Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Enantioselective intramolecular propargylic amination

using chiral copper-pybox catalyst

Masashi Shibata, Kazunari Nakajima, and Yoshiaki Nishibayashi*

Institute of Engineering Innovation, School of Engineering, The University of Tokyo,

Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

List of Contents of Supporting Information

1. General Methods	Page S2
2. General Procedure for the Preparation of Propargylic Acetates	Page S3
3. Spectroscopic Data of Other Propargylic Acetates	Page S5
4. Enantioselective Intramolecular Propargylic Amination of Propargylic Acetates	Page S8
5. Spectroscopic Data and Isolated Yields of Other Products	Page S9
6. Preparation of 1,1'-(1,2-phenylene)-bis(prop-2-yne-1,1-diyl) Diacetate (3).	Page S12
7. Double Propargylic Amination of Propargylic Diacetate with Amines	Page S13
8. Spectroscopic Data and Isolated Yield of Other Product	Page S14
9. X-ray Diffraction Study of 2d	Page S15
10. References and Notes	Page S18
11. ¹ H and ¹³ C NMR Spectra	Page S20
12. Charts of Propargylic Aminated Products by HPLC Analysis	Page S34

General Methods.

¹H NMR (270 MHz) and ¹³C NMR (67.8 MHz) spectra were measured on a JEOL Excalibur 270 spectrometer using CDCl₃ as solvent. HPLC analyses were performed on Hitachi L-7100 and GL-7410 apparatuses equipped with a UV detector using 25 cm x 4.6 mm DAICEL Chiralpak AD, IA columns. Elemental analyses were performed at Microanalytical Center of The University of Tokyo. Mass spectra were measured on a JEOL JMS-700 mass spectrometer. Specific rotations were measured on a JASCO DIP-1000 polarimeter.

All reactions were carried out under a dry nitrogen atmosphere. Solvents were dried by the usual methods, then distilled under N₂ and degassed before use. Optically pure diphosphines L1-L3, pybox ligands L5, L9, CuOTf \cdot 1/2C₆H₆, aniline, and *N*,*N*'diphenylethylenediamine are commercially available reagents. Optically pure pybox ligands L4,^{S1} L6,^{S2} L7,^{S3} L8,^{S2} L10,^{S3} bis(oxazoline) ligand L11,^{S4} and propargylic acetate 3^{S5} were prepared according to literature procedures.

General Procedure for the Preparation of Propargylic Acetates.

Scheme S1. Preparation of Propargylic Acetate 1a

experimental А typical procedure for the preparation of 1-(2-((phenylamino)methyl)phenyl)prop-2-yn-1-yl acetate (1a) is described below. In a 50 mL Schlenk flask were placed 2-bromobenzaldehyde (3.80 g, 20.5 mmol) and anhydrous MeOH Trimethyl orthoformate (8.75 mL, 80 mmol) and TsOH· H₂O (37.6 mg, (20 mL) under N₂. 0.20 mmol) were added to the solution and the mixture was stirred at room temperature for 2 h. The resulting mixture was passed through a short silicagel pad to give 1-bromo-2-(dimethoxymethyl)benzene as a colorless oil (4.54 g, 19.6 mmol, 96% isolated yield).

To a solution of 1-bromo-2-(dimethoxymethyl)benzene (4.54 g, 19.6 mmol) in anhydrous THF (60 mL) was added "BuLi (1.65 M in hexane, 18.0 mL, 29.7 mmol) at -78 °C and the mixture was stirred for 30 min. DMF (3.1 mL, 40.0 mmol) was added to the solution and the mixture was stirred at -78 °C for 30 min. The solution was allowed to warm to room temperature and stirred for another 1 h. After the reaction mixture was quenched by addition of saturated NaHCO₃ aq., the solution was extracted with hexane (20 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄ and The residue was purified by column chromatography concentrated under reduced pressure. with hexane/ethyl (triethylamine-pretreated SiO₂) acetate (90/10)to give 2-(dimethoxymethyl)benzaldehyde as a colorless oil (3.07 g, 17.0 mmol, 87% isolated yield).

To a solution of 2-(dimethoxymethyl)benzaldehyde (1.46 g, 8.09 mmol) in anhydrous THF (45 mL) was added ethynylmagnesium bromide (0.5 M in THF, 24 mL, 12 mmol) at 0 °C and the mixture was stirred for 40 min. Acetic anhydride (1.50 mL, 15.9 mmol) was added to the solution and the mixture was allowed to warm to room temperature. After stirring for 1 h, the mixture was acidified by addition of 1N HCl aq. (30 mL) and stirred for 3 h. The solution was extracted with ethyl acetate (15 mL x 3). The combined organic layers were washed with brine and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (SiO₂) with hexane/ethyl acetate (85/15) to give 1-(2-formylphenyl)prop-2-yn-1-yl acetate^{S6} as a pale yellow oil (1.37 g, 6.7 mmol, 84% isolated yield).

In a 20 mL Schlenk flask were placed 1-(2-formylphenyl)prop-2-yn-1-yl acetate (208 mg, 1.03 mmol), aniline (0.19 mL, 2.1 mmol), and anhydrous dichloroethane (4 mL) under N₂. To the solution was added acetic acid (6 µL, 0.1 mmol) at room temperature and the mixture Sodium triacetoxyborohydride (283.7 mg, 1.34 mmol) was added to the was stirred for 1 h. solution and the mixture was stirred for 4 h. After the reaction mixture was quenched by addition of saturated NaHCO₃ aq., the solution was extracted with dichloromethane (5 mL x The combined organic layers were dried over anhydrous MgSO4 and concentrated 3). under reduced pressure. The residue was purified by column chromatography (SiO₂) with hexane/ethyl acetate (85/15) to give 1-(2-((phenylamino)methyl)phenyl)prop-2-yn-1-yl acetate (1a) as a brown oil (244.6 mg, 0.876 mmol, 85% isolated yield). ¹H NMR δ 7.67-7.63 (m, 1H), 7.46-7.43 (m, 1H), 7.36-7.33 (m, 2H), 7.21-7.15 (m, 2H), 6.76-6.70 (m, 1H), 6.66-6.63 (m, 3H), 4.50 (d, J = 14.0 Hz, 1H), 4.43 (d, J = 14.0 Hz, 1H), 4.09 (br, 1H), 2.65 (d, J = 2.2Hz, 1H), 2.09 (s, 3H). ¹³C NMR δ 169.5, 147.9, 136.9, 135.0, 129.4, 129.3, 129.2, 128.3, 128.0, 117.8, 112.9, 80.2, 75.6, 63.0, 45.7, 20.9. HRMS (EI) Calcd. for C₁₈H₁₇NO₂ [M]: 279.1259. Found: 279.1249.

Spectroscopic Data of Other Propargylic Acetates

1-(2-(((4-methylphenyl)amino)methyl)phenyl)prop-2-yn-1-yl acetate (**1b**): A brown oil. ¹H NMR δ 7.74-7.70 (m, 1H), 7.51-7.48 (m, 1H), 7.42-7.35 (m, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 6.73 (d, *J* = 2.4 Hz, 1H), 6.62 (d, *J* = 8.1 Hz, 2H), 4.53 (d, *J* = 14.2 Hz, 1H), 4.46 (d, *J* = 14.2 Hz, 1H), 4.05 (br, 1H), 2.71 (d, *J* = 2.4 Hz, 1H), 2.30 (s, 3H), 2.14 (s, 3H). ¹³C NMR δ 169.4, 145.6, 137.1, 134.8, 129.6, 129.3, 129.0, 128.2, 127.8, 126.7, 112.9, 80.1, 75.6, 62.9, 45.9, 20.8, 20.3. HRMS (EI) Calcd. for C₁₉H₁₉NO₂ [M]: 293.1416. Found: 293.1420.

1-(2-(((4-fluorophenyl)amino)methyl)phenyl)prop-2-yn-1-yl acetate (**1c**): A brown solid, m.p. 76.1-78.0 °C. ¹H NMR δ 7.68-7.62 (m, 1H), 7.41-7.28 (m, 3H), 6.90-6.81 (m, 2H), 6.65 (d, J = 2.4 Hz, 1H), 6.58-6.50 (m, 2H), 4.42 (d, J = 14.0 Hz, 1H), 4.36 (d, J = 14.0 Hz, 1H), 4.01 (br, 1H), 2.64 (d, J = 2.4 Hz, 1H), 2.05 (s, 3H). ¹³C NMR δ 169.4, 155.9 (d, ¹ $J_{C-F} = 234.7$ Hz), 144.2 (d, ⁴ $J_{C-F} = 2.2$ Hz), 136.6, 134.9, 129.3, 129.0, 128.3, 128.0, 115.6 (d, ² $J_{C-F} = 22.3$ Hz), 113.6 (d, ³ $J_{C-F} = 7.8$ Hz), 80.1, 75.7, 62.8, 46.2, 20.8. HRMS (EI) Calcd. for C₁₈H₁₆FNO₂ [M]: 297.1165. Found: 297.1177.

1-(2-(((4-bromophenyl)amino)methyl)phenyl)prop-2-yn-1-yl acetate (**1d**): A pale yellow solid, m.p. 108.1-110.0 °C. ¹H NMR δ 7.65-7.62 (m, 1H), 7.39-7.32 (m, 3H), 7.23 (d, *J* = 8.9 Hz, 2H), 6.62 (d, *J* = 2.4 Hz, 1H), 6.50 (d, *J* = 8.9 Hz, 2H), 4.48-4.37 (m, 2H), 4.22 (br, 1H), 2.65 (d, *J* = 2.4 Hz, 1H), 2.08 (s, 3H). ¹³C NMR δ 169.5, 146.8, 136.3, 135.0, 131.9, 129.4, 129.0, 128.4, 128.1, 114.5, 109.3, 80.1, 75.7, 62.9, 45.7, 20.9. HRMS (EI) Calcd. for C₁₈H₁₆BrNO₂ [M]: 357.0364. Found: 357.0369.

1-(5-fluoro-2-((phenylamino)methyl)phenyl)prop-2-yn-1-yl acetate (**1e**): A brown oil. ¹H NMR δ 7.43-7.34 (m, 2H), 7.21-7.15 (m, 2H), 7.06-6.99 (m, 1H), 6.77-6.71 (m, 1H), 6.65-6.62 (m, 3H), 4.44 (d, J = 14.2 Hz, 1H), 4.37 (d, J = 14.2 Hz, 1H), 4.06 (br, 1H), 2.67 (d, J = 2.2 Hz, 1H), 2.11 (s, 3H). ¹³C NMR δ 169.4, 162.2 (d, ¹ $J_{C-F} = 245.9$ Hz), 147.7, 137.2 (d, ³ $J_{C-F} = 7.3$ Hz), 132.3 (d, ⁴ $J_{C-F} = 3.4$ Hz), 130.9 (d, ³ $J_{C-F} = 8.4$ Hz), 129.3, 117.9, 116.0 (d, ² $J_{C-F} = 21.2$ Hz), 115.0 (d, ² $J_{C-F} = 22.8$ Hz), 112.9, 79.6, 76.0, 62.2 (d, ⁴ $J_{C-F} = 1.7$ Hz), 45.2, 20.8. HRMS (EI) Calcd. for C₁₈H₁₆NO₂F [M]: 297.1165. Found: 297.1173.

1-(4,5-dimethoxy-2-((phenylamino)methyl)phenyl)prop-2-yn-1-yl acetate (**1f**): A yellow oil. ¹H NMR δ 7.22-7.16 (m, 3H), 6.94 (s, 1H), 6.76-6.65 (m, 3H), 6.61 (d, *J* = 2.2 Hz, 1H), 4.41 (d, *J* = 13.4 Hz, 1H), 4.32 (d, *J* = 13.4 Hz, 1H), 4.02 (br, 1H), 3.93 (s, 3H), 3.84 (s, 3H), 2.66 (d, *J* = 2.2 Hz, 1H), 2.08 (s, 3H). ¹³C NMR δ 169.5, 149.6, 148.4, 148.0, 129.6, 129.2, 127.0, 117.8, 112.9, 112.3, 111.5, 80.4, 75.5, 62.7, 56.0, 55.9, 45.6, 20.9. HRMS (EI) Calcd. for C₂₀H₂₁NO₄ [M]: 339.1471. Found: 339.1454.

Enantioselective Intramolecular Propargylic Amination of Propargylic Acetates.

typical experimental procedure for the А reaction of 1 - (2 -((phenylamino)methyl)phenyl)prop-2-yn-1-yl acetate (1a) is described below. In a 20 mL Schlenk flask were placed CuOTf \cdot 1/2C₆H₆ (2.6 mg, 0.010 mmol) and (S)-Me-pybox (L4) (5.0 mg, 0.020 mmol) under N₂. Anhydrous methanol (1.0 mL) was added, and then the mixture was magnetically stirred at 60 °C for 1 h. After the solution was cooled to 0 °C, 1a (55.9 mg, 0.20 mmol) in anhydrous methanol (1.0 mL) and diisopropylethylamine (42 μ L, 0.24 mmol) were added under N_2 , and the reaction was kept at 0 °C for 8 h. The solvent was concentrated under reduced pressure, and the residue was purified by the column chromatography (SiO₂) with hexane/ethyl acetate (93/7) to give 1-ethynyl-2-phenylisoindoline (2a) as a white solid (38.2 mg, 0.173 mmol, 87% isolated yield), m.p. 110.1 °C (decomp.). ¹H NMR & 7.51-7.48 (m, 1H), 7.39-7.31 (m, 5H), 6.93-6.90 (m, 2H), 6.86-6.80 (m, 1H), 5.61 (br, 1H), 4.82 (dd, J = 3.1 and 13.0 Hz, 1H), 4.60 (d, J = 13.0 Hz, 1H), 2.41 (d, J = 2.2 Hz, 1H). ¹³C NMR δ 145.9, 138.5, 137.0, 129.2, 128.2, 127.7, 123.1, 122.6, 117.4, 112.9, 82.6, 72.3, 55.1, 53.7. Anal. Calcd. for C₁₆H₁₃N: C, 87.64; H, 5.98; N, 6.39. Found: C, 87.44; H, 6.25; N, 6.32. $[\alpha]^{25}_{D} = -153.9$ (c = 0.435, CHCl₃). The enantiomeric excess of **2a** was determined by HPLC analysis; DAICEL Chiralpak AD, hexane/PrOH = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 9.4 min (minor) and 12.2 min (major), 93% ee.

Spectroscopic Data and Isolated Yields of Other Products.

1-ethynyl-2-(4-methylphenyl)isoindoline (**2b**): Isolated yield 79% (with **L4**). A white solid, m.p. 121.4 °C (decomp.). ¹H NMR δ 7.43-7.40 (m, 1H), 7.30-7.26 (m, 3H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 5.50 (br, 1H), 4.72 (dd, *J* = 3.2 and 13.0 Hz, 1H), 4.49 (d, *J* = 13.0 Hz, 1H), 2.33 (d, *J* = 2.2 Hz, 1H), 2.23 (s, 3H). ¹³C NMR δ 143.7, 138.6, 137.1, 129.8, 128.2, 127.7, 126.8, 123.0, 122.6, 113.1, 82.6, 72.4, 55.4, 54.0, 20.3. HRMS (EI) Calcd. for C₁₇H₁₅N [M]: 233.1204. Found: 233.1205. [α]²⁵_D = - 149.0 (*c* = 0.490, CHCl₃). The enantiomeric excess of **2b** was determined by HPLC analysis; DAICEL Chiralpak IA, hexane/^{*i*}PrOH = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 7.2 min (minor) and 11.5 min (major), 92% *ee*.

1-ethynyl-2-(4-fluorophenyl)isoindoline (**2c**): Isolated yield 79% (with **L4**). A white solid, m.p. 93.8 °C (decomp.). ¹H NMR δ 7.50-7.47 (m, 1H), 7.38-7.35 (m, 3H), 7.05 (m, 2H), 6.82 (dd, J = 4.3 and 9.2 Hz, 2H), 5.55 (br, 1H), 4.78 (dd, J = 3.1 and 12.9 Hz, 1H), 4.54 (d, J =12.9 Hz, 1H), 2.42 (d, J = 1.9 Hz, 1H). ¹³C NMR δ 156.0 (d, ¹ $J_{C-F} = 235.3$ Hz), 142.5 (d, ⁴ $J_{C-F} =$ 1.7 Hz), 138.5, 136.9, 128.3, 127.8, 123.1, 122.6, 115.7 (d, ² $J_{C-F} = 22.3$ Hz), 113.6 (d, ³ $J_{C-P} =$ 7.2 Hz), 82.4, 72.5, 55.6, 54.2. Anal. Calcd. for C₁₆H₁₂FN: C, 80.99; H, 5.10; N, 5.90. Found: C, 80.83; H, 5.22; N, 5.65. [α]²⁵_D = - 150.9 (c = 0.470, CHCl₃). The enantiomeric excess of **2c** was determined by HPLC analysis; DAICEL Chiralpak IA, hexane/^{*i*}PrOH = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 7.6 min (minor) and 13.7 min (major), 95% *ee*.

2-(4-bromophenyl)-1-ethynylisoindoline (**2d**): Isolated yield 89% (with **L5**). A white solid, m.p. 163.2 °C (decomp.). ¹H NMR δ 7.49-7.46 (m, 1H), 7.42-7.34 (m, 5H), 6.76 (d, *J* = 9.2 Hz, 2H), 5.55 (br, 1H), 4.75 (dd, *J* = 3.1 and 12.8 Hz, 1H), 4.54 (d, *J* = 12.8 Hz, 1H), 2.41 (d, *J* = 2.2 Hz, 1H). ¹³C NMR δ 144.8, 138.2, 136.6, 131.9, 128.3, 127.9, 123.1, 122.6, 114.5, 109.6, 82.0, 72.7, 55.2, 53.7. Anal. Calcd. for C₁₆H₁₂BrN: C, 64.45; H, 4.06; N, 4.70. Found: C, 64.23; H, 4.19; N, 4.46. [α]²⁵_D = - 146.2 (*c* = 0.455, CHCl₃). The enantiomeric excess of **2d** was determined by HPLC analysis; DAICEL Chiralpak IA, hexane/ⁱPrOH = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 8.4 min (minor) and 15.7 min (major), 96% *ee*.

1-ethynyl-6-fluoro-2-phenylisoindoline (**2e**): Isolated yield 81% (with **L4**). A white solid, m.p. 139.8 °C (decomp.). ¹H NMR δ 7.37-7.23 (m, 3H), 7.19-7.15 (m, 1H), 7.08-7.00 (m, 1H), 6.89-6.80 (m, 3H), 5.56 (br, 1H), 4.74 (dd, *J* = 3.2 and 12.6 Hz, 1H), 4.52 (d, *J* = 12.6 Hz, 1H), 2.42 (d, *J* = 1.9 Hz, 1H). ¹³C NMR δ 162.7 (d, ¹*J*_{C-F} = 244.8 Hz), 145.8, 140.4 (d, ³*J*_{C-F} = 8.9 Hz), 132.5 (d, ⁴*J*_{C-F} = 2.8 Hz), 129.3, 123.9 (d, ³*J*_{C-F} = 8.9 Hz), 117.6, 115.6 (d, ²*J*_{C-F} = 22.9 Hz), 112.9, 110.3 (d, ²*J*_{C-F} = 24.0 Hz), 81.9, 72.8, 55.1 (d, ⁴*J*_{C-F} = 2.8 Hz), 53.2. HRMS (EI) Calcd. for C₁₆H₁₂NF [M]: 237.0954. Found: 237.0950. [α]²⁵_D = - 156.8 (*c* = 0.555, CHCl₃). The enantiomeric excess of **2e** was determined by HPLC analysis; DAICEL Chiralpak IA, hexane/^{*i*}PrOH = 97/3, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 9.5 min (major) and 11.6 min (minor), 98% *ee*.

1-ethynyl-5,6-dimethoxy-2-phenylisoindoline (**2f**): Isolated yield 79% (with **L5**). A white solid, m.p. 149.3 °C (decomp.). ¹H NMR δ 7.34-7.30 (m, 2H), 6.96 (s, 1H), 6.88-6.78 (m, 4H), 5.52 (br, 1H), 4.73 (dd, *J* = 3.5 and 12.3 Hz, 1H), 4.50 (d, *J* = 12.3 Hz, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 2.42 (d, *J* = 2.2 Hz, 1H). ¹³C NMR δ 149.7, 149.3, 145.9, 130.0, 129.2, 128.6, 117.2, 112.7, 105.7, 105.3, 82.7, 72.3, 56.12, 56.10, 55.2, 53.8. HRMS (EI) Calcd. for C₁₈H₁₇NO₂ [M]: 279.1259. Found: 279.1246. [α]²⁵_D = -120.2 (*c* = 0.415, CHCl₃). The enantiomeric excess of **2f** was determined by HPLC analysis; DAICEL Chiralpak IA, hexane/ⁱPrOH = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 27.0 min (major) and 29.3 min (minor), 96% *ee*.

Preparation of 1,1'-(1,2-phenylene)-bis(prop-2-yne-1,1-diyl) Diacetate (3).

To a flame-dried Schlenk flask was placed ethynylmagnesium bromide (0.5 M in THF, 24 mL, 12 mmol). *o*-Phthalaldehyde (405.5 mg, 3.02 mmol) was added at room temperature, and the resulting mixture was stirred at 60 °C for 2 h. After the reaction, water (50 mL) was added, and the resulting mixture was extracted with EtOAc (30 mL x 3). The combined organic layer was dried over anhydrous MgSO₄. After concentration *in vacuo*, the residue was passed through a short silicagel pad with hexane/EtOAc (7/3) to give 1,1'-(1,2-phenylene)-bis(prop-2-yne-1-ol) as a pale yellow oil (549.4 mg, 2.95 mmol).

To a flame-dried Schlenk flask were placed CH₂Cl₂ (6.0 mL), DMAP (36.9 mg, 0.302 mmol), NEt₃ (625 μ L, 4.55 mmol), and 1,1'-(1,2-phenylene)-bis(prop-2-yne-1-ol) (549.4 mg, 2.95 mmol). Ac₂O (425 μ L, 4.53 mmol) dissolved in CH₂Cl₂ (1.0 mL) was added dropwise, and the resulting mixture was stirred at room temperature for 5 h. After the reaction, water (50 mL) was added, and the resulting mixture was extracted with CH₂Cl₂ (30 mL x 3). The combined organic layer was dried over anhydrous MgSO₄. After concentration *in vacuo*, the residue was purified by column chromatography (SiO₂) with hexane/EtOAc (7/3) to give **3**⁸⁵ as a white solid (716.4 mg, 2.65 mmol, 88% isolated yield).

Double Propargylic Amination of Propargylic Diacetate with Amines.

A typical experimental procedure for the reaction of 1,1'-(1,2-phenylene)-bis(prop-2yne-1,1-diyl) diacetate (3) with aniline is described below. In a 20 mL Schlenk flask were placed CuOTf • 1/2C₆H₆ (2.4 mg, 0.010 mmol) and (S)-Ph-pybox (L5) (7.3 mg, 0.020 mmol) Anhydrous methanol (1.0 mL) was added, and then the mixture was under N_2 . magnetically stirred at 60 °C for 1 h. After the solution was cooled to room temperature, **3** (53.0 mg, 0.20 mmol) in anhydrous methanol (1.0 mL), aniline (22 µL, 0.24 mmol), and diisopropylethylamine (84 µL, 0.48 mmol) were added under N₂, and the reaction was kept at room temperature for 4 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (SiO₂) with hexane/ethyl acetate (93/7) to give 1,3-diethynyl-2-phenylisoindoline (4a) as a white solid (33.3 mg, 0.137 mmol, 70% isolated yield, meso-4a/dl-4a = 5.0/1). ¹H NMR (meso-isomer): δ 7.51-7.34 (m, 6H), 7.15-7.07 (m, 2H) 6.91-6.85 (m, 1H), 5.54 (br, 2H), 2.45 (br, 2H). ¹H NMR (*dl*-isomer): δ 5.76 (br, 2H), 2.36 (br, 2H). ¹³C NMR (*meso*-isomer): δ 145.0, 137.6, 129.3, 128.8, 123.1, 118.3, 113.4, 82.4, 72.6, 55.4. ¹³C NMR (*dl*-isomer): δ 143.7, 137.8, 123.2, 118.6, 115.4, 81.7, 73.3, 54.6. HRMS (EI) Calcd. for C₁₈H₁₃N [M]: 243.1048. Found: 243.1038. The enantiomeric excess of *dl*-4a was determined by HPLC analysis; DAICEL Chiralpak IA, hexane/^{*i*}PrOH = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 13.4 min (minor) and 29.1 min (major), 75% ee.

Spectroscopic Data and Isolated Yield of Other Product.

1,6-diethynyl-2,5-diphenyl-1,2,3,4,5,6-hexahydrobenzo[*f*][**1,4**]**diazocine** (**4b**): Isolated yield 68% (*meso-***4b**/*dl-***4b** = 7.7/1). A white solid. ¹H NMR (*meso-*isomer): δ 7.76-7.73 (m, 2H), 7.36-7.33 (m, 2H) 7.15-7.06 (m, 4H), 6.76-6.65 (m, 6H), 5.70 (d, *J* = 2.2 Hz, 2H), 4.23-4.13 (m, 2H), 3.92-3.82 (m, 2H), 2.44 (d, *J* = 2.2 Hz, 2H). ¹H NMR (*dl-*isomer): δ 8.01-7.97 (m, 2H), 5.57 (d, *J* = 2.3 Hz, 2H), 3.97 (br, 4H), 2.66 (d, *J* = 2.3 Hz, 2H). ¹³C NMR (*meso-*isomer): δ 145.5, 135.8, 130.0, 129.0, 128.2, 117.3, 113.1, 80.1, 77.4, 56.7, 46.8. ¹³C NMR (*dl-*isomer): δ 129.0, 128.1, 117.2, 112.5, 58.0, 49.1. HRMS (EI) Calcd. for C₂₆H₂₂N₂ [M]: 362.1783. Found: 362.1781. The enantiomeric excess of *dl-***4b** was determined by HPLC analysis; DAICEL Chiralpak IA, hexane/^{*i*}PrOH = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 6.8 min (minor) and 12.4 min (major), 66% *ee*.

X-ray Diffraction Study of 2d.

Diffraction data for (R)-2-(4-bromophenyl)-1-ethynylisoindoline (2d) were collected on a Rigaku R-AXIS RAPID imaging plate diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71075$ Å) with Varimax optics. Reflections were collected for the 2θ range Intensity data were corrected for numerical absorptions (NUMABS)^{S7}, and for of 6° to 55° . Lorentz and polarization effects. A correction for secondary extinction^{S8} was further applied (coefficient, 19(12)). The structure solution and refinements were carried out by using CrystalStructure package.⁸⁹ The positions of all the non-hydrogen atoms were determined by direct methods (SIR97)^{S10} and subsequent Fourier syntheses, and were refined on F_0^2 with all the unique reflections by full-matrix least squares with anisotropic thermal All the hydrogen atoms were placed at the calculated positions with fixed parameters. isotropic parameters. Goodness of fit indicator $[\Sigma w(|F_o| - |F_c|)^2/(N_{obs} - N_{params})]^{1/2}$ were all The atomic scattering factors were taken from reference S11, refined to the value of 1.000. and anomalous dispersion effects were included.^{S12} The values of $\Delta f'$ and $\Delta f''$ were taken The Flack parameter^{S14} for **2d** was refined to the value of 0.010(14), from reference S13. which clearly suggests that the absolute configuration of the major isomer of 2d is (R) as shown in Figure S1, where the ORTEP drawing of 2d is depicted. Details of the crystals and data collection parameters of 2d are summarized in Table S1.

CCDC 989441 (2d) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

	2d
chemical formula	$C_{16}H_{12}BrN$
formula weight	298.18
crystal size	$0.42 \times 0.11 \times 0.08$
color, habit	colorless, needle
temperature (°C)	-75
crystal system	orthorhombic
space group	$P2_{1}2_{1}2_{1}$ (#19)
<i>a</i> (Å)	4.08853(17)
<i>b</i> (Å)	11.1945(6)
<i>c</i> (Å)	27.8189(12)
α (deg)	90
β (deg)	90
γ (deg)	90
$V(\text{\AA}^3)$	1273.25(10)
Ζ	4
$d_{\text{calcd}} (\text{g cm}^{-3})$	1.555
<i>F</i> (000)	600
μ (cm ⁻¹)	32.173
transmission factors range	0.440-0.773
measured reflections	10532
unique reflections	2885
R _{int}	0.0594
refined parameters	177
$R1 (I > 2\sigma(I))^{a}$	0.0365
wR2 (all data) ^b	0.0705
residual peaks (e Å ⁻³)	+0.531/-0.657
CCDC number	989441

 Table S1. Crystallographic Data for 2d.

^{*a*} $R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. ^{*b*} $wR2 = [\Sigma \{w(F_0^2 - F_c^2)^2\} / \Sigma w(F_0^2)^2]^{1/2}, w = 4F_0^2 / q\sigma(F_0^2), q = 1.847.$

Figure S1. ORTEP drawing of **2d**. Thermal ellipsoids are given at the 50% probability level.

References and Notes

- (S1) Tse, M. K.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.; Döbler, C.; Spannenberg,
- A.; Mägerlein, W.; Hugl, H.; Beller, M. Chem. Eur. J. 2006, 12, 1855.
- (S2) Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K. Organometallics 1991, 10, 500.
- (S3) Meng, J.-C.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett. 2005, 46, 4543.
- (S4) Ginotra, S. K.; Singh, V. K. Org. Biomol. Chem. 2007, 5, 3932.
- (S5) Sugimoto, Y.; Hanamoto, T.; Inanaga, J. Appl. Organomet. Chem. 1995, 9, 369.
- (S6) Teng, T.-M.; Das, A.; Huple, D. B.; Liu, R.-S. J. Am. Chem. Soc. 2010, 132, 12565.
- (S7) Higashi, T. *ABSCOR: empirical absorption correction based on Fourier series approximation*; Rigaku Corp.: Tokyo, Japan, 1995.
- (S8) Larson, A. C. In Crystallographic Computing: Proceedings of an International Summer School organized by The Commission on Crystallographic Computing of the International Union of Crystallography and held in Ottawa, 4–11 August 1969; Ahmed, F. R., Hall, S. R., Huber, C. P., Eds.; Munksgaard, Copenhagen, Denmark, 1970; pp. 291–294.
- (S9) (a) *CrystalStructure 4.0: Single Crystal Structure Analysis Software*; Rigaku Corp: Tokyo, Japan and MSC: The Woodlands, TX, 2010. (b) Carruthers, J. R.; Rollett, J. S.; Betteridge, P. W.; Kinna, D.; Pearce, L.; Larsen, A.; Gabe, E. *CRYSTALS Issue 11*; Chemical Crystallography Laboratory: Oxford, UK, 1999.
- (S10) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi,A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.
- (S11) Cromer, D. T.; Waber, J. T. In International Tables for X-ray Crystallography; Ibers, J.
- A., Hamilton, W. C. Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV., Table 2.2 A.
- (S12) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
- (S13) (a) Creagh, D. C.; McAuley, W. J. In International Tables for X-ray Crystallography;
- Wilson, A. J. C. Ed.; Kluwer Academic Publishers: Boston, MA, 1992; Vol. C. Table 4.2.6.8.

- (b) Creagh, D. C.; Hubbell, J. H. In International Tables for X-ray Crystallography; Wilson,
- A. J. C. Ed.; Kluwer Academic Publishers: Boston, MA, 1992; Vol. C. Table 4.2.4.3.

(S14) Flack, H. D. Acta Crystallogr. 1983, A39, 876.

Charts of Propargylic Aminated Products by HPLC Analysis 2a(rac)

059

MS-639 AD herome / IPA-95/5 1.000 ml/min

		D-75	500 INTEGR	ATOR	REPORT	2 *	
ANALYZ	ED: 02/	20/14 13:11			REPORTED:	02/20/14	13:26
METHOD	i : L : 1 <	DIGITAL>	OPERA SEQ	TOR:	2		
FILE CALC-M	: ⊘ ETHOD:	AR/HI% <area< td=""><td>MODUL</td><td>E T-PI</td><td>ROG : CBL : Ø</td><td>DETEC</td><td>TOR= 1</td></area<>	MODUL	E T-PI	ROG : CBL : Ø	DETEC	TOR= 1
NO. 8	RT 9.84	AREA 2072754	CONC 50, 194	BC			
9 TOTAL	12.63	2056724	49.806	BB			
PEAK R	EJ :	4129478 50000	100.000				

1

1

2a

1.24

MS- 673	AD	hexane/	IPA = 95/5	1.000 ml	min			
FILE ∅ CH.1 <d></d>	S¥S C.S	1 1.25	SEQ ATT 8	1 OFFS	0	12/18/13	15:03	
	9. 44	7	- 12.18					

D-7500 INTEGRATOR REPORT

ANALYZED: 12 SYSTEM : 1	/18/13 15:03		REPORTED:	12/18/13 15:20
METHOD : CHANNEL : 1	<digital></digital>	OPERATOR: SEQ :	1	
FILE : ∅ CALC-METHOD:	AR/HI% <area/>	MODULE T-PRO COMPONENT TB	G: L: ⊘	DETECTOR= 1
NO. RT 5 9.44	AREA 60380	CONC BC 3.370 VB		
5 12.18 TOTAL	1731319	96.630 BB		
PEAK RE.T .	1791699	100.000		

2b(rac)

)

)

)

)

 \rightarrow

)

)

)

)

)

)

MS- 523 IA herone/ IPA = 95/5 1.000 ml/min

FILE @ SYS 1 SEQ 2 CH. 1<D> C. S 1. 25 ATT 9 OFFS @ 07/18/13 20:19))))

)

)

à

)

)

)

)

)

)

1

D-7500 INTEGRATOR REPORT ANALYZED: 07/18/13 20:19 REPORTED: 07/18/13 20:35 SYSTEM : 1 METHOD : CHANNEL : 1 <DIGITAL> OPERATOR: CHANNEL : 1 <DIGITAL> COPERATOR: SEQ : 2 FILE : 0 CALC-METHOD: AR/HI% <AREA> MODULE T-PROG : DETECTOR= 1 CALC-METHOD: AR/HI% <AREA> CONC BC 7 6.86 1738923 50.048 BV 10 9.93 1735572 49.952 BB TOTAL S479495 100.000

2b

MS-51, IA herore/IPA = 95/5 1.000 ml/hFILE 0 SYS 1 SEQ 1 CH. 1<D> C. S 1.25 ATT 8 OFFS 0 07/19/13 20:11 1.972 1.972 1.972 1.9721.49

D-7500 INTEGRATOR REPORT ANALVZED: 07/19/13 20:11 REPORTED: 07/19/13 20:26 SYSTEM : 1 METHOD : OPERATOR: CHANNEL : 1 <DIGITAL> SEQ : 1 FILE : 0 CALC-METHOD: AR/HI% <AREA> COMPONENT TBL : 0 NO. ET AREA CONC BC 5 7.23 92457 3.805 BB 8 11.48 2337592 96.195 VB TOTAL 2430049 100.000 PEAK REJ : 50000

2c(rac)

MS- \$36 IA herane/IPA= 9515 (000 ml/min FILE Ø SYS 1 SEQ 1 CH.1<D> C.S 1.25 ATT 9 OFFS Ø 07/24/13 20:00 3.61 - 7.38 19:08 ---- 13.10 17.38 D-7500 INTEGRATOR REPORT ANALYZED: 07/24/13 20:00 REPORTED: SYSTEM : 1 METHOD : OPERATOR: CHANNEL : 1 <DIGITAL> SEQ : 1 NORMAL TOPORT REPORTED: 07/24/13 20:21 FILE : 0 MODULE T-PROG : CALC-METHOD: AR/HI% <AREA> COMPONENT TBL : 0 DETECTOR= 1 NC. RT AREA 6 7.38 2603234 9 13.10 2563137 CONC BC 50.388 BB 49.612 BB TOTAL 5166371 100.000 PEAK REJ : 50000

)

)

)

)

)

)

)

)

)

)

I

1

2c

Μ	t83 -21	IA		nexane/IPA	2993	1.00	o will	ά'n					
	FILE 0	>	SYS	1	SEQ	8	L OFFS	Ø	01	/17/1	4	14:00	
	011 2 13		3.66										
		-		0									-
		14	9. 44				13.60						
					D-750	90 II	TEGR	ATOR	REPO	DRT			17 - 81 17
	ANALYZ	ED:	01/	17/14 1	4:00				RI	IFORTI	ID:	01/17/14	14:21
	SYSTEM	:	1										
	METHOD	;				1	OPERA	TOR:					
	CHANNE	Ŀ:	1 <	DIGITAL>			SEQ	:		1			
	FILE	:	0			ĩ	TUDON	E T-I	ROG	:		DETE	CTOR= 1
	CALC-M	ETH)D:	AR/III%	(Area)	. 1	COMPO	NENT	TBL	: 4	9		
	NO.		RT	e	REA	1.1	CONC	BC					
	G	7.	50	46	3337	Z.	673	BB					
	8	13.	68	1689	3114	97.	327	BB					

113

)

)

)

)

)

)

)

1735511 100.000 PEAK REJ : 10000

TOTAL

2d(rac)

)

)

CH. 1 <d></d>	S¥S 1 C.S 1.	SEQ 25 ATT 8	1 OFFS @	06/06/13	14:44
	0.56		0.00		
	10.07 18.19	14.61	8.28		
	18.14				
	22.56 26.20				
		D-7500	INTEGRATOR	REPORT	
ANALYZED SYSTEM	: 06/06/1: : 1	3 14:44		REPORTED:	06/06/13 15::
METHOD CHANNEL	: : 1 <digi< td=""><td>TAL></td><td>OPERATOR: SEQ :</td><td>1</td><td></td></digi<>	TAL>	OPERATOR: SEQ :	1	
	: 0	1% <area/>	MODULE T- COMPONENT	PROG : TBL : Ø	DETECTOR=
FILE CALC-MET	HUD: AR/H.				
FILE CALC-MET NO. 11	RT 8.28	AREA 239415	CONC BC 50.013 BB		

(

(

(

(

(

(

(

L

2d

((MS-507 IA h/I = 9515 1.000 ml/ win (FILE Ø SYS 1 SEQ CH. 1<D> C. S 1. 25 ATT 7 2 OFFS 0 07/03/13 12:45 218 (10578.004 - 15.71 ((D-7500 INTEGRATOR REPORT REPORTED: 07/03/13 13:05 (ANALYZED: 07/03/13 12:45 SYSTEM : 1 METHOD : CHANNEL : 1 <DIGITAL> OPERATOR: SEQ : 2 (FILE : 0 MODULE T-PROG : CALC-METHOD: AR/HI% <AREA> COMPONENT TBL : 0 DETECTOR= 1 (
 NO.
 RT
 AREA
 CONC

 5
 8.44
 22067
 2.060

 6
 15.71
 1048952
 97.940

 TOTAL
 1071019
 100.000

 PEAK REJ :
 20000
 100.000
 CONC BC 2.060 BB 97.940 BB (

2e(rac)

FILE Ø SYS 1 SEQ 2 CH. 1<D> C. S 1. 25 ATT 5 OFFS Ø Ø5/02/14 15:31 3.05 5:92 9.74 - 12.04

D-7500 INTEGRATOR REPORT

ANALYZED: SYSTEM : METHOD :	05/ 1	/02/14 15:31	OPERA	TOR:	REPORT	ED:	05/02/14	15:47
CHANNEL :	1 4	(DIGITAL>	SEQ	:	Z			
FILE : CALC-METH	ø oD:	AR/HI% <area/>	MODUL	E T-PRO NENT TB	G : L :	0	DETEC	IOR= 1
NO.	RT	AREA	CONC	BC				
4 9	. 74	23048	50.471	BB				
5 12 TOTAL	. 04	22618	49.529	BB				
PEAK REJ	:	45666 20000	100.000					

2e

FILE ∅ CH.1 <d></d>	S¥S C.S	1 1.25	SEQ ATT	6	2 OFFS	0	05/06/14	17:19
	6.	18 42 56						9.48

D-7500 INTEGRATOR REPORT

ANALYZED: Ø5 SYSTEM : 1 METHOD : CHANNEL : 1	/06/14 17:19 <digital></digital>	OPERATOR: SEQ :	REPORTED:	05/06/14 17:34
FILE : ∅ CALC-METHOD:	AR/HI% <area:< td=""><td>MODULE T-PR COMPONENT T</td><td>OG : BL : ∅</td><td>DETECTOR= 1</td></area:<>	MODULE T-PR COMPONENT T	OG : BL : ∅	DETECTOR= 1
NO. RT 2 4.18 4 9.48 5 11.56 TOTAL PEAK REJ :	AREA 5794 589843 5706 601343 5000	CONC BC 0.964 BB 98.088 BB 0.949 BB 100.000		
2014 · 5/6				

PN-269 IA her/IPA = 97/3, 1.000 ml/min

2f(rac)

FILE Ø SYS 1 SEQ 1 CH.1<D> C.S 1.25 ATT 6 OFFS Ø Ø5/08/14 14:03 9.04 21:56 28.38 30.69

D-7500 INTEGRATOR REPORT

ANALYZED: SYSTEM : METHOD : CHANNEL :	05/08/14 1 1 <digitai< th=""><th>14:03 .></th><th>OPERAT SEQ</th><th>RE:</th><th>PORTED:</th><th>05/08/14</th><th>14:36</th></digitai<>	14:03 .>	OPERAT SEQ	RE:	PORTED:	05/08/14	14:36
FILE : CALC-METHO	0 DD: AE/HI%	<area/>	MODULE COMPON	T-PROG ENT TBL	: 0	DETECI	'OR= 1
NO. 6 28. 7 30. TOTAL	RT 38 17 69 18	AREA 70956 50 38152 49	CONC 0.413 0.587	BC BB BB			
PEAK REJ :	33	89108 100 99	. 000				

2f

FILE Ø SYS 1 SEQ 2 CH.1<D> C.S 1.25 ATT 6 OFFS Ø Ø5/07/14 21:59 3.37 29.26 27.00

D-7500 INTEGRATOR REPORT

MS-1729 IA hexane/IPA=95/5 1.000 wel/www.

D-7500 INTEGRATOR REPORT

ANALYZ	ED:	02	/21/14	11:48				RI	EPOI	TED:	02/21/14	12:20
SYSTEM	:	1										
WELHOD	:					OPERA	TOR:					
CHANNE	L :	1	<digita]< td=""><td>6></td><td></td><td>SEQ</td><td>2</td><td></td><td>1</td><td></td><td></td><td></td></digita]<>	6>		SEQ	2		1			
FILE	2	0				MODUL	E T-P	ROG	2		DETH	SCTOR= 1
CALC-M	ETHO	DD:	AR/HI%	<area< td=""><td>></td><td>COMPO</td><td>NENT</td><td>TBL</td><td>:</td><td>0</td><td></td><td></td></area<>	>	COMPO	NENT	TBL	:	0		
NO.		RT		AREA		CONC	BC					
10	6.	60	213	30246	80	. 970	BV					
14	13	22	25	58415	ç	1 822	UB					
16	28	48	24	12247	0	208	UB					
TOTAL	40.	10	1		2	. 100	• 12					
			263	30908	100	. 000						
PEAK R	EJ :		20000	666								

1

1

4a

MS-660 IA Nexone/IPA= 25/3 1.000 ml/min

FILE Ø CH.1 <d></d>	S¥S C.S	1 1.25	SEQ ATT	9	2 OFFS	0	02/22/14	1	5:53	
	3: 44 8: 42 10: 25					_	6.	65	meso-isome	r
Ì	149-484 18.67		d	dl-isomer						
-	29.1	0	-							

D-7500 INTEGRATOR REPORT

ANALYZ SYSTEM	ED: 02/ : 1	22/14	15:53		I	REPOR	TED:	02/22/14	16:27
METHOD				OPERA	TOR:				
CHANNE	L:1 <	DIGITAL	>	SEQ		2			
FILE	: 0			MODUL	E T-PROC	: :		DETEC	TOR= 1
CALC-M	ETHOD:	AR/HI%	<area< td=""><td>> COMPO</td><td>NENT TBI</td><td>. :</td><td>ø</td><td></td><td></td></area<>	> COMPO	NENT TBI	. :	ø		
NO	DT		APFA	CONC	BC				
7	6 65	359	5306	84 748	BB				
10	13.44	8	0786	1.994	BV				
13	29,10	56	6278	13.348	BB				
TOTAL									
		424	2370	100.000					
PEAK R	EJ :	3000	0						

. D

MS-730-B IA hexame/IPA = 98/5 1.000 ml/min FILE @ SYS 1 SEQ 1 CH.1<D> C.S 1.25 ATT 10 OFFS @ 02/21/14 21:38 Construction of the second sec 8.42 dl-isomer 11.68 _____ 13.28 meso-isomer D-7500 INTEGRATOR REPORT REPORTED: 02/21/14 21:56 ANALYZED: 02/21/14 21:38 SYSTEM : 1 METHOD : CHANNEL : 1 <DIGITAL> OPERATOR: SEQ : 1 FILE : 0 MODULE T-PROG : CALC-METHOD: AR/HI% <AREA> COMPONENT TBL : 0 DETECTOR= 1 NO. ET AREA 10 8.42 9934813 13 11.68 3530165 15 13.28 10094476 0TAI CONC BC 42.169 VV 14.984 VV 42.847 VV TOTAL 23559454 100.000 PEAK REJ : 100000

4b

MS-486 IA W/I = 95/5 1.000ml/min FILE Ø SYS 1 SEQ 2 CH.1<D> C.S 1.25 ATT 6 OFFS Ø Ø6/07/13 17:49 3 98 78 dl-isomer 10.98 12.40 _____ 15.31 18.47 meso-isomer 22. 52 D-7500 INTEGRATOR REPORT ANALYZED: 06/07/13 17:49 SYSTEM : 1 METHOD : CHANNEL : 1 <DIGITAL> REPORTED: 06/07/13 18:22 OPERATOR: 2 SEQ : MODULE T-PROG : COMPONENT TBL : FILE : Ø CALC-METHOD: AR/HI% <AREA> DETECTOR= 1 0 NO. 2 5 7 0. RT 2 3.38 5 6.78 7 8.02 8 10.98 9 12.40 CONC BC 0.371 BB 2.396 BB 0.614 VB 84.585 BV 11.887 VB AREA 5352 34524 8846 1218714 171270

0.147 BB

100.000

5 10 10

10 15.31

PEAK REJ :

TOTAL

2111

1440817

2000