.40 (2:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -153.2 (*c* 1.4, CHCl₃); FTIR (thin film): 3064, 2985, 2935, 1737, 1609, 1533, 1494, 1383, 892, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.29-8.26 (m, 1H, Ar*H*), 8.09-8.06 (m, 1H, Ar*H*), 8.77-8.72 (m, 2H, Ar*H*), 7.55 (d, 2H, *J* = 8.4 Hz, Ar*H*), 7.48 (d, 2H, *J* = 8.4 Hz, Ar*H*), 5.83 (d, 1H, $J_{1',2'}$ = 5.2 Hz, H-1'), 5.46 (d, 1H, $J_{5',4'}$ = 2.4 Hz, H-5'), 4.53 (d, 1H, $J_{3',2'}$ = 2.6 Hz, $J_{3',4'}$ = 7.4 Hz, H-3'), 4.39 (dd, 1H, $J_{2',3'}$ = 2.6 Hz, $J_{2',1'}$ = 5.2 Hz, H-2'), 4.12 (dd, 1H, $J_{4',3'}$ = 7.4 Hz, $J_{4',5'}$ = 2.4 Hz, H-4'), 1.43 (s, 6H, 2 C*H*₃), 1.32, 1.17 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 152.06 (C-3), 149.92 (C-2), 141.33, 140.86, 137.36, 135.32 (4 aromatic C), 130.21, 130.14, 130.05, 129.57, 129.08, 128.88 (8 aromatic CH), 110.10, 108.72 (2 isopropylidene C), 97.10 (C-1'), 72.22 (C-4'), 71.17 (C-3'), 70.13 (C-2'), 68.64 (C-5'), 25.93, 25.80, 24.85, 24.71 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₂₅H₂₆ClN₂O₅ [M+H]⁺: 469.1530. Found: 469.1526.

2-(1,2:3,4-di-O-isopropylidene-α-D-galaacto-pentopyranos-5-yl)-3-biphenylylquinoxaline (2bb)

White foam, 89%; $R_f = 0.30$ (2:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -123.4 (*c* 1.7, CHCl₃); FTIR (thin film): 3077, 2999, 2934, 1727, 1606, 1550, 1486, 760, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.34-8.31 (m, 1H, Ar*H*), 8.14-8.10 (m, 1H, Ar*H*), 7.79-7.75 (m, 4H, Ar*H*), 7.70-7.64 (m, 4H, Ar*H*), 7.50-7.47 (m, 2H, Ar*H*), 7.40-7.38 (m, 1H, Ar*H*), 5.90 (d, 1H, $J_{1',2'} = 5.2$ Hz, H-1'), 5.60 (d, 1H, $J_{5',4'} = 2.4$ Hz, H-5'), 4.54 (dd, 1H, $J_{3',2'} = 2.6$ Hz, $J_{3',4'} = 7.6$ Hz, H-3'), 4.41 (dd, 1H, $J_{2',3'} = 2.6$ Hz, $J_{2',1'} = 5.2$ Hz, H-2'), 4.19 (dd, 1H, $J_{4',3'} = 7.6$ Hz, $J_{4',5'} = 2.4$ Hz, H-4'), 1.49, 1.44, 1.32, 1.20 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 152.97 (C-3), 150.05 (C-2), 142.06, 141.40, 141.03, 140.36, 137.66 (5 aromatic C), 130.02, 129.83, 129.67, 129.17, 129.15, 128.95, 127.81, 127.53, 127.21 (13 aromatic CH), 110.13, 108.75 (2 isopropylidene C), 97.27 (C-1'), 72.25 (C-4'), 71.24 (C-3'), 70.17 (C-2'), 68.41 (C-5'), 25.88, 24.92, 24.83 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₃₁H₃₁N₂O₅ [M+H]⁺: 511.2233. Found: 511.2239. **2-(1,2:3,4-di-***O***-isopropylidene-***a***-D**-*galaacto*-pentopyranos-5-yl)-3-phenylquinoxaline (2bc)

Pale yellow oil, 88%; $R_f = 0.40$ (4:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -154.2 (*c* 1.3, CHCl₃); FTIR (KBr): 3069, 3003, 2956, 1738, 1619, 1528, 1480, 748, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.31-8.28 (m, 1H, Ar*H*), 8.10-8.08 (m, 1H, Ar*H*), 7.76-7.69 (m, 2H, Ar*H*), 7.59-7.56 (m, 2H, Ar*H*), 7.52-

7.26 (m, 3H, Ar*H*), 5.86 (d, 1H, $J_{1',2'}$ = 5.2 Hz, H-1'), 5.50 (d, 1H, $J_{5',4'}$ = 2.4 Hz, H-5'), 4.47 (dd, 1H, $J_{3',2'}$ = 2.6 Hz, $J_{3',4'}$ = 7.4 Hz, H-3'), 4.38 (dd, 1H, $J_{2',3'}$ = 2.6 Hz, $J_{2',1'}$ = 5.2 Hz, H-2'), 4.06 (dd, 1H, $J_{4',3'}$ = 7.4 Hz, $J_{4',5'}$ = 2.4 Hz, H-4'), 1.45, 1.39, 1.29, 1.16 (4 s, each 3H, 4 C H_3); ¹³C NMR (100 MHz, CDCl₃) δ 153.18 (C-3), 150.00 (C-2), 141.38, 140.94, 138.70 (aromatic C), 129.96, 129.78, 129.64, 129.20, 129.10, 128.81, 128.61 (9 aromatic CH), 110.08, 108.71 (2 isopropylidene C), 97.22 (C-1'), 72.13 (C-4'), 71.19 (C-3'), 70.11 (C-2'), 68.35 (C-5'), 25.84, 24.89, 24.80 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₂₅H₂₆N₂O₅Na [M+Na]⁺: 457.1739. Found: 457.1742.

2-(2,3-*O*-isopropylidene-1-*O*-methyl-β-D-*ribo*-tetrofuranos-4-yl)-3-(4-cyanophenyl)quinoxaline (2ca)

Brown oil, 72%; R_f 0.50 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +1.8 (*c* 1.0, CHCl₃); FTIR (thin film): 3064, 2986, 2926, 2853, 2229 (CN), 1607, 1457, 1377, 865, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.10 (m, 2H, Ar*H*), 7.98 (d, 2H, *J* = 8.4 Hz, Ar*H*), 7.83-7.79 (m, 4H, Ar*H*), 5.85 (d, 1H, $J_{3',2'}$ = 6.0 Hz, H-3'), 5.52 (s, 1H, H-4'), 5.00 (s, 1H, H-1'), 4.92 (d, 1H, $J_{2',3'}$ = 6.0 Hz, H-2'), 2.91 (s, 3H, OC*H*₃), 1.50, 1.39 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 152.56 (C-3), 151.32 (C-2), 142.82, 141.24, 140.55 (3 aromatic C), 132.30, 130.85, 130.58, 130.32, 129.49, 129.18, (8 aromatic *C*H), 118.56 (*C*N), 112.93 (aromatic C), 112.32 (isopropylidene C), 110.91 (C-1'), 86.37 (C-2'), 84.96 (C-4'), 82.22 (C-3'), 54.79 (OCH₃), 26.59, 25.05 (2 *C*H₃); HRMS (ESI) *m/z* Calcd for C₂₃H₂₂N₃O₄ [M+H]⁺: 404.1610. Found: 404.1616.

2-(2,3-*O*-isopropylidene-1-*O*-methyl-β-D-*ribo*-tetrofuranos-4-yl)-3-(4-chlorophenyl)quinoxaline (2cb)

Pale yellow oil, 76%; R_f 0.30 (6:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -7.7 (*c* 1.6, CHCl₃); FTIR (thin film): 3065, 2992, 2935, 2854, 1613, 1450, 1379, 857, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.10 (m, 2H, Ar*H*), 7.82-7.75 (m, 4H, Ar*H*), 7.51 (d, 2H, *J* = 8.8 Hz, Ar*H*), 5.84 (d, 1H, $J_{3',2'}$ = 5.6 Hz, H-3'), 5.58 (s, 1H, H-4'), 5.02 (s, 1H, H-1'), 4.95 (d, 1H, $J_{2',3'}$ = 5.6 Hz, H-2'), 2.93 (s, 3H, OCH₃), 1.52, 1.40 (2 s, each 3H, 2 CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 153.47 (C-3), 151.52 (C-2), 141.33, 140.39, 136.79, 135.53 (4 aromatic C), 130.95, 130.56, 130.03, 129.45, 129.11, 128.83 (8 aromatic CH),
112.24 (isopropylidene C), 110.89 (C-1'), 86.51 (C-2'), 85.01 (C-4'), 82.42 (C-3'), 54.70 (OCH₃), 26.64,
25.10 (2 CH₃); HRMS (ESI) *m/z* Calcd for C₂₂H₂₁ClN₂O₄Na [M+Na]⁺: 435.1088. Found: 435.1091

2-(2,3-*O*-isopropylidene-1-*O*-methyl-β-D-*ribo*-tetrofuranos-4-yl)-3-phenylquinoxaline (2cc)

Yellow oil, 86%; R_f 0.40 (5:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -4.5 (*c* 1.5, CHCl₃); FTIR (thin film): 3071, 3000, 2933, 2864, 1615, 1458, 1361, 860, 758, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.13 (m, 2H, Ar*H*), 7.88-7.86 (m, 2H, Ar*H*), 7.82-7.75 (m, 2H, Ar*H*), 7.60-7.51 (m, 3H, Ar*H*), 5.86 (d, 1H, $J_{3',2'} = 6.0$ Hz, H-3'), 5.68 (s, 1H, H-4'), 5.06 (s, 1H, H-1'), 5.00 (d, 1H, $J_{2',3'} = 6.0$ Hz, H-2'), 2.98 (s, 3H, OC*H*₃), 1.54, 1.43 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 154.75 (C-3), 151.77 (C-2), 141.40, 140.37, 138.37 (3 aromatic C), 130.39, 129.79, 129.48, 129.45, 129.18, 129.17, 128.61 (9 aromatic *C*H), 112.16 (isopropylidene C), 110.86 (C-1'), 86.59 (C-2'), 85.00 (C-4'), 82.56 (C-3'), 54.67 (OCH₃), 26.64, 25.12 (2 *C*H₃); HRMS (ESI) *m/z* Calcd for C₂₂H₂N₂O₄Na [M+Na]⁺: 401.1477. Found: 401.1481.

2-(2,3-O-isopropylidene-1-O-methyl-β-D-ribo-tetrofuranos-4-yl)-3-biphenylylquinoxaline (2cd)

Pale yellow oil, 88%; R_f 0.38 (5:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -2.8 (*c* 2.0, CHCl₃); FTIR (thin film): 3048, 2995, 2937, 2861, 1601, 1450, 1382, 750, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.13 (m, 2H, Ar*H*), 7.97 (d, 2H, *J* = 8.4 Hz, Ar*H*), 7.80-7.75 (m, 4H, Ar*H*), 7.69 (d, 2H, *J* = 7.4 Hz, Ar*H*), 7.49 (t, 2H, *J* = 7.4 Hz, Ar*H*), 7.40 (t, 1H, *J* = 7.4 Hz, Ar*H*), 5.87 (d, 1H, *J*_{3',2'} = 6.0 Hz, H-3'), 5.74 (s, 1H, H-4'), 5.09 (s, 1H, H-1'), 5.02 (d, 1H, *J*_{2',3'} = 6.0 Hz, H-2'), 2.99 (s, 3H, OC*H*₃), 1.55, 1.43 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 154.42 (C-3), 151.77 (C-2), 141.99, 141.48, 140.59, 140.38, 137.28 (5 aromatic C), 130.45, 130.02, 129.82, 129.47, 129.19, 128.90, 127.68, 127.39, 127.27 (13 aromatic *C*H), 112.20 (isopropylidene C), 110.94 (C-1'), 86.63 (C-2'), 85.08 (C-4'), 82.63 (C-3'), 54.71 (OCH₃), 26.69, 25.14 (2 *C*H₃); HRMS (ESI) *m*/*z* Calcd for C₂₈H₂₇N₂O₄ [M+H]⁺: 455.1971, found: 455.1973.

2-(2,3-O-isopropylidene-1-O-methyl-α-D-lyxo-tetrofuranos-4-yl)-3-biphenylylquinoxaline (2da)

Pale yellow solid, 88%; R_f 0.30 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -46.4 (*c* 1.9, CHCl₃); FTIR (KBr): 3031, 2985, 2855, 1642, 1588, 1484, 1381, 832, 769, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.36-8.34 (m, 1H, Ar*H*), 8.15-8.13 (m, 1H, Ar*H*), 7.79-7.74 (m, 4H, Ar*H*), 7.69-7.65 (m, 4H, Ar*H*), 7.48 (t, 2H, *J* = 7.4 Hz, Ar*H*), 7.39 (t, 1H, *J* = 7.4 Hz, Ar*H*), 5.51 (d, 1H, *J*_{4',3'} = 4.2 Hz, H-4'), 5.32 (s, 1H, H-1'), 4.59 (dd, 1H, *J*_{3',2'} = 6.0 Hz, *J*_{3',4'} = 4.2 Hz, H-3'), 4.55 (d, 1H, *J*_{2',3'} = 6.0 Hz, H-2'), 3.42 (s, 3H, OC*H*₃), 1.28, 1.16 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 153.48 (C-3), 149.54 (C-2), 142.08, 141.21, 141.04, 140.36, 137.40 (5 aromatic C), 129.96, 129.82, 129.54, 129.16, 129.01, 128.96, 127.80, 127.51, 127.22 (13 aromatic CH), 113.39 (isopropylidene C), 106.83 (C-1'), 84.69 (C-2'), 81.23 (C-3'), 80.60 (C-4'), 55.34 (OCH₃), 25.78, 25.25 (2 CH₃); HRMS (ESI) *m/z* Calcd for C₂₈H₂₆N₂O₄ M⁺: 454.1893. Found: 454.1897.

2-(2,3-*O*-isopropylidene-1-*O*-methyl-α-D-*lyxo*-tetrofuranos-4-yl)-3-(4-chlorophenyl)quinoxaline (2db)

Brown oil, 75%; $R_f = 0.50$ (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -44.3 (*c* 1.7, CHCl₃); FTIR (thin film): 2932, 2854, 1651, 1599, 1487, 1382, 827, 774 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.32-8.29 (m, 1H, Ar*H*), 8.10-8.07 (m, 1H, Ar*H*), 7.77-7.72 (m, 2H, Ar*H*), 7.50 (br s, 4H, Ar*H*), 5.36 (d, 1H, $J_{4',3'} = 4.4$ Hz, H-4'), 5.27 (s, 1H, H-1'), 4.53 (d, 1H, $J_{2',3'} = 6.0$ Hz, H-2'), 4.47 (dd, 1H, $J_{3',2'} = 6.0$ Hz, $J_{3',4'} = 4.4$ Hz, H-3'), 3.38 (s, 3H, OC*H*₃), 1.21, 1.13 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 152.51 (C-3), 149.35 (C-2), 141.22, 140.89, 136.96, 135.46 (4 aromatic C), 130.07, 130.01, 129.51, 129.08, 129.00 (8 aromatic *C*H), 113.41 (isopropylidene C), 106.74 (C-1'), 84.59 (C-2'), 81.07 (C-3'), 80.49 (C-4'), 55.30 (OCH₃), 25.70, 25.18 (2 *C*H₃); HRMS (ESI) *m/z* Calcd for C₂₂H₂₁ClN₂O₄Na [M+Na]⁺: 435.1088. Found: 435.1093.

2-(2,3-O-isopropylidene-1-O-methyl-α-D-lyxo-tetrofuranos-4-yl)-3-phenylquinoxaline (2dc)

Pale yellow oil, 86%; R_f 0.40 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -35.8 (*c* 1.5, CHCl₃); FTIR (thin film): 3052, 2961, 2867, 1629, 1593, 1485, 1386, 844, 760, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.33-8.30(m, 1H, Ar*H*), 8.12-8.10 (m, 1H, Ar*H*), 7.76-7.71 (m, 2H, Ar*H*), 7.57-7.50 (m, 5H, Ar*H*), 5.41 (d, 1H, $J_{4',3'}$ = 4.4 Hz, H-4'), 5.48 (s, 1H, H-1'), 4.50 (d, 1H, $J_{2',3'}$ = 6.0 Hz, H-2'), 4.45 (dd, 1H, $J_{3',2'}$ = 6.0 Hz $J_{3',4'}$ = 4.4 Hz, H-3'), 3.38 (s, 3H, OC*H*₃), 1.24, 1.13 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 153.69 (C-3), 149.52 (C-2), 141.18, 140.95, 138.50 (3 aromatic C), 129.90, 129.76, 129.52, 129.19, 129.12, 128.75, 128.49 (9 aromatic *C*H), 113.31 (isopropylidene C), 106.78 (C-1'), 84.64 (C-2'), 81.13 (C-3'), 80.56 (C-4'), 55.28 (OCH₃), 25.75, 25.18 (2 CH₃); HRMS (ESI) *m/z* Calcd for C₂₂H₂₃N₂O₄ [M+H]⁺: 379.1658. Found: 379.1664.

2-(2,3-*O*-isopropylidene-1-*O*-methyl-α-D-lyxo-tetrofuranos-4-yl)-3-(4-cyanophenyl)quinoxaline (2dd)

White solid, 73%; R_f 0.50 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -26.1 (*c* 2.0, CHCl₃); FTIR (KBr): 3063, 2987, 2931, 2854, 2229 (CN), 1607, 1482, 1383, 844, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.32-8.29 (m, 1H, Ar*H*), 8.10-8.07 (m, 1H, Ar*H*), 7.83-769 (m, 6H, Ar*H*), 5.33 (d, 1H, $J_{4',3'}$ = 4.4 Hz, H-4'), 5.25 (s, 1H, H-1'), 4.53 (d, 1H, $J_{2',3'}$ = 5.6 Hz, H-2'), 4.44 (dd, 1H, $J_{3',2'}$ = 5.6 Hz, $J_{3',4'}$ = 4.4 Hz, H-3'), 3.37 (s, 3H, OC*H*₃), 1.20, 1.13 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 151.66 (C-3), 148.92 (C-2), 143.11, 141.35, 140.76 (3 aromatic C), 132.45, 130.50, 130.40, 129.59, 129.52, 129.11 (8 aromatic *C*H), 118.30 (CN), 113.52 (isopropylidene C), 113.18 (aromatic C), 106.75 (C-1'), 84.55 (C-2'), 81.05 (C-3'), 80.47 (C-4'), 55.35 (OCH₃), 25.65, 25.11 (2 *C*H₃); HRMS (ESI) *m/z* Calcd for C₂₃H₂₁N₃O₄Na [M+Na]⁺: 426.1430. Found: 426.1436

2-(1,2:3,4-di-*O*-isopropylidene-β-D-*arabino*-pent-1,5-pyranos-1-yl)-3-(4-fluorophenyl)quinoxaline (2ea)

Brown oil, 71%; R_f 0.55 (4:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +22.8 (*c* 0.6, CHCl₃); FTIR (thin film): 3063, 2995, 2946, 1608, 1550, 1457, 1375, 862, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.14 (m, 2H, Ar*H*), 7.83-7.76 (m, 2H, Ar*H*), 7.74-7.71 (m, 2H, Ar*H*), 7.14-7.09 (m, 2H, Ar*H*), 5.88 (d, 1H, $J_{2',3'}$ = 2.2 Hz, H-2'), 4.73 (dd, 1H, $J_{3',2'}$ = 2.2 Hz, $J_{3',4'}$ = 7.4 Hz, H-3'), 4.26 (dd, 1H, $J_{4',3'}$ = 7.4 Hz, $J_{4',5'a}$ = 1.6 Hz, H-4'), 3.89 (dd, 1H, $J_{5'a,4'}$ = 1.6 Hz, $J_{5'a,5'b}$ = 13.0 Hz, H-5'a), 3.53 (d, 1H, $J_{5'b,5'a}$ = 13.0 Hz, H-5'b),

1.50 (s, 3H, *CH*₃), 1.31 (d, 6H, 2 *CH*₃), 1.16 (s, 3H, *CH*₃); ¹³C NMR (100 MHz, CDCl₃) δ 162.80 (*C*-F, d, ¹*J*_{C-F} = 245.0 Hz), 153.90 (C-3), 151.29 (C-2), 140.71 (C-8a), 139.12 (C-4a), 137.07 (aromatic C, d, ⁴*J*_{C-F} = 4.0 Hz), 131.28 (2 aromatic *C*H, d, ³*J*_{C-F} = 8.0 Hz), 130.46, 129.74, 129.34, 128.93 (4 aromatic *C*H), 114.04 (2 aromatic *C*H, d, ²*J*_{C-F} = 21.0 Hz), 109.05, 108.68 (2 isopropylidene C), 103.97 (C-1'), 72.11 (C-2'), 71.30 (C-3'), 70.43 (C-4'), 60.83 (C-5'), 26.15, 25.92, 25.31, 24.64 (4 *C*H₃); HRMS (ESI) *m*/*z* Calcd for C₂₅H₂₅N₂O₅Na [M+Na]⁺: 475.1645. Found: 475.1648.

2-(1,2:3,4-di-*O*-isopropylidene-β-D-*arabino*-pent-1,5-pyranos-1-yl)-3-(4-chlorophenyl)quinoxaline (2eb)

Yellow oil, 71%; R_f 0.33 (5:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +21 (*c* 0.5, CHCl₃); FTIR (thin film): 3055, 3037, 2986, 2930, 1608, 1552, 1465, 1387, 851, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.11 (m, 2H, Ar*H*), 7.81-7.75 (m, 2H, Ar*H*), 7.66 (d, 2H, *J* = 8.6 Hz, Ar*H*), 7.38 (d, 2H, *J* = 8.6 Hz, Ar*H*), 5.86 (d, 1H, $J_{2',3'}$ = 2.3 Hz, H-2'), 4.71 (dd, 1H, $J_{3',2'}$ = 2.3 Hz, $J_{3',4'}$ = 7.6 Hz, H-3'), 4.24 (br d, 1H, *J* = 7.6 Hz, H-4'), 3.85 (dd, 1H, $J_{5'a,4'}$ = 1.8 Hz, $J_{5'a,5'b}$ = 13.0 Hz, H-5'a), 3.51 (dd, 1H, $J_{5'b,4'}$ = 2.4 Hz, $J_{5'b,5'a}$ = 13.0 Hz, H-5'b), 1.48, 1.30, 1.29, 1.18 (4 s, each 3H, 4 CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 152.69 (C-3), 150.18 (C-2), 139.69, 138.52, 138.13, 132.95 (4 aromatic C), 129.80, 129.44, 128.79, 128.31, 127.94, 126.30 (8 aromatic *C*H), 108.01, 107.73 (2 isopropylidene C), 102.87 (C-1'), 71.05 (C-2'), 70.25 (C-3'), 69.43 (C-4'), 59.84 (C-5'), 25.13, 24.88, 24.29, 23.59 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₂₅H₂₅ClN₂O₅Na [M+Na]⁺: 491.1350. Found: 491.1356.

2-(1,2:3,4-di-O-isopropylidene-β-D-arabino-pent-1,5-pyranos-1-yl)-3-phenylquinoxaline (2ec)

Yellow oil, 83%; R_f 0.52 (4:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +19.8 (*c* 0.5, CHCl₃); FTIR (thin film): 3051, 2985, 2938, 2867, 1611, 1554, 1459, 1382, 872, 761, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.16 (m, 2H, Ar*H*), 7.82-7.76 (m, 2H, Ar*H*), 7.72-7.70 (m, 2H, Ar*H*), 7.45-7.41 (m, 3H, Ar*H*), 5.88 (d, 1H, $J_{2',3'}$ = 2.1 Hz, H-2'), 4.73 (dd, 1H, $J_{3',2'}$ = 2.1 Hz, $J_{3',4'}$ = 7.6 Hz, H-3'), 4.25 (br d, 1H, $J_{4',3'}$ = 7.6 Hz, H-4'), 3.86 (dd, 1H, $J_{5'a,4'}$ = 2.0 Hz, $J_{5'a,5'b}$ = 13.0 Hz, H-5'a), 3.51 (d, 1H, $J_{5'b,5'a}$ = 13.0 Hz, H-5'b), 1.48 (s, 3H, *CH*₃), 1.32 (s, 6H, 2 *CH*₃), 1.18 (s, 3H, *CH*₃); ¹³C NMR (100 MHz, CDCl₃) δ 154.99 (C-3), 151.40 (C-2), 141.08 (C-8a), 140.77 (C-4a), 139.13 (aromatic C), 130.33, 129.60, 129.32, 127.78, 127.09 (9 aromatic *C*H), 109.05, 108.60 (2 isopropylidene C), 104.00 (C-1'), 72.17 (C-2'), 71.39 (C-3'), 70.47 (C-4'), 60.81 (C-5'), 26.15, 25.96, 25.32, 24.70 (4 *C*H₃). HRMS (ESI) *m/z* Calcd for C₂₅H₂₆N₂O₅Na [M+Na]⁺: 457.1739. Found: 457.1741.

2-(1,2:3,4-di-*O*-isopropylidene-β-D-*arabino*-pent-1,5-pyranos-1-yl)-3-(4-cyanophenyl)quinoxaline (2ed)

Yellow oil, 70%; R_f 0.42 (5:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +15.7 (*c* 0.5, CHCl₃); FTIR (thin film): 3064, 3000, 2986, 2939, 2229 (CN), 1605, 1549, 1458, 1385, 860, 772cm⁻¹; ¹H-NMR (400MHz, CDCl₃) δ 8.19-8.12 (m, 2H, Ar*H*), 7.83-7.81 (m, 4H, Ar*H*), 7.72 (d, 2H, *J* = 8.4 Hz, Ar*H*), 5.86 (d, 1H, $J_{2',3'}$ = 2.2 Hz, H-2'), 4.71 (dd, 1H, $J_{3',2'}$ = 2.2 Hz, $J_{3',4'}$ = 8.0 Hz, H-3'), 4.23 (dd, 1H, $J_{4',5'b}$ = 1.5 Hz, $J_{4',3'}$ = 8.0 Hz, H-4'), 3.83 (dd, 1H, $J_{5'a,4'}$ = 1.5 Hz, $J_{5'a,5'b}$ = 13.2 Hz, H-5'a), 3.45 (d, 1H, $J_{5'b,5'a}$ = 13.2 Hz, H-5'b), 1.49, 1.32, 1.28, 1.10 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 152.84 (C-3), 151.06 (C-2), 145.66, 140.57, 139.37 (3 aromatic C), 131.04, 130.85, 130.40, 130.12, 129.42, 128.99 (8 aromatic CH), 119.18 (*C*N), 111.44 (aromatic C), 109.03, 108.98 (2 isopropylidene C), 103.65 (C-1'), 71.99 (C-2'), 71.07 (C-3'), 70.35 (C-4'), 60.91 (C-5'), 26.16, 25.89, 25.34, 24.53 (4 *C*H₃); HRMS (ESI) *m/z* Calcd for C₂₆H₂₅N₃O₅Na [M+Na]⁺: 482.1692. Found: 482.1696.

2-(1,2:3,4-di-O-isopropylidene-β-D-arabino-pent-1,5-pyranos-1-yl)-3-biphenylylquinoxaline (2ee)

Brown oil, 81%; R_f 0.36 (4:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +8.0 (*c* 1.0, CHCl₃); FTIR (thin film): 3065, 2988, 2935, 1601, 1546, 1456, 1383, 844, 766, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.15 (m, 2H, Ar*H*), 7.82-7.76 (m, 4H, Ar*H*), 7.47 (t, 2H, *J* = 7.6 Hz, Ar*H*), 7.36 (t, 1H, *J* = 7.6 Hz, Ar*H*), 5.89 (d, 1H, $J_{2',3'}$ = 2.4 Hz, H-2'), 4.72 (dd, 1H, $J_{3',2'}$ = 2.4 Hz, $J_{3',4'}$ = 8.2 Hz, H-3'), 4.25 (br d, 1H, *J* = 6.8 Hz, H-4'), 3.88 (dd, 1H, $J_{5'a,4'}$ = 1.8 Hz, $J_{5'a,5'b}$ = 13.2 Hz, H-5'a), 3.53 (d, 1H, $J_{5'b,5'a}$ = 13.2 Hz, H-5'b), 1.50, 1.33, 1.30, 1.17 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 154.63 (C-3), 151.38 (C-2), 141.16, 140.83, 140.47, 140.18, 139.11 (5 aromatic C), 130.38, 129.85, 129.64, 129.34, 129.03, 128.77, 127.25, 127.17, 125.92 (13 aromatic CH), 109.07, 108.72 (2 isopropylidene C), 104.04 (C-1'), 72.21 (C-2'), 71.38 (C-3'), 70.50 (C-4'), 60.87 (C-5'), 26.22, 25.98, 25.38, 24.70 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₃₁H₃₁N₂O₅ [M+H]⁺: 511.2233. Found: 511.2236.

2-(1,2:4,5-di-*O*-isopropylidene-D-*manno*-1,2,3,4,5-pentahydroxypentyl)-3-(4-methoxyphenyl)quinoxaline (2fa)

Pale yellow foam, 90%; R_f 0.55 (2:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +57.5 (*c* 0.5, CHCl₃); FTIR (thin film): 3431 (OH), 2997, 2926, 2858, 1628, 1457, 1395, 849, 768 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.11 (m, 2H, H-5, H-8), 7.92 (d, 2H, *J* = 8.8 Hz, Ar*H*), 7.81-7.74 (m, 2H, H-6, H-7), 7.06 (d, 2H, *J* = 8.8 Hz, Ar*H*), 5.36-5.27 (m, 2H, H-1', H-2'), 3.96-3.81 (m, 6H, H-4', H-5', OC*H*₃), 3.46-3.42 (m, 1H, H-3'), 2.47 (d, 1H, *J*_{OH,3'} = 6.0 Hz, OH), 1.64, 1.55, 1.15, 1.02 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 160.76 (aromatic C), 155.38 (C-3), 149.39 (C-2), 141.76 (C-8a), 140.78 (C-4a), 131.37 (2 aromatic CH), 130.56 (aromatic CH), 130.33 (aromatic C), 129.57, 129.35, 129.16 (3 aromatic CH), 114.00 (2 aromatic CH), 110.48, 109.26 (2 isopropylidene C), 79.79 (C-2'), 76.06 (C-1', C-4'), 71.50 (C-3'), 66.98 (C-5'), 55.51 (OCH₃), 27.42, 27.18, 26.64, 25.21 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₂₆H₃₀N₂O₆Na [M+Na]⁺: 489.2002. Found: 489.2008.

2-(1,2:4,5-di-*O*-isopropylidene-D-*manno*-1,2,3,4,5-pentahydroxypentyl)-3-(4-chlorophenyl)quinoxaline (2fb)

Yellow solid, 77%; R_f 0.65 (2:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +37.1 (*c* 0.5, CHCl₃); FTIR (KBr): 3418 (OH), 2989, 2938, 2847, 1609, 1455, 1388, 852, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.14 (m, 2H, H-5, H-8), 7.91 (d, 2H, *J* = 8.4Hz, Ar*H*), 7.85-7.77 (m, 2H, H-6, H-7), 7.53 (d, 2H, *J* = 8.8Hz, Ar*H*), 5.37 (dd, 1H, $J_{2',3'}$ = 4.4 Hz, $J_{2',1'}$ = 8.0 Hz, H-2'), 5.20 (d, 1H, $J_{1',2'}$ = 8.0 Hz, H-1'), 3.98-3.84 (m, 3H, H-4', H-5'), 3.46 (br s, 1H, H-3'), 2.40 (br s, 1H, OH), 1.62, 1.53, 1.16, 1.02 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 154.51 (C-3), 149.18 (C-2), 141.54 (C-8a), 140.93 (C-4a), 136.28, 135.70 (2 aromatic C), 131.14, 130.73, 130.05, 129.30, 129.15, 128.64 (8 aromatic *C*H), 110.50, 109.17 (2 isopropylidene C), 79.49 (C-2'), 76.25 (C-4'), 75.95 (C-1'), 71.39 (C-3'), 66.94 (C-5'), 27.26, 27.06, 26.59, 25.12 (4 *C*H₃); HRMS (ESI) *m*/*z* Calcd for C₂₅H₂₈ClN₂O₅ [M+H]⁺: 471.1687. Found: 471.1689.

2-(1,2:4,5-di-O-isopropylidene-D-manno-1,2,3,4,5-pentahydroxypentyl)-3-phenylquinoxaline (2fc)

Pale yellow oil, 85%; R_f 0.35 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +32.6 (c 0.6, CHCl₃); FTIR (thin

film): 3425 (OH), 3018, 2984, 2950, 2853, 1610, 1458, 1382, 846, 750, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.13 (m, 2H, H-5, H-8), 7.92-7.89 (m, 2H, Ar*H*), 7.79-7.76 (m, 2H, H-6, H-7), 7.92-7.89 (m, 2H, Ar*H*), 7.53-7.51 (m, 3H, Ar*H*), 5.32-5.25 (m, 2H, H-1', H-2'), 3.94-3.81 (m, 3H, H-4', H-5'), 3.45-3.42 (m, 1H, H-3'), 2.38 (br d, 1H, *J*_{OH,3'} = 6.4 Hz, OH), 1.61, 1.50, 1.13, 1.02 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 155.72 (C-3), 149.58 (C- 2), 141.73 (C-4a), 141.05 (C-8a), 137.93 (aromatic C), 130.68, 129.92, 129.83, 129.41, 129.32, 128.53 (9 aromatic CH), 110.55, 109.30 (2 isopropylidene C), 79.83 (C-2'), 76.10 (C-4'), 75.98 (C-1'), 71.45 (C-3'), 66.97 (C-5'), 27.40, 27.16, 26.64, 25.25 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₂₅H₂₈N₂O₅Na [M+Na]⁺: 459.1896. Found: 459.1898. **2-(1,2:4,5-di-***O***-isopropylidene-D-***manno***-1,2,3,4,5-pentahydroxypentyl)-3-(4-**

cyanophenyl)quinox-aline (2fd)

Pale yellow foam, 72%; $R_f = 0.32$ (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}+27.3$ (*c* 0.7, CHCl₃); FTIR (thin film): 3440 (OH), 2986, 2926, 2854, 2230 (CN), 1607, 1546, 1457, 1383, 855, 763cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.14 (m, 2H, H-5, H-8), 8.08 (d, 2H, *J* = 8.4 Hz, Ar*H*), 7.86-7.83 (m, 4H, H-6, H-7, Ar*H*), 5.38 (dd, 1H, $J_{2',3'} = 4.4$ Hz, $J_{2',1'} = 8.0$ Hz, H-2'), 5.15 (d, 1H, $J_{1',2'} = 8.0$ Hz, H-1'), 4.01-3.85 (m, 3H, H-4', H-5'), 3.48 (br s, 1H, H-3'), 2.42 (d, 1H, $J_{OH,3'} = 6.0$ Hz, OH), 1.59, 1.51, 1.17, 1.03 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 153.50 (C-3), 149.16 (C-2), 142.35 (aromatic C), 141.44 (C-8a), 141.10 (C-4a), 132.10, 131.04, 130.66, 130.47, 129.34, 129.25 (8 aromatic CH), 118.59 (CN), 113.01 (aromatic C), 110.61, 109.18 (2 isopropylidene C), 79.33 (C-2'), 75.94 (C-4'), 75.66 (C-1'), 71.32 (C-3'), 66.98 (C-5'), 27.18, 27.05, 26.66, 25.13 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₂₆H₂₈N₃O₅ [M+H]⁺: 462.2029. Found: 462.2036.

2-(1,2:4,5-di-*O*-isopropylidene-D-*manno*-1,2,3,4,5-pentahydroxypentyl)-3-(4-fluorophenyl)quinoxaline (2fe)

Yellow foam, 74%; R_f 0.43 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +55.3 (*c* 0.5, CHCl₃): FTIR (thin film): 3416 (OH), 2988, 2928, 1606, 1514, 1379, 845, 769 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.14 (m, 2H, H-5, H-8), 7.98-7.93 (m, 2H, Ar*H*), 7.84-7.77 (m, 2H, H-6, H-7), 7.26-7.21 (m, 2H, Ar*H*), 5.37 (dd, 1H, $J_{2',3'}$ = 4.4 Hz, $J_{2',1'}$ = 8.0 Hz, H-2'), 5.22 (d, 1H, $J_{1',2'}$ = 8.0 Hz, H-1'), 3.99-3.83 (m, 3H, H-4', H-5'), 3.46 (br d, 1H, H-3'), 2.42 (d, 1H, $J_{OH,3'}$ = 5.6 Hz, OH), 1.62, 1.53, 1.16, 1.03 (4 s, each 3H, 4 *CH*₃); ¹³C

NMR (100 MHz, CDCl₃) δ 163.64 (*C*-F, d, ¹*J*_{C-F} = 249.5 Hz), 154.57 (C-3), 149.22 (C-2), 141.53 (C-4a), 140.88 (C-8a), 133.92 (aromatic C, d, ⁴*J*_{C-F} = 3.0 Hz), 131.76 (2 aromatic CH, d, ³*J*_{C-F} = 8.0 Hz), 130.69, 129.93, 129.30, 129.12 (4 aromatic CH), 115.46 (2 aromatic CH, d, ²*J*_{C-F} = 22.1 Hz), 110.46, 109.17 (2 isopropylidene C), 79.48 (C-2'), 75.97 (C-1'), 75.81 (C-4'), 71.36 (C-3'), 66.91 (C-5'), 27.27, 27.04, 26.92, 26.58 (4 CH₃); HRMS (ESI) *m*/*z* Calcd for C₂₅H₂₇N₂O₅Na [M+Na]⁺: 477.1802. Found: 477.1809.

2-(1,2:4,5-di-*O*-isopropylidene-D-*manno*-1,2,3,4,5-pentahydroxypentyl)-3-(4-methylphenyl)quinoxaline (2ff)

Yellow oil, 89%; R_f 0.60 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +30 (*c* 0.5, CHCl₃); FTIR (KBr): 3426 (OH), 3035, 2989, 2945, 2853, 1606, 1545, 1456, 1387, 852, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.13 (m, 2H, H-5, H-8), 7.83 (d, 2H, *J* = 8.0 Hz, Ar*H*), 7.80-7.75 (m, 2H, H-6, H-7), 7.35 (d, 2H, *J* = 8.0 Hz, Ar*H*), 5.34-5.28 (m, 2H, H-1', H-2'), 3.96-3.87 (m, 3H, H-4', H-5'), 3.44 (br s, 1H, H-3'), 2.47 (s, 3H, PhC*H*₃), 2.41 (br s, 1H, OH), 1.64, 1.54, 1.15, 1.03 (4 s, each 3H, 4 *CH*₃); ¹³C NMR (100 MHz, CDCl₃) δ 155.67 (C-3), 149.41 (C-2), 141.66 (C-4a), 140.84 (C-8a), 139.33, 134.94 (2 aromatic C), 130.46, 129.66, 129.60, 129.27, 129.14 (8 aromatic CH), 110.42, 109.17 (2 isopropylidene C), 79.73 (C-2'), 76.00 (C-4'), 75.92 (C-1'), 71.33 (C-3'), 66.84 (C-5'), 27.31, 27.07, 26.51, 25.11 (4 *C*H₃), 21.38 (PhCH₃); HRMS (ESI) *m*/*z* Calcd for C₂₆H₃₀N₂O₅Na [M+Na]⁺: 473.2052. Found: 473.2060. **2-(1,2:4,5-di-***O***-isopropylidene-D-***manno***-1,2,3,4,5-pentahydroxypentyl)-3-biphenylylquinoxaline (2fg)**

Pale yellow foam, 84%; R_f 0.62 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +29.5 (*c* 0.7, CHCl₃); FTIR (thin film): 3431 (OH), 3025, 2988, 2935, 2862, 1608, 1545, 1456, 1382, 847, 758, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.20-8.15 (m, 2H, H-5, H-8), 8.04 (d, 2H, *J* = 8.4 Hz, Ar*H*), 7.85-7.77 (m, 4H, H-6, H-7, Ar*H*), 7.72-7.68 (m, 3H, Ar*H*), 7.53-7.49 (m, 2H, Ar*H*), 5.40-5.34 (m, 2H, H-1', H-2'), 3.98-3.84 (m, 3H, H-4', H-5'), 3.49 (br s, 1H, H-3'), 2.43 (d, 1H, *J* = 5.6 Hz, OH), 1.66, 1.56, 1.17, 1.05 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 155.30 (C-3), 149.43 (C-2), 142.13 (C-4a), 141.69 (C-8a), 140.62, 140.54, 136.74 (aromatic C), 130.59, 130.24, 129.81, 129.62, 129.31, 129.21, 128.89, 127.82, 127.70, 127.24, 127.17 (13 aromatic *C*H), 110.50, 109.20 (2 isopropylidene C), 79.72 (C-2'), 76.01 (C-

1'), 75.95 (C-4'), 71.43 (C-3'), 66.90 (C-5'), 27.32, 27.12, 26.55, 25.14 (4 *C*H₃); HRMS (ESI) *m/z* Calcd for C₃₁H₃₃N₂O₅ [M+H]⁺: 513.2389. Found: 513.2381

2-(1,2:4,5-di-*O*-isopropylidene-D-*manno*-1,2,3,4,5-pentahydroxypentyl)-3-(4-bromophenyl)quinoxaline (2fh)

Pale yellow foam, 75%; $R_f = 0.53$ (2:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ +60.1 (*c* 0.6, CHCl₃); FTIR (thin film): 3419 (OH), 2992, 2935, 2847, 1608, 1450, 1384, 855, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.11 (m, 2H, Ar*H*), 7.83-7.78 (m, 4H, Ar*H*), 7.66 (d, 2H, *J* = 8.4 Hz, Ar*H*), 5.34 (dd, 1H, $J_{2',3'} = 4.4$ Hz, $J_{2',1'} = 8.2$ Hz, H-2'), 5.18 (d, 1H, $J_{1',2'} = 8.2$ Hz, H-1'), 3.97 - 3.81 (m, 3H, H-4', H-5'), 3.44 (m, 1H, H-3'), 2.40 (br d, 1H, OH), 1.60, 1.51, 1.42, 1.00 (4 s, each 3H, 4 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 154.56 (C-3), 149.25 (C-2), 141.66 (C-4a), 141.05 (C-8a), 136.84 (aromatic C), 131.70, 131.51, 130.87, 130.20, 129.43, 129.26 (8 aromatic CH), 124.19 (aromatic C), 110.62, 109.29 (2 isopropylidene C), 79.60 (C -2'), 76.04(C-4'), 75.88 (C-1'), 71.49 (C-3'), 67.06 (C-5'), 27.38, 27.19, 26.72, 25.23 (4 CH₃); HRMS (ESI) *m/z* Calcd for C₂₅H₂₇BrN₂O₅Na [M+Na]⁺: 537.1001. Found: 537.1008.

2-(1,2-*O*-isopropylidene-4-*O*-triphenylmethyl-D-*ribo*-1,2,3,4-butahydroxybutyl)-3-(4-methoxyphenyl)quinoxaline (2ga)

Yellow oil, 84%; $R_f = 0.43$ (4:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -19.6 (*c* 0.5, CHCl₃); FTIR (thin film): 3428 (OH), 3061, 2982, 2925, 2860, 1608, 1515, 1450, 1382, 763, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, 1H, *J* = 8.0 Hz, Ar*H*), 8.10 (d, 1H, *J* = 8.0 Hz, Ar*H*), 7.82-7.74 (m, 2H, Ar*H*), 7.70 (d, 2H, *J* = 8.8 Hz, Ar*H*), 7.28-7.18 (m, 15H, Ar*H*), 7.03 (d, 2H, *J* = 8.8 Hz, Ar*H*), 5.33-5.28 (m, 2H, H-1', H-2'), 4.04 (br d, 1H, *J* = 4.8 Hz, H-3'), 3.91 (s, 3H, OC*H*₃), 3.06 (dd, 1H, *J*_{4'a,3'} = 6.0 Hz, *J*_{4'a,4'b} = 9.6 Hz, H-4'a), 2.85 (dd, 1H, *J*_{4'b,3'} = 4.2 Hz, *J*_{4'b,4'a} = 9.6 Hz, H-4'b), 2.35 (br s, 1H, OH), 1.66, 1.50 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 160.41 (aromatic C), 155.10 (C-3), 150.07 (C-2), 143.54 (3 aromatic C), 141.62 (C-8a), 140.98 (C-4a), 130.40 (aromatic C), 131.07, 129.48, 129.36, 129.08, 128.45, 127.83, 127.75, 126.97 (21 aromatic *C*H), 113.92 (2 aromatic *C*H), 110.59 (isopropylidene C), 86.65 (ph₃CO), 79.71 (C-2'), 76.28 (C-1'), 70.94 (C-3'), 64.65 (C-4'), 55.38 (OCH₃), 27.19, 27.12 (2 CH₃); HRMS (ESI) *m/z* Calcd for C₄₁H₃₉N₂O₅ [M+H]⁺: 639.2859. Found: 639.2852. 2-(1,2-*O*-isopropylidene-4-*O*-triphenylmethyl-D-*ribo*-1,2,3,4-butahydroxybutyl)-3-(4-chlorophenyl)quinoxaline 2gb)

Yellow oil, 74%; R_f 0.0.48 (4:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -20.6 (*c* 0.5, CHCl₃); FTIR (thin film): 3437 (OH), 3050, 2989, 2926, 2856, 1615, 1458, 1384, 851, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.11 (m, 2H, H-5, H-8), 7.86-7.77 (m, 2H, H-6, H-7), 7.66 (d, 2H, *J* = 8.4 Hz, Ar*H*), 7.48 (d, 2H, *J* = 8.4 Hz, Ar*H*), 7.28-7.18 (m, 15H, Ar*H*), 5.31 (dd, 1H, $J_{2',3'}$ = 6.0 Hz, $J_{2',1'}$ = 8.0 Hz, H-2'), 5.20 (d, 1H, $J_{1',2'}$ = 8.0 Hz, H-1'), 4.05-4.01 (m, 1H, H-3'), 3.08 (dd, 1H, $J_{4'a,3'}$ = 6.0 Hz, $J_{4'a,4'b}$ = 9.6 Hz, H-4'a), 2.85 (dd, 1H, $J_{4'b,3'}$ = 6.0 Hz, $J_{4'b,4'a}$ = 9.6 Hz, H-4'b), 2.36 (br s, 1H, OH), 1.64, 1.48 (2 s, each 3H, 2 *CH*₃). ¹³C NMR (100 MHz, CDCl₃) δ 154.20 (C-3), 149.97 (C-2), 143.49 (3 aromatic C), 141.49 (C-8a), 141.25 (C-4a), 136.36, 135.41 (2 aromatic C), 130.98, 130.70, 129.91, 129.54, 129.14, 128.65, 128.43, 127.77, 127.70 (23 aromatic *C*H), 110.78 (isopropylidene C), 86.66 (ph₃CO), 79.62 (C-2'), 76.22 (C-1'), 70.94 (C-3'), 64.59 (C-4'), 27.12 (2 *C*H₃); HRMS (ESI) *m/z* Calcd for C₄₀H₃₅ClN₂O₄Na [M+Na]⁺: 665.2183. Found: 665.2186.

2-(1,2-*O*-isopropylidene-4-*O*-triphenylmethyl-D-*ribo*-1,2,3,4-butahydroxybutyl)-3phenylquinoxa-line(2gc)

Pale yellow oil, 80%; $R_f = 0.52$ (4:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -24.8 (*c* 0.5, CHCl₃); FTIR (thin film): 3430 (OH), 3039, 2986, 2935, 2852, 1609, 1450, 1382, 851, 760, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, 1H, *J* = 8.0 Hz, H-8), 8.09 (d, 1H, *J* = 8.0 Hz, H-5), 7.81-7.73 (m, 2H, H-6, H-7), 7.68-7.66 (m, 2H, Ar*H*), 7.48-7.46 (m, 3H, Ar*H*), 7.24-7.15 (m, 15H, Ar*H*), 5.28-5.22 (m, 2H, H-1', H-2'), 4.01-3.97 (m, 1H, H-3'), 3.05 (dd, 1H, $J_{4^{+}a,3^{+}} = 5.6$ Hz, $J_{4^{+}a,4^{+}b} = 9.6$ Hz, H-4'a), 2.83 (dd, 1H, $J_{4^{+}b,3^{+}} = 4.0$ Hz, $J_{4^{+}b,4^{+}a} = 9.6$ Hz, H-4'b), 2.26 (br s, 1H, OH), 1.62, 1.43 (2 s, each 3H, 2 CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 155.52 (C-3), 150.29 (C-2), 143.64 (3 aromatic C), 141.60 (C-8a), 141.34 (C-4a), 137.99 (aromatic C), 130.64, 129.79, 129.63, 129.27, 129.14, 128.85, 128.55, 128.51, 127.10 (24 aromatic CH), 110.74 (isopropylidene C), 86.75 (Ph₃CO), 79.84 (C-2'), 76.41 (C-1'), 71.08 (C-3'), 64.76 (C-4'), 27.26, 27.20 (2 CH₃); HRMS (ESI) *m*/*z* Calcd for C₄₀H₃₆N₂O₄Na [M+Na]⁺: 631.2573, found: 631.2578.

2-(1,2-O-isopropylidene-4-O-triphenylmethyl-D-ribo-1,2,3,4-butahydroxybutyl)-3-(4-cyanopheny-

Brown oil, 70%; R_f 0.4 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -4.2 (*c* 1.0, CHCl₃); FTIR (thin film): 3441 (OH), 3038, 2995, 2929, 2858, 2227 (CN), 1622, 1454, 1387, 862, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.11 (m, 2H, H-5, H-8), 7.83-7.75 (m, 4H, H-6, H-7, Ar*H*), 7.66 (d, 2H, *J* = 8.0 Hz, Ar*H*), 7.29-7.17 (m, 15H, Ar*H*), 5.34-5.30 (m, 1H, H-2'), 5.13 (d, 1H, $J_{1',2'}$ = 7.6 Hz, H-1'), 4.02 (d, 1H, *J* = 4.4 Hz, H-3'), 3.11-3.06 (m, 1H, H-4'a), 2.87-2.82 (m, 1H, H-4'b), 2.36 (br s, 1H, OH), 1.60, 1.45 (2 s, each 3H, 2 CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 153.30 (C-3), 149.93 (C-2), 143.45 (3 aromatic C), 142.27 (C-8a), 141.43(C-4a), 141.40 (aromatic C), 132.31, 132.15, 130.37, 129.65, 128.64, 128.43, 127.83, 127.79, 127.04 (23 aromatic CH), 118.65 (*C*N), 112.80 (aromatic C), 110.97 (isopropylidene C), 86.67 (Ph₃CO), 79.57 (C-2'), 76.23 (C-1'), 70.96 (C-3'), 64.56 (C-4'), 27.13, 27.07 (2 *C*H₃); HRMS (ESI) *m*/*z* Calcd for C₄₁H₃₆N₃O₄ [M+H]⁺: 634.2706. Found: 634.2712. **2-(1,2-***O***-isopropylidene-4-***O***-triphenylmethyl-D-***ribo***-1,2,3,4-butahydroxybutyl)-3-(4-fluorophen-**

yl)quinoxaline (2ge)

Brown oil, 73%; $R_f = 0.45$ (4:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -22.3 (*c* 0.6, CHCl₃); FTIR (thin film): 3447 (OH), 3061, 2979, 2925, 2857, 1602, 1450, 1378, 847, 764 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.11 (m, 2H, H-5, H-8), 7.85-7.76 (m, 2H, Ar*H*), 7.73-7.69 (m, 2H, H-6, H-7), 7.38-7.32 (m, 2H, Ar*H*), 7.28-7.17 (m, 15H, Ar*H*), 5.32 (dd, 1H, $J_{2',3'} = 6.4$ Hz, $J_{2',1'} = 8.0$ Hz, H-2'), 5.21 (d, 1H, $J_{1',2'} = 8.0$ Hz, H-1'), 4.06-4.02 (m, 1H, H-3'), 3.09 (dd, 1H, $J_{4'a,3'} = 6.0$ Hz, $J_{4'a,4'b} = 9.6$ Hz, H-4'a), 2.85 (dd, 1H, $J_{4'b,3'} = 6.0$ Hz, $J_{4'b,4'a} = 9.6$ Hz, H-4'b), 2.38 (br s, 1H, OH), 1.65, 1.45 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 163.44 (*C*-F, d, ¹ $J_{C-F} = 248.5$ Hz), 154.38 (C-3), 150.02 (C-2), 143.50 (3 aromatic C), 141.18 (C-8a), 141.20 (C-4a), 133.97 (aromatic C, d, ⁴ $J_{C-F} = 3.4$ Hz), 131.52 (2 aromatic *C*H, d, ³ $J_{C-F} = 8.0$ Hz), 130.67, 129.64, 129.54, 129.11, 128.44, 127.77, 127.01 (19 aromatic *C*H), 115.47 (aromatic CH, d, ² $J_{F-C} = 21.10$ Hz), 110.73 (isopropylidene C), 86.66 (ph₃CO), 79.61 (C-2'), 76.21 (C-1'), 70.94 (C-3'), 64.61 (C-4'), 27.15, 27.11 (2 *C*H₃); HRMS (ESI) *m/z* Calcd for C₄₀H₃₅FN₂O₄Na [M+Na]⁺: 649.2479. Found: 649.2486.

2-(1,2-*O*-isopropylidene-4-*O*-triphenylmethyl-D-*ribo*-1,2,3,4-butahydroxybutyl)-3-(4-methylphenyl)quinoxaline (2gf)

Brown oil, 83%; R_f 0.55 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -14.2 (*c* 0.5, CHCl₃); FTIR (thin film): 3438 (OH), 3057, 2990, 2927, 2855, 1626, 1456, 1381, 862, 761cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.09 (m, 2H, H-5, H-8), 7.83-7.74 (m, 2H, H-6, H-7, Ar*H*), 7.60 (d, 2H, *J* = 8.0 Hz, Ar*H*), 7.36 (d, 2H, *J* = 8.0 Hz, Ar*H*), 7.26-7.17 (m, 15H, Ar*H*), 5.29-5.26 (m, 2H, H-1', H-2'), 4.02 (br s, 1H, H-3'), 3.06 (dd, 1H, $J_{4^{+}a,3^{+}}$ = 6.0 Hz, $J_{4^{+}a,4^{+}b}$ = 9.6 Hz, H-4'a), 2.83 (dd, 1H, $J_{4^{+}b,3^{+}}$ = 4.0 Hz, $J_{4^{+}b,4^{+}a}$ = 9.6 Hz, H-4'b), 2.46 (s, 3H, PhC*H*₃), 2.33 (br s, 1H, OH), 1.65, 1.48 (2 s, each 3H, 2 C*H*₃); ¹³C NMR (100 MHz, CDCl₃) δ 155.48 (C-3), 150.13 (C-2), 143.53 (3 aromatic C), 141.60 (C-8a), 141.10 (C-4a), 138.96, 135.03 (2 aromatic C), 130.42, 129.64, 129.47, 129.13, 128.65, 128.44, 127.82, 127.74, 126.97 (23 aromatic CH), 110.59 (isopropylidene C), 86.63 (ph₃CO), 79.76 (C-2'), 76.26 (C-1'), 70.94 (C-3'), 64.63 (C-4'), 27.17, 27.11 (2 CH₃), 21.54 (PhCH₃); .HRMS (ESI) *m/z* Calcd for C₄₁H₃₉N₂O₄ [M+H]⁺: 623.2910, found: 623.2918.

2-(1,2-O-isopropylidene-4-O-triphenylmethyl-D-*ribo*-1,2,3,4-butahydroxybutyl)-3-(4-biphenylyl)quinoxaline (2gg)

Pale yellow oil, 83%; R_f 0.52 (3:1 petroleum ether-EtOAc); $[\alpha]_D^{20}$ -7.3 (*c* 0.5, CHCl₃); FTIR (thin film): 3438 (OH), 3204, 3062, 2986, 2925, 2855, 1634, 1485, 1449, 1393, 849, 765, 700 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 8.20-8.15 (m, 2H, H-5, H-8), 7.84-7.78 (m, 4H, H-6, H-7, Ar*H*), 7.75-7.70 (m, 4H, Ar*H*), 7.54-7.47 (m, 3H, Ar*H*), 7.28-7.19 (m, 15H, Ar*H*), 5.36-5.31 (m, 2H, H-1', H-2'), 4.06 (br d, 1H, H-3'), 3.10 (dd, 1H, $J_{4'a,3'} = 6.0$ Hz, $J_{4'a,4'b} = 9.6$ Hz, H-4'a), 2.88 (dd, 1H, $J_{4'b,3'} = 4.4$ Hz, $J_{4'b,4'a} = 9.6$ Hz, H-4'b), 2.36 (br s, 1H, OH), 1.67, 1.50 (2 s, each 3H, 2 C*H*₃). ¹H NMR (100 MHz, CDCl₃) δ 155.12 (C-3), 150.14 (C-2), 143.54 (3 aromatic C), 141.83 (C-8a), 141.63 (C-4a), 141.20, 140.64, 136.85 (3 aromatic C), 130.55, 130.05, 129.68, 129.54, 129.21, 128.89, 128.68, 128.46, 127.77, 127.25, 127.20, 127.00 (28 aromatic CH), 110.71, 110.53 (2 isopropylidene C), 86.67 (ph₃CO), 79.74 (C-2'), 76.36 (C-1'), 70.99 (C-3'), 64.66 (C-4'), 27.18, 27.15 (2 CH₃); HRMS (ESI) *m/z* Calcd for C₄₆H₄₁N₂O₄ [M+H]⁺: 685.3066. Found: 685.3074.

¹H NMR and ¹³C NMR of **2aa**

¹H NMR, ¹³C NMR, DEPT-135, ¹H-¹H COSY, HSQC and HMBC of intermediate 5

¹H NMR, ¹³C NMR, DEPT-135, ¹H-¹H COSY, HSQC and HMBC of **2ab**

¹H NMR and ¹³C NMR of **2ac**

¹H NMR and ¹³C NMR of **2ad**

¹H NMR, ¹³C NMR, DEPT-135, ¹H-¹H COSY, HSQC and HMBC of **2ba**

¹H NMR and ¹³C NMR of **2bb**

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR and ¹³C NMR of **2cb**

¹H NMR and ¹³C NMR of **2cc**

¹H NMR and ¹³C NMR of **2cd**

¹H NMR, ¹³C NMR, ¹H-¹H COSY, HSQC and HMBC of **2da**

¹H NMR and ¹³C NMR of **2db**

¹H NMR and ¹³C NMR of **2dc**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of $\mathbf{2dd}$

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR and ¹³C NMR of **2ec**

¹H NMR, ¹³C NMR, DEPT-135, ¹H-¹H COSY, HSQC and HMBC of **2fa**

¹H NMR and ¹³C NMR of **2fc**

¹H NMR and ¹³C NMR of **2fh**

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR and ¹³C NMR of **2ge**

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

References

- 1 (a) E. J. Cory and P. L. Fuchs, *Tetrahedron Lett.*, 1972, **13**, 3769; (b) V. S. Ayyagari, P. Kalanidhi and P. K. Krishna, *Chem. Eur. J.*, 2010, **16**, 8545.
- 2 S. L. Huang, K. Omura and D. Swern, J. Org. Chem., 1976, 41, 3329.
- 3 P. K. Krishna and V. S. Ayyagari, Org. Lett., 2007, 9, 1121.
- 4 J. M. J. Tronchet, A. Gonzalez, J.-B. Zumwald and F. Perret, Helv. Chim. Acta 1974, 57, 1505.
- 5 J.-C. Thiéry, C. Fréchou and G. Demailly, *Tetrahedron Lett.*, 2000, 41, 6337.
- 6 F. Dolhem, C. Lièvre and G. Demailly, *Tetrahedron* 2003, 59, 155.
- 7 S. Norsikian, J.-F. Soulé, A. Cannillo, R. Guillot, M.-E. T. H. Dau and J.-M. Beau, *Org. Lett.*, 2012, 14, 544.