Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Silylium Ion-promoted Dehydrogenative Cyclization: Synthesis of Silicon-containing Compounds Derived from Alkynes

Contents

Preparation of compounds 4-6.	
Table S1Crystallographic data for 4ab and 4ae .	S8
Fig. S1 Crystal structure of 4ae , showing 50% probability thermal ellipsoids.	S9
Fig. S2-15 1 H and 13 C NMR spectra of 4-6 .	···S10-23

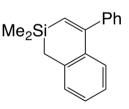
General Procedure. All the reagents were of the highest grade available and were used $(1a)^{1}$ Benzyldimethylsilane without further purification. and tritvl tetrakis(pentafluorophenyl)borate² were synthesized according to the previously reported method. Benzyldiisopropylsilane (1b) was prepared by the same method as 1a except for use of chlorodiisopropylsilane as a starting material. The NMR spectral measurements were performed on a Varian 400-MR NMR spectrometers. The ¹H and ¹³C chemical shifts are reported relative to the residual protonated solvent and the solvent, respectively, according to the literature.³ High-resolution mass spectroscopy was measured by a JEOL GCMATE II corrected by perfluorokerosene. Elemental analysis was performed on a Thermo Scientific FLASH 2000 corrected by acetoanilide. Gel permeation column chromatography (GPC) was performed by a Japan Analytical Industry LC-918 using chloroform as an eluent.

Preparation of Compounds.

Stoichiometric Cyclization

Method A. To a hydrosilane (0.20 mmol), an alkyne (0.30 mmol) and a base (0.30 mmol) in benzene (3 mL) was slowly added а benzene solution (5 mL) of trityl tetrakis(pentafluorophenyl)borate (203 mg, 0.22 mmol) at room temperature under Ar atmosphere, and the resulting solution was stirred for 15 min for 1a or 30 min for 1b. The reaction was quenched by 1 M HCl (or water in the cases of trimethylsilylacetylene), and then the organic layer was extracted. After extraction by hexane, the organic layers were combined and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure to remove volatiles, and the residue was purified by silica gel column (eluent: hexane). Further purification was carried out by GPLC to obtain each of products.

Method B. To trityl tetrakis(pentafluorophenyl)borate (203 mg, 0.22 mmol), an alkyne (0.60 mmol) and a base (0.30 mmol) in benzene (5 mL) was slowly added a benzene solution (2 mL) of a hydrosilane (0.20 mmol) at room temperature under Ar atmosphere, and the resulting solution was


stirred for 15 min for **1a** or 30 min for **1b**. The following work-up was done according to Method A.

Catalytic Cyclization. To trityl tetrakis(pentafluoro-phenyl)borate (3.7 mg, 4.0 μ mol) in benzene- d_6 (0.2 mL) was added a benzene- d_6 solution of hydrosilane **1a** or **1b** (0.22 mmol) and 1-hexyne (**3c**) (0.20 mmol) at room temperature under Ar atmosphere for 30 min for **1a** and for 90 min for **1b** monitored by ¹H NMR. The reaction was quenched by 2,6-lutidine (5 μ L), and then all volatiles were removed under reduced pressure. Purification was achieved by GPLC to afford the sila-cyclic products **5ac** and **5bc** in 33% and 50% isolated yields, respectively.

3-Trimethylsilyl-2,2-dimethyl-1,2-dihydro-2-silanaphthalene (4aa). 4aa was obtained as a colorless oil from the reaction using **1a** and trimethylsilylacetylene (**3a**) in 73% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.41 (s, 1H, C=CH–Ar), 7.2-7.1 (m, 4H, Ph), 2.06 (s, 2H, SiCH₂), 0.17 (s, 9H, SiMe₃), 0.13 (s, 6H, SiMe₂). ¹³C NMR (CDCl₃, 100 MHz): δ 153.0, 140.3, 136.3, 136.0, 131.7,

130.8, 127.6, 125.6, 19.6, -0.44, -1.7. HRMS: Calcd for C₁₄H₂₂Si₂ (M), 246.1260; Found, 246.1220.

2,2-Dimethyl-4-phenyl-1,2-dihydro-2-silanaphthalene (4ab). 4ab was obtained as a white solid from the reaction using 1a and phenylacetylene
(3b) in 34% yield

4ab: Mp: 77-78 °C. ¹H NMR (CDCl₃, 400 MHz): 8 7.4-7.3 (m, 5H, Ph),

7.20 (d, 1H, *J* = 7.2 Hz, ArH), 7.11 (dt, 1H, *J* = 7.2 Hz, *J* = 1.6 Hz, ArH), 7.02 (t, 1H, *J* = 7.2 Hz, ArH), 6.97 (dd, 1H, *J* = 7.6 Hz, *J* = 1.2 Hz, ArH), 6.10 (s, 1H, Si–CH=C), 2.19 (s, 2H, SiCH₂), 0.14 (s, 6H, SiMe₂). ¹³C NMR (CDCl₃, 100 MHz): δ 156.8, 145.1, 137.5, 137.4, 131.2, 129.4, 128.2, 128.0 (overlapped two signals), 127.3, 127.1, 125.0, 21.4, -3.7. HRMS: Calcd for C₁₇H₁₈Si (M),

250.1178; Found, 250.1179. Anal. Calcd for **4ab** (C₁₇H₁₈Si): C, 81.54; H, 7.25. Found: C, 81.75; H, 7.49.

4-n-Butyl-2,2-dimethyl-1,2-dihydro-2-silanaphthalene (4ac): 4ac was

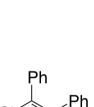
obtained as a colorless oil from the reaction using **1a** and 1-hexyne (**3c**) in 33% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, 1H, *J* = 7.6 Hz,

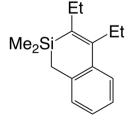
ArH), 7.2-7.0 (m, 3H, ArH), 5.86 (s, 1H, Si–CH=C), 2.60 (t, 2H, J = 7.6

Hz, $CH_2(CH_2)CH_3$), 2.05 (s, 2H, SiCH₂), 1.6-1.3 (m, 4H, $CH_2(CH_2)_2CH_3$), 0.92 (t, 3H, J = 7.6 Hz, $(CH_2)_3CH_3$), 0.064 (s, 6H, SiMe₂). ¹³C NMR (CDCl₃, 100 MHz): δ 155.2, 137.3, 137.1, 131.5, 126.8, 125.7, 125.2, 124.2, 38.3, 30.8, 22.6, 21.7, 14.0, -3.5. HRMS: Calcd for C₁₅H₂₂Si (M), 230.1491; Found, 230.1475.

2,2-Dimethyl-3,4-diphenyl-1,2-dihydro-2-silanaphthalene (4ae): 4ae

was obtained as a white solid from the reaction using **1a** and diphenylacetylene (**3e**) in 77% yield. Mp: 128-130 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, 1H, J = 7.2 Hz, ArH), 7.15-7.05 (m, 6H, ArH),

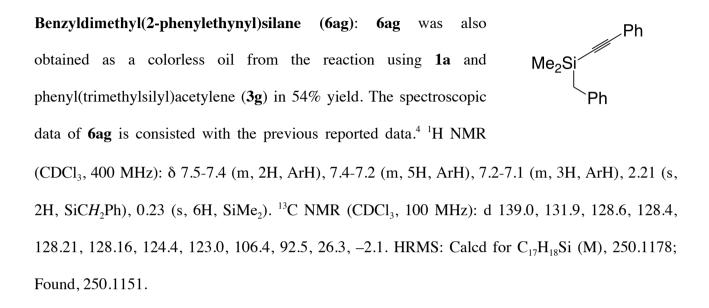

7.0-6.9 (m, 4H, ArH), 6.8-6.7 (m, 3H, ArH), 2.30 (s, 2H, SiCH₂), 0.71 (s,


6H, SiMe₂). ¹³C NMR (CDCl₃, 100 MHz): δ 150.3, 143.0, 141.8, 140.5, 138.9, 136.3, 131.0, 130.6, 130.1, 128.0, 127.6, 127.5, 127.0, 126.1, 125.1, 124.7, 21.3, -3.7. HRMS: Calcd for C₂₃H₂₂Si (M), 236.1491; Found, 236.1525. Anal. Calcd for **4ae** (C₂₃H₂₂Si): C, 84.61; H, 6.79. Found: C, 84.64; H, 6.52.

3,4-Diethyl-2,2-dimethyl-1,2-dihydro-2-silanaphthalene (4af): 4af

was obtained as a colorless oil from the reaction using **1a** and 3-hexyne (**3f**) in 34% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, 1H, J = 7.6 Hz, ArH), 7.15-7.05 (m, 2H, ArH), 7.04 (m, 1H, J = 7.6

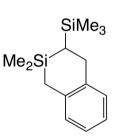
Hz, ArH), 2.66 (q, 2H, J = 7.6 Hz, CH₂CH₃), 2.39 (q, 2H, J = 7.6 Hz, CH₂CH₃), 2.01 (s, 2H, SiCH₂),



₽Bu

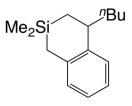
Me₂Si

Me₂S


1.09 (t, 3H, J = 7.6 Hz, CH_2CH_3), 1.03 (t, 3H, J = 7.6 Hz, CH_2CH_3), 0.06 (s, 6H, SiMe₂). ¹³C NMR (CDCl₃, 100 MHz): δ 148.3, 138.2, 137.8, 136.5, 131.0, 125.84, 125.82, 125.2, 24.2, 22.9, 21.7, 14.9, 14.6, -4.0. HRMS: Calcd for C₁₅H₂₂Si (M), 230.1491; Found, 230.1496.

2,2-Dimethyl-3-trimethylsilyl-1,2,3,4-tetrahydro-2-silanaphthalene

(5aa): 5aa was obtained as a colorless oil from the reaction using 1a and trimethylsilylacetylene (3a) in 12% yield. ¹H NMR (CDCl₃, 400 MHz):


 δ 7.15-7.0 (m, 4H, ArH), 2.80 (dd, 1H, J = 13.6 Hz, J = 4.0 Hz,

CHC H_2 Ar), 2.59 (dd, 1H, J = 14.0 Hz, J = 11.6 Hz, CHC H_2 Ar), 2.02 (d, 1H, J = 14.4 Hz, SiC H_2 Ar), 1.88 (d, 1H, J = 14.4 Hz, SiC H_2 Ar), 0.17 (s, 3H, SiM e_2), 0.052 (s, 9H, SiM e_3), -0.036 (s, 3H, SiM e_2), -0.15 (dd, 1H, J = 11.6 Hz, J = 4.0 Hz, CHCH $_2$ Ar). ¹³C NMR (CDC l_3 , 100 MHz): δ 142.8, 138.2, 129.5, 127.4, 126.2, 124.7, 31.1, 21.6, 13.0, -0.57, -0.91, -1.3. HRMS: Calcd for C $_{14}H_{24}Si_2$ (M), 248.1417; Found, 248.1418.

4-*n*-Butyl-2,2-Dimethyl-1,2,3,4-tetrahydro-2-silanaphthalene (5ac):

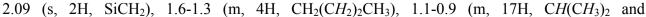
5ac was obtained as a colorless oil from the catalytic reaction using **1a** and **3c** in 33% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.15-7.05 (m, 4H, ArH), 2.8-2.7 (m, 1H, CH(ⁿBu)), 2.04 (d, 1H, J = 14.8 Hz, SiCH₂Ar),

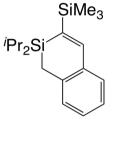
1.97 (d, 1H, J = 14.8 Hz, SiCH₂Ar), 1.9-1.8 (m, 1H, ^{*n*}Bu), 1.65-1.5 (m, 1H, ^{*n*}Bu), 1.5-1.2 (m, 4H, ^{*n*}Bu), 0.99 (dd, 1H, J = 14.0 Hz, J = 4.8 Hz, SiCH₂CH), 0.93 (t, 3H, J = 7.2 Hz, ^{*n*}Bu), 0.51 (dd, 1H, J = 14.4 Hz, J = 8.8 Hz, SiCH₂CH), 0.10 (s, 3H, SiMe₂), 0.001 (s, 3H, SiMe₂). ¹³C NMR (CDCl₃, 100 MHz): 8 144.3, 138.0, 130.2, 126.3, 125.9, 124.7, 40.0, 35.0, 30.4, 22.9, 20.8, 18.0, 14.1, -1.2, -1.6. HRMS: Calcd for C₁₅H₂₄Si (M), 232.1647; Found, 232.1621.

2,2-Diisopropyl-3-trimethylsilyl-1,2-dihydro-2-silanaphthalene

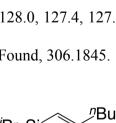
(4ba): 4ba was obtained as a colorless oil from the reaction using 1b and **3a** in 71% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.59 (s, 1H, C=CH-Ar), 7.2-7.1 (m, 4H, ArH), 2.09 (s, 2H, SiCH₂), 1.2-1.0 (m, 2H, CH(CH₃)₂),

0.98 (d, 6H, J = 7.6 Hz, CH(CH₃)₂), 0.94 (d, 6H, J = 6.8 Hz, CH(CH₃)₂),


0.22 (s, 6H, SiMe₂). ¹³C NMR (CDCl₃, 100 MHz): δ 156.7, 136.8, 136.6, 136.5, 131.6, 131.0, 127.8, 125.4, 18.9, 18.1, 12.3, 11.6, 0.38. HRMS: Calcd for C₁₈H₃₀Si₂ (M), 302.1886; Found, 302.1884.


2,2-Diisopropyl-4-phenyl-1,2-dihydro-2-silanaphthalene (4bb): 4bb

was obtained as a colorless oil from the reaction using 1b and 3b in 67% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.4-7.3 (m, 5H, ArH), 7.21 (d, 1H, J = 7.6 Hz, ArH), 7.10 (td, 1H, J = 7.6 Hz, J = 1.6 Hz, ArH), 6.94 (d, 1H,


J = 6.4 Hz, ArH), 6.08 (s, 1H, Si–CH=C), 2.23 (s, 2H, SiCH₂), 1.1-0.9 (m, 14H, CH(CH₃)₂). ¹³C NMR (CDCl₃, 100 MHz): δ 158.5, 145.5, 137.79, 137.75, 131.2, 129.5, 128.3, 128.0, 127.4, 127.1, 124.9, 124.6, 18.3, 18.2, 15.4, 11.1. HRMS: Calcd for C₂₁H₂₆Si (M), 306.1804; Found, 306.1845.

2,2-Diisopropyl-4-n-butyl-1,2-dihydro-2-silanaphthalene (4bc): 4bc was ′Pr₂S obtained as a colorless oil from the reaction using 1b with 3c in 66% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, 1H, J = 7.6 Hz, ArH), 7.2-7.0 (m, 3H, ArH), 5.85 (s, 1H, Si–CH=C), 2.66 (t, 2H, J = 7.6 Hz, CH_2 (CH₂)₂CH₃),

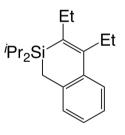
^{*i*}Pr₂Si

Ph

120.6, 38.6, 31.0, 22.5, 18.2, 18.1, 15.3, 14.0, 11.1. HRMS: Calcd for $C_{19}H_{30}Si$ (M), 286.2117; Found, 286.2112.

2,2-Diisopropyl-3,4-diphenyl-1,2-dihydro-2-silanaphthalene (4be):

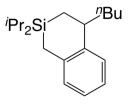
4be was obtained as a colorless oil from the reaction of **1b** and **3e** in 82% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.22 (d, 1H, J = 6.8 Hz, ArH),


7.2-7.0 (m, 6H, ArH), 7.0-6.9 (m, 4H, ArH), 6.84 (d, 2H, J = 7.2 Hz,

ⁱPr₂Si Ph

ArH), 6.70 (d, 1H, J = 7.6 Hz, ArH), 2.34 (s, 2H, SiCH₂), 1.1-1.0 (m, 2H, CH(CH₃)₂), 0.98 (d, 6H, J = 6.8 Hz, CH(CH₃)₂), 0.83 (d, 6H, J = 7.2 Hz, CH(CH₃)₂). ¹³C NMR (CDCl₃, 100 MHz): δ 152.6, 143.4, 142.0, 139.2, 138.7, 136.9, 130.70, 130.65, 130.1, 128.6, 127.5 (overlapped two signals), 127.2, 126.1, 125.0, 124.7, 18.4, 18.0, 14.7, 11.6. HRMS: Calcd for C₂₄H₂₃Si (M–^{*i*}Pr), 339.1569; Found, 339.1636.

3,4-Diethyl-2,2-diisopropyl-1,2-dihydro-2-silanaphthalene (4bf): 4bf


was obtained as a colorless oil from the reaction of **1b** and **3f** in 39% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.34 (d, 1H, *J* = 8.0 Hz, ArH), 7.15-7.1 (m, 2H, ArH), 7.02 (t, 1H, *J* = 7.6 Hz, ArH), 2.69 (q, 2H, *J* =

7.6 Hz, CH_2CH_3), 2.38 (q, 2H, J = 7.6 Hz, CH_2CH_3), 2.04 (s, 2H, SiCH₂), 1.1-1.0 (m, 8H, CH_2CH_3 and $CH(CH_3)_2$), 0.97 (d, 6H, J = 6.4 Hz, $CH(CH_3)_2$), 0.89 (d, 6H, J = 7.2 Hz, $CH(CH_3)_2$). ¹³C NMR (CDCl₃, 100 MHz): δ 151.2, 138.6, 136.9, 135.5, 130.8, 126.0, 125.8, 125.1, 24.3, 22.6, 18.7, 18.2, 15.1, 14.8, 14.5, 11.3. HRMS: Calcd for C₁₉H₃₀Si (M), 286.2117; Found, 286.2134.

4-*n*-Butyl-2,2-Dimethyl-1,2,3,4-tetrahydro-2-silanaphthalene (5bc):

5bc was obtained as a colorless oil from the catalytic reaction using **1b** and **3c** in 50% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.15-7.05 (m, 4H, ArH), 2.7-2.6 (m, 1H, CH(ⁿBu)), 2.05 (d, 1H, J = 14.8 Hz, SiCH₂Ar),

2.00 (d, 1H, J = 14.8 Hz, SiCH₂Ar), 1.95-1.85 (m, 1H, ^{*n*}Bu), 1.7-1.3 (m, 5H, ^{*n*}Bu and ^{*i*}Pr), 1.06 (dd, 1H, J = 14.8 Hz, J = 4.8 Hz, SiCH₂CH), 1.01 (brs, 7H, ^{*i*}Pr), 0.94 (t, 3H, J = 7.6 Hz, ^{*n*}Bu), 0.9-0.8 (m, 7H, ^{*i*}Pr), 0.37 (dd, 1H, J = 14.4 Hz, J = 10.0 Hz, SiCH₂CH). ¹³C NMR (CDCl₃, 100 MHz): δ 144.3, 138.6, 130.0, 125.9, 125.4, 124.6, 39.3, 35.3, 30.3, 23.0, 18.2, 18.14, 18.09, 17.9, 15.0, 14.2, 12.3, 11.8, 11.7. HRMS: Calcd for C₁₉H₃₂Si (M), 288.2273; Found, 288.2297.

X-ray Crystallography. Single crystals of **4ab** and **4ae** suitable for XRD analyses were obtained. Each crystal was mounted on a glass fiber, and the diffraction data was collected on a Bruker APEX II CCD detector using graphite monochromated Mo $K\alpha$ radiation at 123 K.

All the structures were solved by the combination of the direct method and Fourier techniques, and all the non-hydrogen atoms were anisotropically refined by full-matrix least-squares calculations. The atomic scattering factors and anomalous dispersion terms were obtained from the International Tables for X-ray Crystallography IV.⁵ The refinement of all structures was carried out by full-matrix least-squares method of SHELXL-97.⁶

- (1) J. W. Jenkins and H. W. Post, J. Org. Chem., 1950, 15, 552-555.
- (2) E. Ihara, V. G. Young, Jr. and R. F. Jordan, J. Am. Chem. Soc., 1998, 120, 8277-8278.
- (3) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176-2179.
- (4) Y. Nishihara, D. Saito, K. Tanemura, S. Noyori and K. Takagi, Org. Lett., 2009, 11, 3546-3549.
- (5) J. A. Ibers and W. C. Hamilton, *International Tables for X-ray Crystallography*, Kynoch Press: Birmingham, U. K., **1974**; Vol. IV.
- (6) G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112-122.

	4ab	4ae
formula	$C_{34}H_{36}Si_2$	$C_{22}H_{20}Si$
fw	500.81	312.47
crystal cystem	triclinic	monoclinic
space group	<i>P</i> -1 (#2)	$P2_1/n$ (#14)
<i>a</i> , Å	9.8603(13)	9.7459(10)
b, Å	10.5873(14)	10.4452(11)
<i>c</i> , Å	14.4723(19)	18.2147(19)
α , deg	72.748(2)	90
β , deg	86.325(2)	99.690(1)
γ, deg	84.298(2)	90
<i>V</i> , Å ³	1434.8(3)	1827.8(3)
Ζ	2	4
$\rho_{calcd}, g \ cm^{-3}$	1.159	1.136
$\mu(Mo \ K\alpha), mm^{-1}$	0.144	0.126
total no. of data	8189	10169
no. of unique data (R_{int})	6222 (0.0171)	4132 (0.0174)
no. of params	329	219
$R1^a$	0.0449	0.0349
wR2 (all data) ^b	0.0863	0.0764

Table S1.Crystallographic data for **4ab** and **4ae**

 $\overline{{}^{a} I > 2.00\sigma(I). R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|}. \quad {}^{b} wR2 = \{\Sigma(w(|F_{o}| - |F_{c}|)^{2}) / \Sigma wF_{o}^{2}\}^{1/2}.$

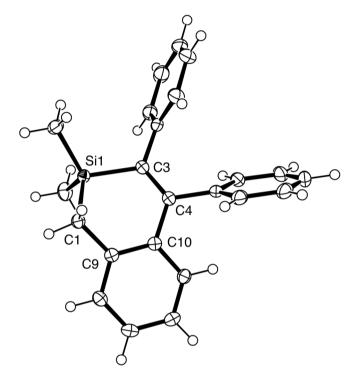


Fig. S1 Crystal structures of 4ae, showing 50% probability thermal ellipsoids.

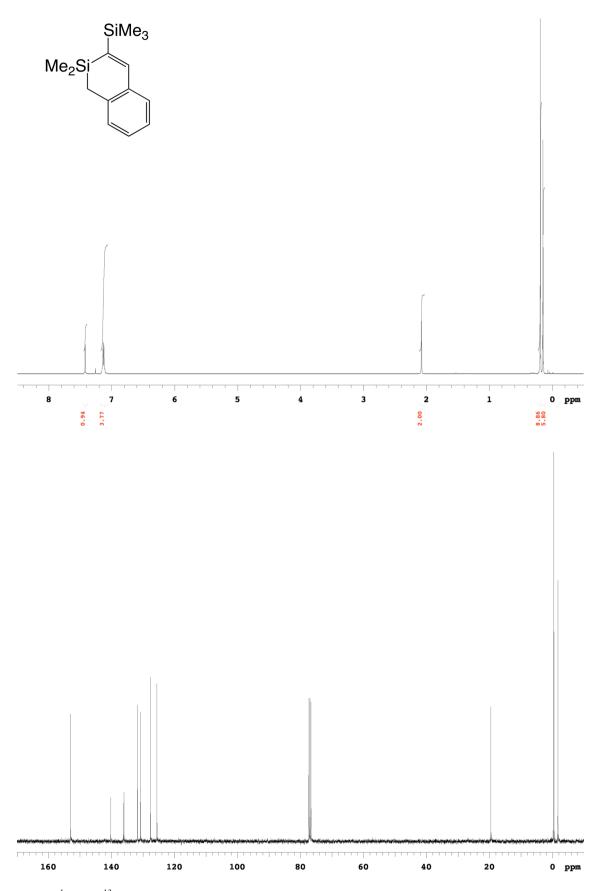


Fig. S2 1 H and 13 C NMR spectra of 4aa.

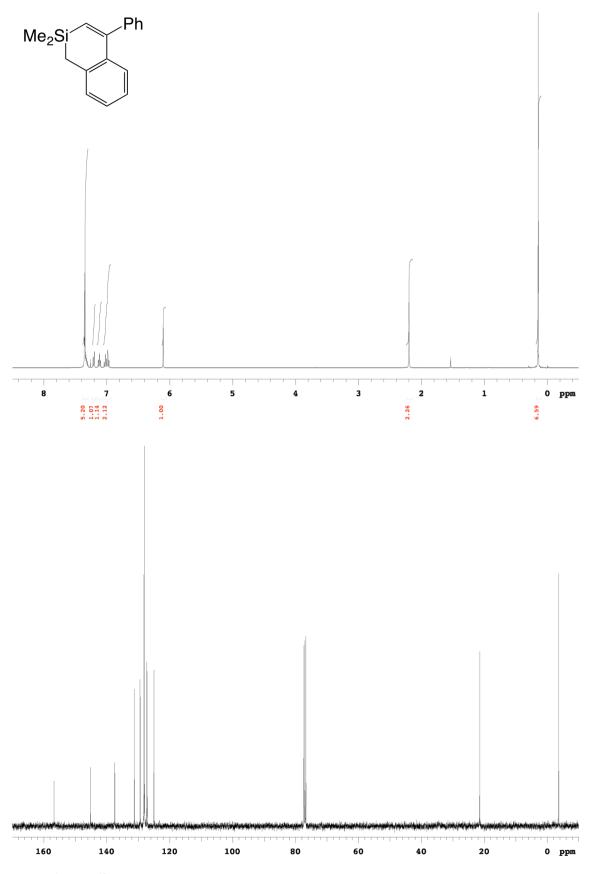
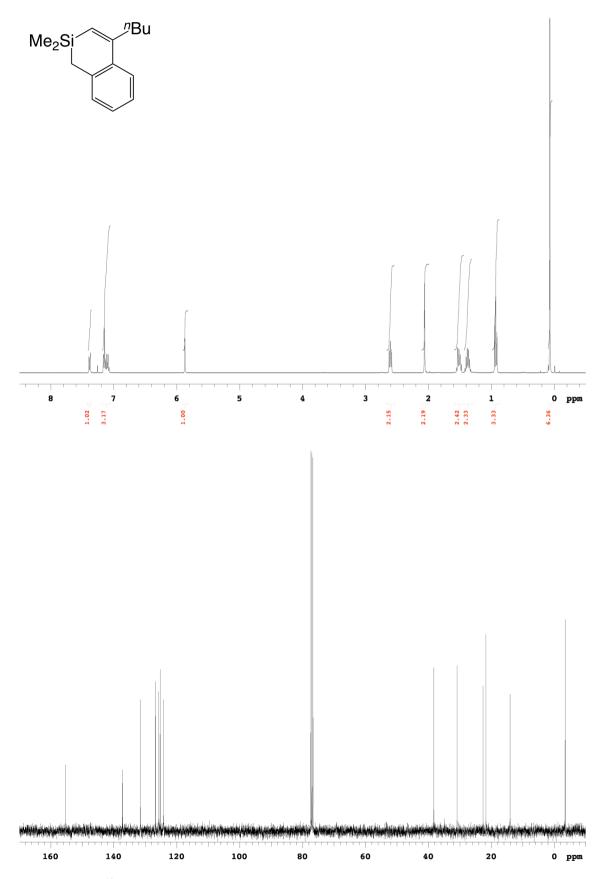



Fig. S3 1 H and 13 C NMR spectra of 4ab.

Fig. S4 1 H and 13 C NMR spectra of **4ac**.

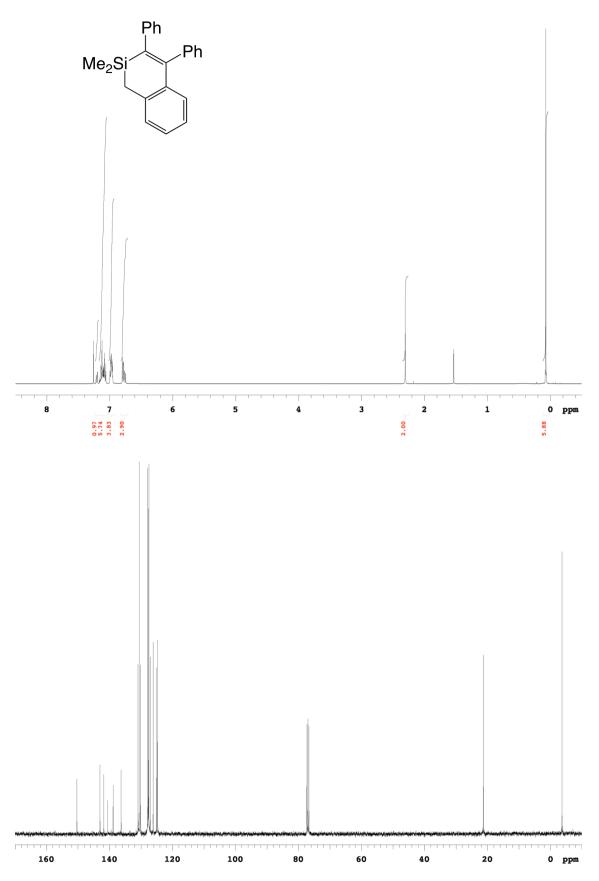


Fig. S5 1 H and 13 C NMR spectra of 4ae.

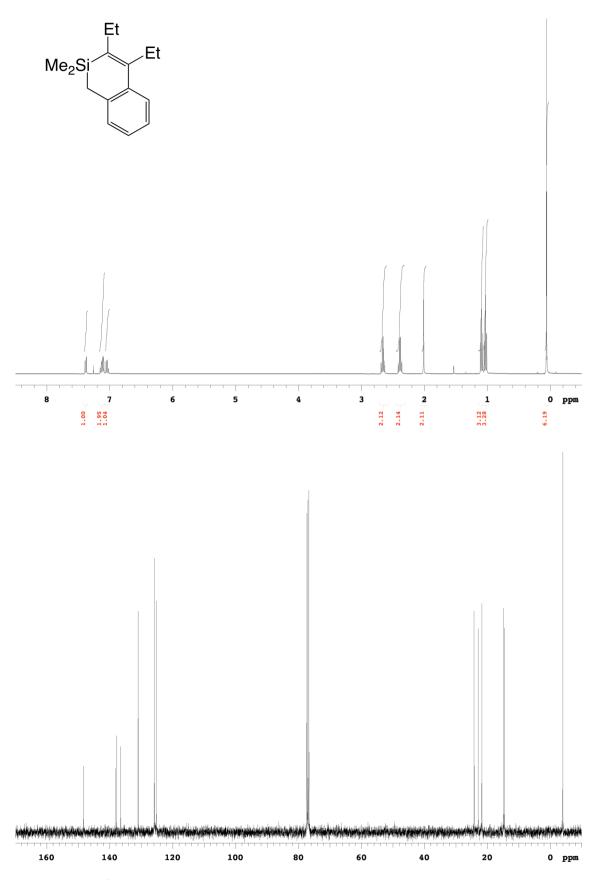
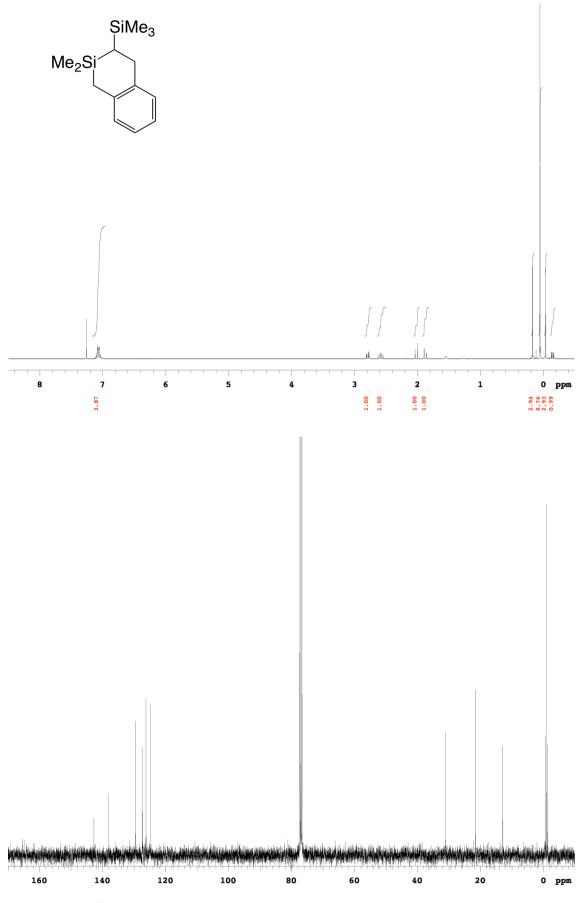
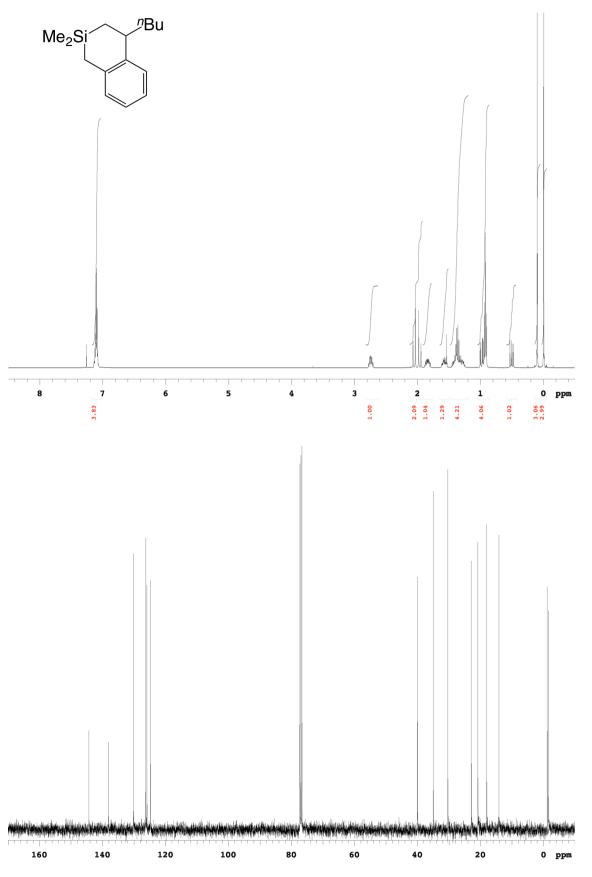
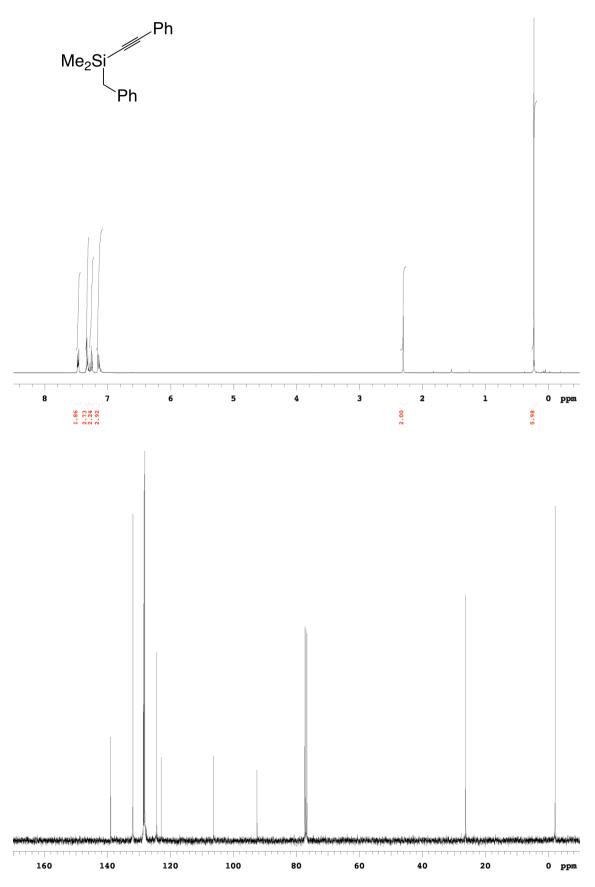
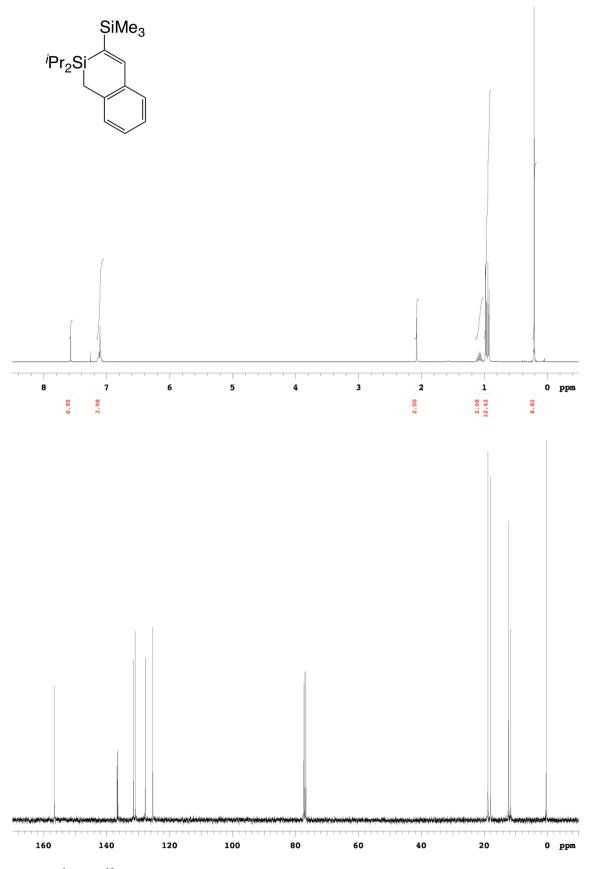
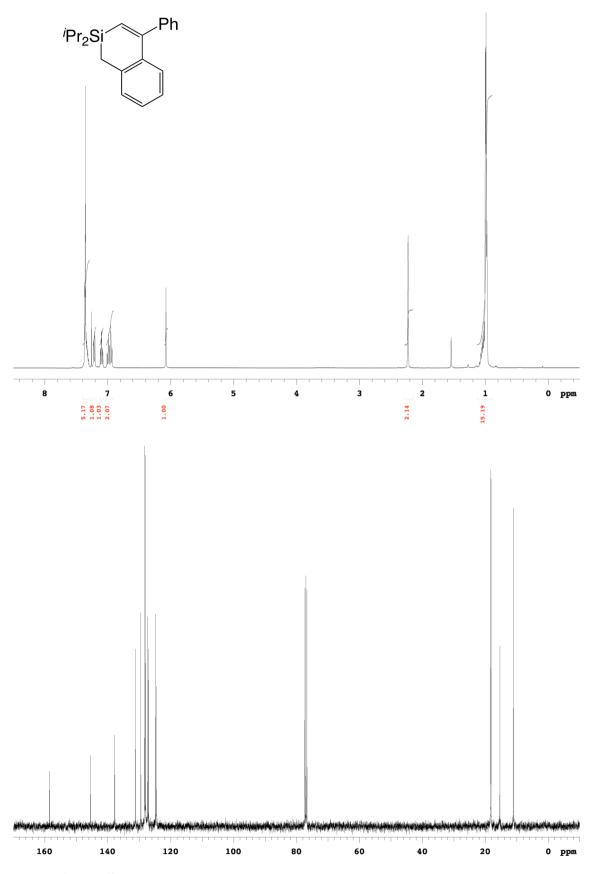



Fig. S6 ¹H and ¹³C NMR spectra of 4af.

Fig. S7 ¹H and ¹³C NMR spectra of **5aa**.


Fig. S8 1 H and 13 C NMR spectra of **5ac**.

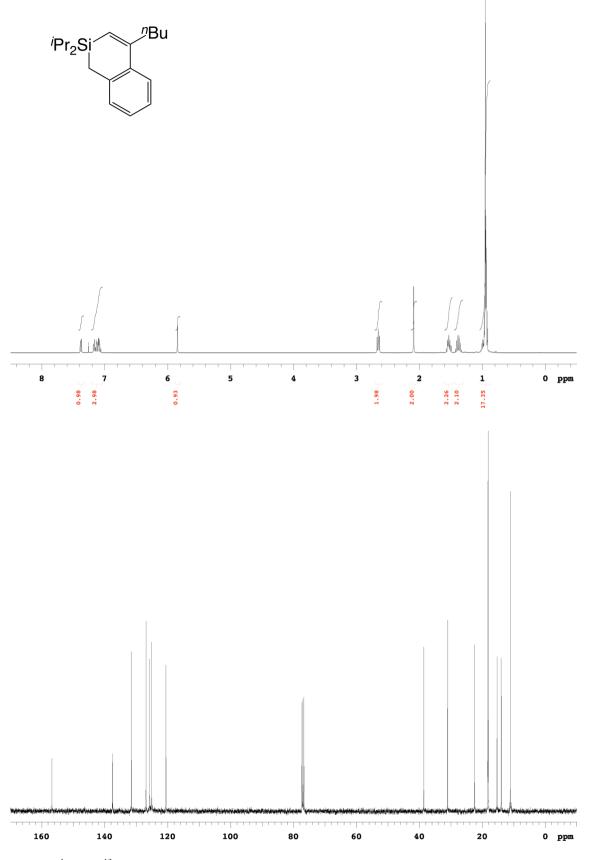

Fig. S9 1 H and 13 C NMR spectra of **6ag**.

Fig. S10 1 H and 13 C NMR spectra of **4ba**.

Fig. S11 1 H and 13 C NMR spectra of **4bb**.

Fig. S12 1 H and 13 C NMR spectra of **4bc**.

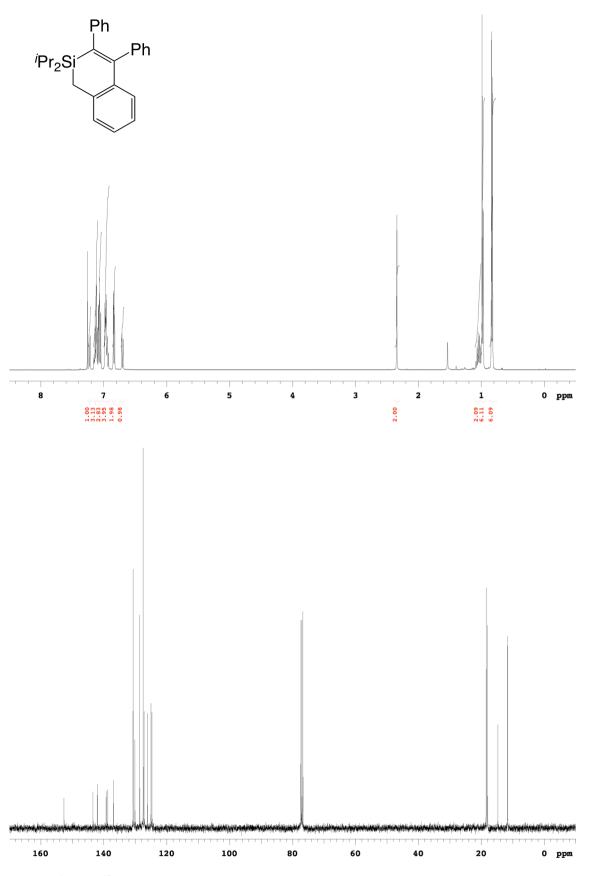


Fig. S13 1 H and 13 C NMR spectra of 4be.

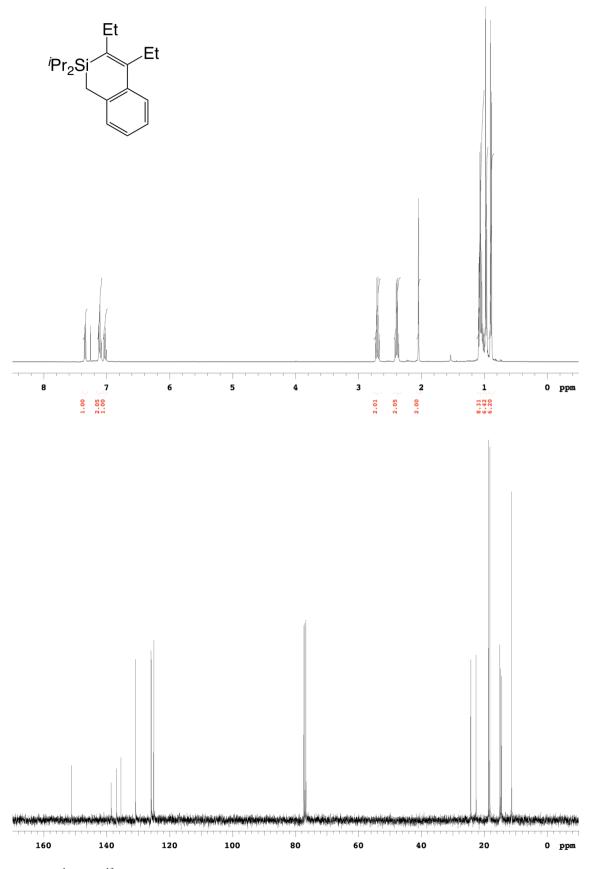
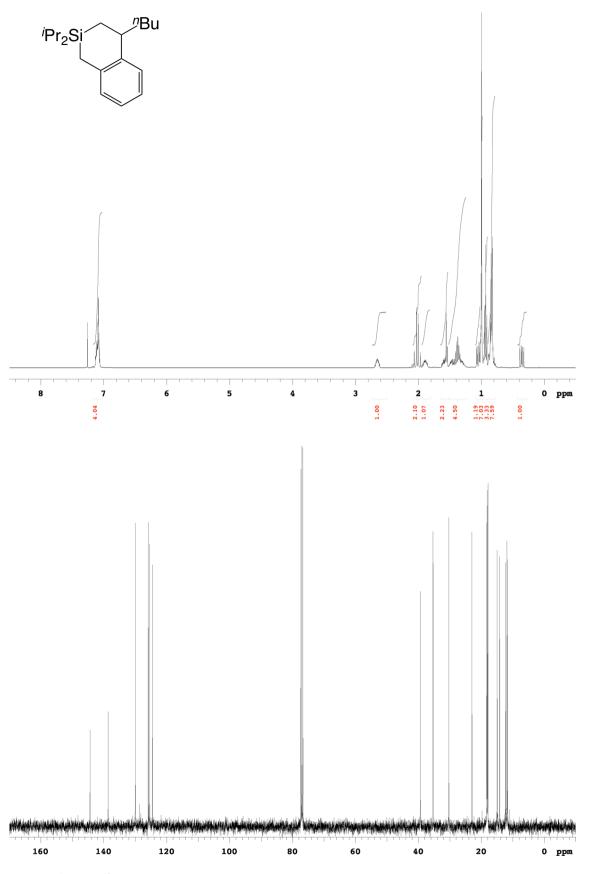



Fig. S14 ¹H and ¹³C NMR spectra of 4bf.

Fig. S15 1 H and 13 C NMR spectra of **5bc**.