Supporting Information

Efficient CO₂ Capture by a Task-Specific Porous Organic Polymer Bifunctionalized with Carbazole and Triazine Groups

Xiang Zhu,^{a,b} Shannon M. Mahurin,^b Shu-Hao An, ^a Chi-Linh Do-Thanh,^c Chengcheng Tian,^{a,b} Yankai Li, ^a Lance W. Gill,^b Edward W. Hagaman,^b Zijun Bian,^a Jian-Hai Zhou,^a Jun Hu,^a Honglai Liu,^a* and Sheng Dai^{b,c}*

^a State Key Laboratory of Chemical Engineering and Department of Chemistry,

Shanghai, 200237, China. E-mail: hlliu@ecust.edu.cn;

Tel: +86 21 6425 2921; Fax: (+86) 021-64252921

^b Chemical Science Division, Oak Ridge National Laboratory,

1 Bethel Valley Road, Oak Ridge, TN 37831, USA.

E-mail: dais@ornl.gov; Fax: +1 865 576 5235;

Tel: +1 865 576 7307

^c Department of Chemistry, The University of Tennessee, Knoxville, TN 37916-1600, USA.

East China University of Science and Technology,

Experimental Details

Methods

Solvents, reagents and chemicals were purchased form Aldrich and TCI America. All were used without any further purification. Thermogravimetry analyses (TGA) were performed under N₂ on a SII Nanotechnology TGA 2950, with a heating rate of 10 °C min⁻¹. ¹³C NMR measurements were performed on a 9.4 T Bruker Avance spectrometer at a Larmor frequency of 100.6 MHz. Measurements were made with a 4 mm MAS probe spinning at 15 kHz. Chemical shifts were externally referenced to TMS ($\delta = 0$ ppm) using the methyl resonance of hexamethylbenzene (17.5 ppm relative to TMS). The X-ray powder diffraction (XRD) data was collected on a PANalytical Empyrean diffractometer. Nitrogen adsorption isotherms were measured at -196 °C using Micromeritics ASAP 2020 static volumetric analyzer. Before adsorption measurements the polymer was degassed at 120 °C. The Brunauer-Emmett-Teller surface area was calculated within the relative pressure range 0.01 to 0.1. Total volume was calculated at *p*/*p*₀=0.99. FT-IR data were obtained using a Bio-Rad Excalibur FTS-3000 spectrometer. Elemental analysis was determined using a Vario EL III Elemental Analyzer (Elementar, Germany).

Synthesis

Carbazole derived task-sepcific polymer (TSP-1): To a solution of carbazole (M1, 20 mmol) and FDA (40 mmol) in anhydrous 1, 2-dichloroethane (DCE, 20ml), anhydrous ferric chloride (FeCl₃, 40 mmol) was added under nitrogen atmosphere. The mixture was heated at 80 °C for 24h. The crude polymer was collected and thoroughly washed by *Soxhlet* extraction with methanol for 24 h. The product was then dried at 120 °C under vacuum to give TSP-1 (yield 90%) as a brown solid.

Triazine and carbazole bifunctionalized task-sepcific polymer (TSP-2): Triazinecontaining monomer 2,4,6-Tricarbazolo-1,3,5-triazine (M1, 2.5 mmol) and FDA (15 mmol) were dispersed in anhydrous 1, 2-dichloroethane (DCE, 10ml) for 10 minutes. Anhydrous ferric chloride (FeCl₃, 15 mmol) was then added under nitrogen atmosphere. The mixture was heated at 80°C for 24h. The brown crude polymer was collected and thoroughly washed by *Soxhlet* extraction with methanol and chlorobenzene for 24 h, respectively, to remove unreacted monomers. The solid was then dried at 120 °C under vacuum to give TSP-2 (yield 60%).

CO₂/N₂ Uptake

The gas adsorption isotherms of TSPs were measured using a Micromeritics ASAP 2020 static volumetric analyzer at the setting temperature. Prior to each adsorption experiment, the samples were degassed for 12 h at 120 °C ensuring that the residual pressure fell below $5*10^{-3}$ mbar and then cooled down to the target temperatures, followed by introduction of a single component gas (CO₂ or N₂) into the system.¹

Heat of CO₂ Adsorption Calculation²

The isosteric heat of adsorption values were calculated using the Clausius-Clapeyron equation:

$$\ln\left(\frac{P_1}{P_2}\right) = \Delta H_{ads} \times \frac{T_2 - T_1}{R \times T_1 \times T_2}$$

where P_i is pressure for isotherm *i*, T_i is temperature for isotherm *i*, *R* is 8.315 J K⁻¹ mol⁻¹; which was used to calculate isosteric heat of adsorption (ΔH_{ads}) of a gas as a function of the quantity of gas adsorbed. Pressure as a function of the amount of CO₂ adsorbed was determined by the Toth model for the isotherms.

$$Q = \frac{Q_m \times B^{\binom{t}{t}} P_1}{\left(1 + B \times P\right)^{\frac{t}{t}}}$$

where Q=moles adsorbed, Q_m =moles adsorbed at saturation, P=pressure; B and t=constants; which can be used to calculate the pressure P.

The Ideal Adsorption Solution Theory (IAST) calculations^{1,3}

The pure component isotherms of CO_2 measured at 273 and 298 K were fitted with the single-site Langmuir model:

$$q_i = q_{i,sat} \times \frac{b_i p_i}{1 + b_i p_i}$$

Where, b_i is is parameter in the pure component Langmuir isotherm (Pa⁻¹), p_i is bulk gas phase pressure of species i (Pa), p_t is total bulk gas phase pressure of mixture (Pa), q_i is molar loading of species i (mol kg⁻¹), $q_{i,sat}$ is saturation capacity of species i (mol kg⁻¹). Pure-component isotherm fitting parameters were then used for calculating Ideal Adsorbed Solution Theory (IAST) binary-gas adsorption selectivities, S_{ads} , defined as:

$$S_{ads} = \frac{q_1 / q_2}{p_1 / p_2}$$

The IAST calculations were carried out for binary mixture containing 15% CO₂ and 85% N₂, which is typical of flue gases.

Figures

Fig. S1 Solid state ¹³CNMR of carbazole based TSPs.

Fig. S2 FTIR spectra of carbazole based TSPs.

Fig. S3 Thermogravimetric analysis for TSPs (measured under N₂).

Fig. S4 X-ray powder diffraction patterns of TSPs and 2, 4, 6-Tricarbazolo-1, 3, 5-triazine (M2).

Fig. S5 A: CO_2 adsorption curves of TSP-2 at 273K, 283K and 298K; B: Heat of adsorption for TSP-2 calculated by Clausius-Clapeyron equation when the CO_2 uptake of TSP-2 is 0.5 mmol g⁻¹ (22 mg g⁻¹).

Fig. S6 The selectivity of TSPs for CO_2 over N_2 isotherms obtained from the initial slope method

МОР	SA_{BET} (m ² g ⁻¹)	CO ₂ uptake (mmol g ⁻¹)	T (K)	Selectivity (obtained from the initial slope method)	Q _{st} (kJ mol ⁻¹)	Ref.
TSP-2	913.0	4.1	273	38	30.2	This
		2.6	298	24	50.2	work
TB-MOP	694	4.05	273	45.2	20.5	2
		2.57	298	50.6	29.5	
FCTF-1- 600	1535	5.53	273		20	4
		3.41	298		30	
CMP-1- (OH) ₂	1043	1.80	273		27.6	5
		1.07	298		27.0	
BILP-4	1135	5.34	273	79	28.7	6
		3.59	298	32		
PECONF-3	851	3.49	273	77	26	7
		2.47	298	41	20	
CPOP-1	2220	4.82	273	25	27	8
azo-COP-2	729	2.56	273	109.6	24.8	9
		1.53	298	130.6		
Py-1	437	2.70	273	117	36	10
ALP-1	1235	5.37	273	35	29.2	3
PPN-6- SO ₃ H	1254	3.6	295		30.4	1

Table S1 Summary of surface area, CO_2 uptake, selectivity (CO_2/N_2) (at 273 and 298 K) and isosteric heat (Q_{st}) in selected POPs (with excellent reported results).

PPN-6- SO ₃ Li	1186	3.7	295	35.7	1
PPN-6- CH ₂ DETA	555	4.3	295	56	11
PPN-6- SO ₃ NH ₄	593	1.7 (15% CO ₂)	295	40	12

References

- W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna and H.-C. Zhou, *J. Am. Chem. Soc.*, 2011, **133**, 18126.
- X. Zhu, C.-L. Do-Thanh, C. R. Murdock, K. M. Nelson, C. Tian, S. Brown, S. M. Mahurin, D. M. Jenkins, J. Hu, B. Zhao, H. Liu and S. Dai, *ACS Macro Lett.*, 2013, 2, 660.
- 3 P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. İslamoğlu and H. M. El-Kaderi, *Chem. Mater.*, 2014, 26, 1385.
- Y. Zhao, K. X. Yao, B. Teng, T. Zhang and Y. Han, *Energy Environ. Sci.*, 2013, 6, 3684.
- 5 R. Dawson, D. J. Adams and A. I. Cooper, *Chem. Sci.*, 2011, **2**, 1173.
- 6 M. G. Rabbani and H. M. El-Kaderi, *Chem. Mater.*, 2012, 24, 1511.
- 7 P. Mohanty, L. D. Kull and K. Landskron, *Nat. Commun.*, 2011, **2**, 401.
- Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan and
 B.-H. Han, *J. Am. Chem. Soc.*, 2012, 134, 6084.
- 9 H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz and A. Coskun, *Nat. Commun.*, 2013, 4, 1357.
- 10 Y. Luo, B. Li, W. Wang, K. Wu and B. Tan, Adv. Mater., 2012, 24, 5703.
- W. Lu, J. P. Sculley, D. Yuan, R. Krishna, Z. Wei and H.-C. Zhou, *Angew. Chem.Int. Ed.*, 2012, **51**, 7480.
- 12 W. Lu, W. M. Verdegaal, J. Yu, P. B. Balbuena, H.-K. Jeong and H.-C. Zhou, *Energy Environ. Sci.*, 2013, 6, 3559.