Electronic Supplementary Information

Direct N-acylation of azoles via metal-free catalyzed oxidative crosscoupling strategy
Jingjing Zhao, ${ }^{a b} \mathbf{P a n} \mathrm{Li},{ }^{a}$ Chungu Xia ${ }^{a}$ and Fuwei Li* ${ }^{* a}$
${ }^{\dagger}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
*Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Email: fuweili@licp.cas.cn

Electronic Supplementary Information Contents:

General Information ESI2
General Procedure for N-Acylation of Azoles ESI2
General Procedure for Radical Trapping Experiments ESI3
General Procedure for Control Experiments ESI4-ESI6
Characterization of the Products ESI8-ESI15
References and Notes SESI16
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra ESI17-ESI44

General Information:

All reagents purchased from commercial sources were used as received. The silica gel for column chromatography was supplied as $300-400$ meshes. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE III spectrometer and are referenced to the residual solvent signals (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$ in CDCl_{3}). The HRMS spectra were recorded on a Bruker micrOTOF Q II spectrometer.

General Procedure for \boldsymbol{N}-Acylation of Azoles (3, 5):

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of azole $\mathbf{1}, \mathbf{4}, 0.45 \mathrm{mmol}$ of aldehyde 2 or benzil (1.5 equiv), followed by 0.06 mmol of KI (0.2 equiv). Then 3 mL of DCE was added, followed by 0.9 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO_{4}, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford the desired product 3, $\mathbf{5}$.

To a 100 mL round-bottom flask with a stir bar was added 20 mmol of benzoimidazole, 30 mmol of benzaldehyde (1.5 equiv), followed by 4 mmol of KI (0.2 equiv). Then 25 mL of DCE was added, followed by 60 mmol of TBHP (70% aqueous). The flask with a condenser was open in air. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO_{4}, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford the desired product 5 a ($3.78 \mathrm{~g}, 85 \%$ yield).

General Procedure for Radical Trapping Experiments:

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 5 -phenyl-1 H-pyrazole $\mathbf{1 a}, 0.45$ mmol of 3,4-dimethoxybenzaldehyde $\mathbf{2 a}$ (1.5 equiv), followed by 0.06 mmol of KI (0.2 equiv). Then 3 mL of DCE was added, followed by 0.9 mmol of TBHP (70% aqueous) and 0.9 mmol of TEMPO (2,2,6,6-Tetramethylpiperidinooxy). The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO_{4}, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford $\mathbf{6}$ in 99% yield.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 5 -phenyl-1 H-pyrazole $\mathbf{1 a}, 0.45$ mmol of 3,4-dimethoxybenzaldehyde $\mathbf{2 a}$ (1.5 equiv), followed by 0.06 mmol of KI (0.2 equiv). Then 3 mL of DCE was added, followed by 0.9 mmol of TBHP (70% aqueous) and 0.9 mmol of $1,1-$ Diphenylethylene. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature. Only trace 3a was detected by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 5-phenyl- 1 H -pyrazole 1a, 0.45 mmol of benzil (1.5 equiv), followed by 0.06 mmol of KI (0.2 equiv). Then 3 mL of DCE was added, followed by 0.9 mmol of TBHP (70% aqueous) and 0.9 mmol of TEMPO. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature. The desired product was not detected by GCMS.

General Procedure for Control Experiments:

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of pyrazole $\mathbf{1 a}, 0.45 \mathrm{mmol}$ of aliphatic aldehyde (1.5 equiv), followed by 0.06 mmol of KI (0.2 equiv). Then 3 mL of DCE was added, followed by 0.9 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature. The desired product was not detected by GC-MS. The pyrazole 1a and corresponding aliphatic aldehyde were recovered, unusual product was not detected by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 3-phenylpropanal, 0.9 mmol of TEMPO, followed by 0.06 mmol of KI (0.2 equiv). Then 3 mL of DCE was added, followed by 0.9 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature. The corresponding aliphatic aldehyde was recovered, and the coupling product of 3phenylpropanal and TEMPO was not detected by GC-MS.

Eur. J. Org. Chem. 2008, 3619.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of benzaldehyde, 0.36 mmol of butan1 -amine (1.2 equiv), followed by 0.015 mmol of KI (0.05 equiv). Then 3 mL of $\mathrm{H}_{2} \mathrm{O}$ was added, followed by 0.66 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 15 h , cooled to room temperature. The amide was detected as the major product by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of benzaldehyde, 0.36 mmol of butan1 -amine (1.2 equiv), followed by 0.015 mmol of KI (0.05 equiv) and 0.66 mmol of TEMPO (2.2 equiv). Then 3 mL of $\mathrm{H}_{2} \mathrm{O}$ was added, followed by 0.66 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h , cooled to room temperature. The amide and the coupling product of acyl radical and TEMPO were not detected by GC-MS. Instead, the imine product was observed as the major product by GC-MS.

equation 5

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 4-chlorobenzaldehyde, 0.36 mmol of morpholine (1.2 equiv). Then 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added, followed by 0.36 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h , cooled to room temperature. The amide was detected as the major product by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 4-chlorobenzaldehyde, 0.36 mmol of morpholine (1.2 equiv), followed by 0.66 mmol of TEMPO (2.2 equiv). Then 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added, followed by 0.36 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h, cooled to room temperature. Only trace amide was detected by GC-MS. And the coupling product of acyl radical and TEMPO were not detected by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 3,4-dimethoxybenzaldehyde $\mathbf{2 a}$, 0.36 mmol of 3-phenyl-1H-pyrazole 1 a (1.2 equiv), followed by 0.015 mmol of KI (0.05 equiv). Then 3 mL of $\mathrm{H}_{2} \mathrm{O}$ was added, followed by 0.66 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h , cooled to room temperature. Only trace 3a was detected by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 3,4-dimethoxybenzaldehyde $\mathbf{2 a}$, 0.36 mmol of 3-phenyl-1H-pyrazole $\mathbf{1 a}$ (1.2 equiv). Then 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added, followed by 0.36 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h , cooled to room temperature. Only trace 3a was detected by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 5-phenyl- 1 H -pyrazole $\mathbf{1 a}, 0.9 \mathrm{mmol}$ of TEMPO, followed by 0.06 mmol of KI (0.2 equiv). Then 3 mL of DCE was added, followed by 0.9 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature. The coupling product of 1a and TEMPO was not detected by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 5 -phenyl- $1 H$-pyrazole $\mathbf{1 a}$, followed by 0.06 mmol of KI (0.2 equiv). Then 3 mL of DCE was added, followed by 0.9 mmol of TBHP (70% aqueous). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature. The 1-iodo-3-phenyl-1 H -pyrazole was not detected by GC-MS.

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 5-phenyl-1H-pyrazole 1a, followed by 0.3 mmol of I_{2} or NIS (1 equiv). Then 3 mL of DCE was added. The reaction mixture was stirred at room temperature for 12 h . The 1-iodo-3-phenyl-1 H -pyrazole was not detected by GC-MS.

Characterization Data of Compounds 3a-3p:

3a
(3,4-dimethoxyphenyl)(5-phenyl-1H-pyrazol-1-yl)methanone
(3a) [New compound]. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.96 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.00(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,155.6,153.4,148.3$, 132.0, 132.0, 129.1, 128.8, 127.2, 126.3, 123.5, 114.7, 110.1, 106.7, 56.1, 56.0; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]$ 331.1066, Found 331.1053.

3b
phenyl(5-phenyl-1H-pyrazol-1-yl)methanone (3b) [New compound]. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.25(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1 \mathrm{H})$, $7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.1, 155.9, 133.0, 131.9, 131.8, 131.7, 131.5, 129.2, 128.7, 128.0, 126.4, 107.2; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ 271.0844, Found 271.0842.

(4-methoxyphenyl)(5-phenyl-1H-pyrazol-1-yl)methanone (3c) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47$ (t, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.42-8.35 (m, 2 H), 7.92-7.89 (m, 2 H), 7.507.37 (m, 3 H), $7.05-6.99$ (m, 2 H), 6.84 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,163.6,155.5,134.5,132.0,131.8,129.0,128.7,126.3,123.5,113.4,106.7,55.5 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]$ 301.0962, Found 301.0947.

3d
(4-(tert-butyl)phenyl)(5-phenyl-1H-pyrazol-1-yl)methanone
(3d) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.96-$ $7.88(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.8,156.8,155.7,132.0,131.9,131.7,129.1,128.7,128.5,126.4,125.1$, 106.9, 35.1, 31.1; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}$ [M+Na] 327.1460, Found 327.1468.

3e
(4-bromophenyl)(5-phenyl-1H-pyrazol-1-yl)methanone (3e) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 2$ H), $7.68(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,144.1$, 142.6, 132.4, 132.0, 131.6, 131.0, 128.4, 125.9, 125.4, 120.7, 115.4; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ 322.9782, Found 322.9790.

$3 f$
(4-chlorophenyl)(5-phenyl-1H-pyrazol-1-yl)methanone (3f) [New compound]. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.54-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0$, $156.1,139.6,133.4,131.7,131.6,129.8,129.3,128.8,128.4,126.4,107.4 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}] 305.0448$, Found 305.0452.

3 g
4-(5-phenyl-1H-pyrazole-1-carbonyl)benzonitrile
(3g) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.79(\mathrm{~m}, 4 \mathrm{H})$, 7.48-7.40(m, 3 H), $6.91(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,156.6,135.4$, 132.1, 131.7, 131.6, 131.2, 129.5, 128.8, 126.4, 117.9, 116.1, 108.0; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ 296.0794, Found 296.0794.

3h
(2-methoxyphenyl)(5-phenyl-1H-pyrazol-1-yl)methanone (3h) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5,157.9,155.7,132.7,131.9,131.1,130.5,129.1,128.6,126.4,122.7,120.2,111.6,107.3,55.9 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]$ 301.0954, Found 301.0947.

3i
(3-fluorophenyl)(5-phenyl-1H-pyrazol-1-yl)methanone (3i) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.92-$ $7.86(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{td}, J=8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{tdd}, J=8.3,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,162.1\left({ }^{1} J_{\mathrm{CF}}=246.8 \mathrm{~Hz}\right), 156.3,133.4$ $\left({ }^{3} J_{\mathrm{CF}}=7.8 \mathrm{~Hz}\right), 131.8,131.6,129.7\left({ }^{3} J_{\mathrm{CF}}=7.8 \mathrm{~Hz}\right), 129.4,128.8,127.7\left({ }^{4} J_{\mathrm{CF}}=3.2 \mathrm{~Hz}\right), 126.4,120.1$
$\left({ }^{2} J_{\mathrm{CF}}=21.3 \mathrm{~Hz}\right), 119.0\left({ }^{1} J_{\mathrm{CF}}=24.1 \mathrm{~Hz}\right), 107.6$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ 289.0740, Found 289.0748.

3j
(3,5-dimethoxyphenyl)(5-phenyl-1H-pyrazol-1-yl)methanone
[Newcompound]. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.85(\mathrm{~m}, 2 \mathrm{H})$, 7.46-7.39 (m, 5 H$), 6.87(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,160.2,155.9,133.0,132.0,131.8,129.2,128.8,126.3,109.6,107.2,105.9,55.6 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]$ 331.1054, Found 331.1053.

3k
naphthalen-2-yl(5-phenyl-1H-pyrazol-1-yl)methanone (3k) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.91(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.50-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,155.9,135.4$, 134.1, 132.2, 131.8, 129.7, 129.2, 128.8, 128.6, 127.7, 127.6, 127.1, 126.7, 126.4, 107.1; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ 321.1000, Found 321.0998.

3I
(5-phenyl-1H-pyrazol-1-yl)(thiophen-2-yl)methanone (3I) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $88.48(\mathrm{dd}, J=3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=5.3$,
$3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{ddd}, J=7.4,3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{dd}, J=4.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,155.5$, 138.5, 137.7, 132.2, 131.7, 130.8, 129.2, 128.8, 127.2, 126.4, 107.3; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]$ 277.0398, Found 277.0406.

3m
(4-bromophenyl)(3-methyl-1H-pyrazol-1-yl)methanone (3m) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 6.34$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 165.1, 154.7, 133.1, 131.4, 131.1, 130.5, 128.1, 110.5, 14.0; HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{NaO}$ [M+Na] 286.9786, Found 286.9790.

3n
(4-bromophenyl)(1H-pyrazol-1-yl)methanone (3n) [New compound]. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{dd}, J=2.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62$ (m, 2 H), $6.53(\mathrm{dd}, J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,144.7,133.1,131.4$, 130.4, 130.2, 128.3, 109.7; HRMS (ESI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ 272.9639, Found 272.9634.

5a
(1H-benzo[d]imidazol-1-yl)(phenyl)methanone (5a) ${ }^{\mathbf{1}}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22$ ($\mathrm{s}, 1 \mathrm{H}$), $8.22-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.62-7.58 (m, 2 H), 7.49-7.41 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,144.1,143.1,133.2$, 132.9, 132.1, 129.5, 129.1, 125.8, 125.3, 120.6, 115.5; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]$ 223.0866, Found 223.0866.

5b
(1H-benzo[d]imidazol-1-yl)(4-bromophenyl)methanone (5b) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 2 \mathrm{H})$, 7.68 (dd, $J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51-7.39 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,144.1,142.6$, 132.4, 132.0, 131.6, 131.0, 128.4, 125.9, 125.4, 120.7, 115.4; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{NaO}$ [M+Na] 322.9782, Found 322.9790.

5c

4-($1 \boldsymbol{H}$-benzo[d]imidazole-1-carbonyl)benzonitrile (5c) [New compound]. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.21-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.51-$ 7.43 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,144.1,142.3,136.7,132.9,131.8,129.9,126.3$, 125.9, 120.9, 117.4, 116.8, 115.5; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{NaO}$ [M+Na] 270.0630, Found 270.0638 .

5d
(1H-benzo[d]imidazol-1-yl)(2-methoxyphenyl)methanone (5d) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H})$, $7.54(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,156.5,144.1,143.6,133.5,131.6,129.9$, 125.7, 125.1, 122.9, 121.2, 120.3, 115.5, 111.6, 55.7; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]$ 275.0794, Found 275.0791.

(1H-benzo[d]imidazol-1-yl)(2-bromophenyl)methanone (5e) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 1$ H), $7.60-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,144.2,142.7,135.3,133.5,132.6,131.3$, 129.2, 127.9, 126.029, 125.5, 120.6, 119.7, 115.4; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ 322.9793, Found 322.9790.

(1H-benzo[d]imidazol-1-yl)(3,4-dimethoxyphenyl)methanone compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $166.4,153.5,149.4,144.0,143.1,132.3,125.5,125.0,124.8,124.1,120.4,115.2,112.3,110.4,56.2$, 56.1; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]$ 305.0902, Found 305.0897.

59
(1H-benzo[d]imidazol-1-yl)(3-nitrophenyl)methanone (5g) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{ddd}, J=8.3,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.17(\mathrm{~m}$, $1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 164.6, 148.4, 144.1, 142.1, 134.8, 134.5, 131.8, 130.5, 127.6, 126.3, 125.9, 124.5, 120.9, 115.5; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 268.0712, Found 268.0717.

5h
(1H-benzo[d]imidazol-1-yl)(naphthalen-2-yl)methanone (5h) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.26-8.19(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.1,144.1,143.2,135.3,132.2,131.1,129.9,129.2,129.0,128.0,127.5,125.7$, 125.2, 125.0, 120.6, 115.4; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}$ [M+Na] 295.0849, Found 295.0842.

(1H-benzo[d]imidazol-1-yl)(thiophen-2-yl)methanone (5i) [New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.23-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 1 \mathrm{H})$, 7.50-7.39 (m, 2 H), 7.28-7.26 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,143.9,142.2,135.7$, $134.5,134.3,132.2,128.2,125.7,125.2,120.5,115.3$; HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]$ 229.0431, Found 229.0430.

5j
(1H-benzo[d][1,2,3]triazol-1-yl)(phenyl)methanone (5j) $\mathbf{2}^{\mathbf{2}}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.19(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.52$ (m, 3 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.7, 145.7, 133.7, 132.3, 131.7, 131.5, 130.4, 128.4, 126.3, 120.2, 114.8; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}$ 246.0630, Found 246.0638 .

5 m

1H-benzo[d][1,2,3]triazol-1-yl)(2-bromophenyl)methanone
(5m)
[New compound]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{dd}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.3,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,146.2,135.0,133.2,132.5,131.3,130.7,130.1,127.2,126.7,120.6,120.4$, 114.4; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrN}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$ 323.9736, Found 323.9743 .

(1H-benzo[d][1,2,3]triazol-1-yl)(2-methoxyphenyl)methanone
(5n) [New compound]. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (ddd, $J=8.2,7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,157.8,146.0,133.5,131.4,130.3,130.2$, 126.1, 122.7, 120.5, 120.1, 114.4, 111.7, 55.8; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}_{2}$ [M+Na] 276.0738, Found 276.0743.

(4-bromophenyl)(1H-indazol-1-yl)methanone (50) [New compound]. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.76$ $(\mathrm{m}, 1 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.3, 140.6, 140.1, 132.6, 132.1, 131.3, 129.7, 127.3, 126.1, 125.0, 121.0, 115.9; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN} \mathrm{N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}] 322.9789$, Found 322.9790

2,2,6,6-tetramethylpiperidin-1-yl 3,4-dimethoxybenzoate (6). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 6$ H), 1.76-1.39 (m, 6 H), $1.22(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,152.7,148.6$, 123.0, 121.9, 112.1, 110.1, 60.1, 55.8, 55.77, 38.8, 31.8, 20.6, 16.8; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]$ 344.1825, Found 344.1832.

References:

(1) H. R. J. Yajnanarayana and W. G. Harry, J. Org. Chem. 1991, 56, 865.
(2) (a) R. K. Alam and P. Alfredo, J. Org. Chem. 1990, 65, 3679; (b) N. G. Gaylord and J. M. Naughton, J. Org. Chem. 1957, 22, 1022.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

${ }^{1} \mathrm{H}$ NMR of product 3a

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 b}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 c}$
${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 d}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 d}$

3 e

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 f}$

${ }^{1}$ H NMR of product $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{3 j}$

$\stackrel{\rightharpoonup}{\sim}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ NMR of product 31

${ }^{13} \mathrm{C}$ NMR of product 31

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{5 a}$

5b

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{5 b}$
${ }^{13} \mathrm{C}$ NMR of product $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR of product $5 \mathbf{c}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ NMR of product $5 \mathbf{5}$

${ }^{13} \mathrm{C}$ NMR of product $5 \mathbf{5}$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{5 f}$

$5 f$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{5 f}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{5 g}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{5 h}$

内゙

$5 i$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{5 i}$

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{5 i}$

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{5 j}$

菕

${ }^{13} \mathrm{C}$ NMR of product $\mathbf{5 j}$

5m

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{5 m}$

${ }^{13} \mathrm{C}$ NMR of product 5 m

${ }^{1} \mathrm{H}$ NMR of product $\mathbf{5 n}$

${ }^{1} \mathrm{H}$ NMR of product $5 \mathbf{5}$

${ }^{1} \mathrm{H}$ NMR of product 6

-

Cosers)

${ }^{13} \mathrm{C}$ NMR of product 6

