Supporting information

A preferable molecular crystal membrane

for H₂ gas separation

Yuichi Takasaki, Satoshi Takamizawa*

†Department of Nanosystem Science; Graduate School of Nanobioscience; Yokohama City University; 22-2 Seto; Kanazawa-ku, Yokohama, Kanagawa 236-0027; Japan <u>staka@yokohama-cu.ac.jp</u>

(a) Experimental information

(Preparation of crystal)

Introducing pyrazine vapor (0.20 g, 2.5 mmol) into the methanol solution (200 mL) of copper(II) acetate monohydrate (0.208 g, 1.04 mmol) and 9-anthracenecarboxylic acid (0.449 g, 2.02 mmol) gave dark red, rod-like single crystals of **1** with a size of 100-500 μ m in 16.4% yield (90.3 mg). Well-formed single crystals were used for experiments after being vacuum dried at 298 K.

(Preparation of single-crystal membrane)

A single crystal of **1** was set in a hole of an aluminum sheet and the gap between the oriented crystal and the aluminum plate was sealed with epoxy resin. The single crystal was used as a membrane with the area of the crystal surface as 7.65×10^{-3} mm² for (001) and a crystal thickness of 0.115 mm along [001]. For the crystal membrane, the single crystals were cut to a suitable size along each crystal face.

(X-ray single crystal diffraction analysis)

Single-crystal X-ray structural analysis of **1** was performed at 90 K on a Bruker Smart APEX CCD area diffractometer (Bruker AXS K.K.) with a nitrogen-flow temperature controller using graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). Empirical absorption corrections were applied using the SADABS program. The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least-squares calculations on F^2 (SHELXL-97) using the SHELX-TL program package. Non-hydrogen atoms were refined anisotropically; hydrogen atoms were fixed at calculated positions by riding model approximation.

(Gas adsorption measurement)

Gas adsorption measurements were performed at 293 K on a Belsorp-HP Measurement System (BEL JAPAN, Inc.) after drying the microcrystalline sample of 1 (412.7 mg) at 353 K for 2 hours. (Adsorbate gases: H_2 , N_2 , Ar, O_2 , CO, CH_4 , and CO_2)

(Gas permeation measurement)

Gas permeation was performed along the direction of [001] by using the single-crystal membrane on GTR-20XAYU Analyzer (GTR Tech Corporation) by the differential pressure method at 293 K and a differential pressure of 150 kPa. Gas permeation was monitored by gas chromatography with a thermal conductivity detector (TCD) on a GC-2014 Gas Chromatograph (Shimadzu Corporation).

(b) Crystallographic data and ortep drawing of 1

	-
Dimension / mm ³	$0.48 \times 0.12 \times 0.09$
Empirical formula	$C_{64}H_{40}Cu_2N_2O_8\\$
$M / \text{g mol}^{-1}$	1092.06
Crystal system	Tetragonal
Space group	P4/nnc
Т / К	90
<i>a</i> / Å	16.589(2)
b / Å	16.589 (2)
<i>c</i> / Å	9.584(2)
α/°	90
β / °	90
γ / °	90
$V/\text{\AA}^3$	2637.5(8)
Ζ	2
D_{calcd} / Mg m ⁻³	1.375
μ (Mo K $lpha$) / mm ⁻¹	0.866
Independent reflections (R_{int})	1178 (0.1282)
Goodness-of-fit on F^2	0.958
$R_1 (I > 2\sigma (\text{all data}))$	0.0519 (0.0806)
$_{\rm w}R_2 (I > 2\sigma ({\rm all \ data}))$	0.1400 (0.1493)
Largest diff. peak (hole) / e Å ⁻³	1.046 (-1.207)

Table S1. Crystallographic data of 1.

Figure S1. Molecular structure of 1 as an ortep view at 50% probability level for the ellipsoid.

(c) Gas adsorption properties of 1 at room temperature

In gas adsorption measurement, the linear isotherm only for H_2 and normal type I isotherms for other gases (O₂, Ar, N₂, CH₄, and CO₂) were obtained at 293 K. The specific surface area calculated from N₂ gas isotherm is 343.07 m² g⁻¹ which is near the value of **2** (211.8 m² g⁻¹). These adsorption isotherms indicate that the all gas species other than H₂ were sufficiently adsorbed in the channel of **1** at 293K and 150 kPa.

Figure S2. Gas adsorption isotherm of **1** for H_2 (diamond), O_2 (circle), Ar (x), CO (plus), CH_4 (inverted triangle), N_2 (triangle), and CO_2 (square) at 293 K.

Table S2. Gas adsorption amount (*A*) and gas concentration (*C*) in the channel at 293 K and 150 kPa calculated from the adsorption amount at a crystal density (90 K) of 1.375 g cm^{-3} for **1**. Gas concentration for helium was substituted with that for hydrogen because the adsorption measurement for helium gas was not performed.

U	1	
Cas	A	C
Gas	/ Ncc g ⁻¹	/ mol m ⁻³
H ₂	0.114	8.83
O_2	2.76	170
Ar	3.53	217
СО	2.62	161
CH_4	15.3	941
N_2	2.02	124
CO_2	16.1	987

Table S3. Estimated permeability for 1 at 293 K and 150 kPa based on Knudsen diffusion model. P_{dmin} and P_{dmax} are the estimated permeability based on the values of d_{min} (= 6.2 Å) and d_{max} (= 7.9 Å) in Knudsen diffusion model, respectively.

Gas	P_{dmin} / mol m m ⁻² s ⁻¹ Pa ⁻¹	P _{dmin} / Barrer	P_{dmax} / mol m m ⁻² s ⁻¹ Pa ⁻¹	P _{dmax} / Barrer
He	6.23×10^{-14}	186	7.53 × 10 ⁻¹⁴	225
H_2	8.81×10^{-14}	263	1.07×10^{-13}	318
O_2	4.24×10^{-13}	1270	5.13 × 10 ⁻¹³	1530
Ar	4.84×10^{-13}	1440	5.85×10^{-13}	1750
CO	4.28×10^{-13}	1280	5.18 × 10 ⁻¹³	1550
CH_4	3.32×10^{-12}	9900	4.01×10^{-12}	12000
N_2	3.30×10^{-13}	987	4.00×10^{-13}	1190
CO ₂	2.10×10^{-12}	6260	2.54×10^{-12}	7580

 $(1 \text{ Barrer} = 3.35 \times 10^{-16} \text{ mol m m}^{-2} \text{ s}^{-1} \text{ Pa}^{-1})$

(e) <u>Comparison of H₂ selectivity and permeability</u>

Membrane	Gas	Fα	$P_{\rm H2}/{\rm Barrer}$	Reference
1	СО	79.0	3820	This work
	CH ₄	137		
	N ₂	112		
$[Cu_2(bza)_4(pyz)]_n$	СО	7.45	3310	S 1
	CH_4	19.0		
	N_2	10		
Polyethylene	CO	1.2	1.4	S2
Cobalt doped silica	CO	700	4.5	S 3
Molecular sieve carbon	CO	5900	7.2	S4
	CO	1770	23.5	
Polyimide (PI-2080)	CO	71	19.9	S5
Polyimide Matrimid 5218	CO	54.8	24.1	S 6
	N_2	134		
Molecular sieve silica	CO	16	287	S 7
Titania	CO	3.57	6390	S 8
	N_2	3.24		
MFI-Type Zeolite	CO	5	59700	S9
Polysulfone	CH_4	53.1	13.1	S10
Defect free silica	CH ₄	561	178	S11
	N ₂	64		
Poly(tert-butyl acrylate)	CH ₄	3.52	300	S12
PIM-EA-TB	CH ₄	11.1	7760	S13
	N_2	14.8		
Teflon	CH_4	5.24	3300	S14
HKUST-1 (Cu-BTC)	CH_4	27	95	S15
	N_2	22		
	CH ₄	2.4	142000	S16
	N ₂	3.7		
	CH ₄	2.9	55800	S17
	N ₂	3.7		

Table S4. Ideal selectivity ($F\alpha$ (ratio of permeability)) of H₂ versus other gas species and H₂ permeability (P_{H2}) for reported membranes which were shown in Fig. 3(a-c).

 $(1 \text{ Barrer} = 3.35 \times 10^{-16} \text{ mol m m}^{-2} \text{ s}^{-1} \text{ Pa}^{-1})$

References

- S1S. Takamizawa, Y. Takasaki, R. Miyake, J. Am. Chem. Soc., 2010, 132, 2862-2863.
- S2 C. Covarrubias, R. Quijada, J. Membr. Sci., 2010, 358, 33-42.
- S3 S. Battersby, T. Tasaki, S. Smart, B. Ladewig, S. Liu, M. C. Duke, V. Rudolph, J. C. Diniz da Costa, J, Membr. Sci., 2009, 329, 91-98.
- S4 H. Hatori, H. Takagi, Y. Yamada, Carbon, 2004, 42, 1169-1173.
- S5 K. Tanaka, H. Kita, K. Okamoto, Kobunshi Ronbunshu, 1990, 47, 945-951.
- S6 O. C. David, D. Gorri, A. Urtiaga, I. Ortiz, J. Membr. Sci., 2011, 378, 359-368.
- S7 M. C. Duke, J. C. Diniz da Costa, G. Q. (Max) Lu, M. Petch, P. Gray, J. Membr. Sci., 2004, 241, 325-333.
- S8 A. L. Ahmad, M. R. Othman, H. Mukhtar, Int. J. Hydrogen energy, 2004, 29, 817-828.
- S9 M. Kanezashi, Y. S. Lin, J. phys. Chem. C., 2009, 113, 3767-3774.
- S10 S. M. Momeni, M. Pakizeh, Braz. J. Chem. Eng., 2013, 30, 589-597.
- S11 R. M. de Vos, H. Verweij, Science, 1998, 279, 1710-1711.
- S12 A. Morisato, I. Pinnau, J. membr. Sci., 1996, 121, 243-250.
- S13 M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, *Science*, 2013, **339**, 303-307.
- S14 I. Pinnau, L. G. Toy, J. Membr. Sci., 1996, 109, 125-133.
- S15 L. Ge, W. Zhou, V. Rudolph, Z. Zhu, J. Mater. Chem. A, 2013, 1, 6350-6358.
- S16 V. V. Guerrero, Y. Yoo, M. C. McCarthy, H. K. Jeong, J. Mater. Chem., 2010, 20, 3938-3943.
- S17 J. Nan, X. Dong, W. Wang, W. Jin, N. Xu, Langmuir, 2011, 27, 4309-4312.