A CO₂-responsive pillar[5]arene: synthesis and self-assembly in water

Kecheng Jie, Yong Yao, Xiaodong Chi and Feihe Huang*

State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

Fax and Tel: +86-571-8795-3189; Email address: fhuang@zju.edu.cn.

Electronic Supplementary Information (12 pages)

1.	Materials and methods	S2
2.	Synthesis of compound 1	S3
3.	Determination of critical aggregation concentration of protonated 1 in water	S13
4.	Self-assembly of 1 (10 ⁻⁴ M) in water before and after adding HCl	S13
5.	Self-assembly of 1 (10 ⁻⁴ M) in water switched by CO_2	S14
6.	Transmittance study of CO ₂ -switch reversible process	S15
7.	References	S16

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Solvents were either employed as purchased or dried according to procedures described in the literature. 1-Bromoctadecane and 1,5-dihydroxy-naphthalene were purchased and used as supplied without further purification. Bromoethylpillar[5]arene^{S1} was prepared according to a published procedure. ¹H NMR and ¹³C HMR spectra were recorded with a Bruker Avance DMX 400 spectrophotometer using the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with IonSpec 4.7 Tesla FTMS. Transmission electron microscopy investigations were carried out on a JEM-1200EX instrument. Dynamic light scattering was carried out on a Malvern Nanosizer S instrument at room temperature. UV-vis spectra were taken on a PerkinElmer Lambda 35 UV-vis spectrophotometer.

Scheme S1. Synthetic route to 1.

2.1. Synthesis of compound 3

Anhydrous potassium carbonate (27.6 g, 200 mmol) was added to a solution of 1,5-dihydroxynaphthalene (16.0 g, 100 mmol) and 1-bromooctadecane (33.3 g, 100 mmol) in dry acetonitrile (500 mL) under vigorous stirring. The mixture was stirred at 80 °C for 24 hours under nitrogen. After removal of the inorganic salt, the solvent was evaporated and the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate, 100:1) to give **3** as a white solid. The yield of **3** was 75%. The melting point of **3** is 61.0 °C. The ¹H NMR spectrum of **3** is shown in Fig. S1. ¹H NMR (400 MHz, chloroform-*d*, 293 K) δ (ppm): 7.87 (d, *J* = 4.0 Hz, 1H), 7.69 (d, *J* = 4 Hz, 1H), 7.38 (t, *J* = 6 Hz, 1H), 7.27 (d, *J* = 6 Hz, 1H), 6.86–6.82 (m, 2H), 5.17 (s, 1H), 4.12 (t, *J* = 6 Hz, 2H), 1.95–1.88 (m, 2H), 1.40–1.26 (m, 30H), 0.90–0.86 (t, *J* = 6 Hz, 3H). The ¹³C NMR spectrum of **3** is shown in Fig. S2. ¹³C NMR (100 MHz, chloroform-*d*, 293 K) δ (ppm): 154.89, 151.10, 127.13, 125.37, 124.96, 114.94, 123.25, 109.37, 105.20, 77.34, 77.02, 76.70, 68.22, 31.94, 29.71, 29.64, 29.45, 29.38, 29.31, 26.28, 22.71, 14.14. LRESIMS is shown in Fig. S3: *m/z* 447.3 [M + Cl]⁻. HRESIMS is shown in Fig. S4: *m/z* calcd for [M + Cl]⁻ C₂₈H₄₄O₂Cl⁻, 447.3030; found 447.3034; error 0.8 ppm.

Fig. S1. ¹H NMR spectrum (400 MHz, chloroform-*d*, 293K) of **3**.

Fig. S2. 13 C NMR spectrum (100 MHz, chloroform-d, 293K) of 3.

Fig. S3. Low resolution electrospray ionization mass spectrum of 3.

Fig. S4. High resolution electrospray ionization mass spectrum of 3.

Anhydrous potassium carbonate (5.52 g, 40 mmol) was added to a solution of **3** (4.12 g, 10.0 mmol) and bromoethylpillar[5]arene (16.8 g, 10 mmol) in dry acetonitrile (250 mL) under vigorous stirring. The mixture was stirred at 80 °C for 24 hours. After removal of the inorganic salt, the solvent was evaporated and the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate, 10:1) to give the crude product as a white solid. A mixture of the crude product with excess diethylamine (30 equiv) were dissolved in ethanol and refluxed for 24 h. The solvent was evaporated, and the residue was poured into a NaOH solution (1.00 M, 400 mL) and stirred. The solution was extracted with ethyl acetate (3 \times 100 mL), and the organic phase was obtained. The oil yellow liquid was isolated after evaporation of the solution as the crude product, which was distilled in vacuo to give 1 as a solid. ^{S2} The yield of 1 was 23.1%. The melting point of 1 is 75.2 °C. The ¹H NMR spectrum of 1 is shown in Fig. S5. ¹H NMR (400 MHz, chloroform-d, 293 K) δ (ppm): 7.93–7.89 (t, J = 6 Hz, 2H), 7.38 (t, J = 6 Hz, 1H), 7.33 (d, J 1H), 7.02–6.82 (m, 12H), 4.47 (d, J = 4 Hz, 4H), 4.13–4.08 (m, 10H), 3.93–3.74 (m, 18H), 3.00–2.91 (m, 18H), 3.00(m, 18 16H), 2.49–2.43 (m, 4H), 1.93–1.89 (t, J = 6 Hz, 2H), 1.54 (s, 2H), 1.39 (s, 2H), 1.26–1.23 (m, 28H), 1.11–1.03 (m, 48H), 0.94 (t, J = 6 Hz, 6H), 0.88 (t, J = 6 Hz, 3H). The ¹³C NMR spectrum of **1** is shown in Fig. S6. ¹³C NMR (100 MHz, chloroform-d, 293 K) δ (ppm): 154.71, 151.43, 149.82, 149.76, 149.69, 128.42, 126.91, 126.81, 125.43, 124.88, 114.90, 114.13, 105.73, 105.32, 68.19, 67.46, 67.19, 67.10, 52.24, 51.93, 47.28, 47.55, 29.77, 29.36, 26.14, 22.68, 14.12, 12.13, 12.06. LRESIMS (done in chloroform-d) is shown in Fig. S7: m/z 1942.9 [M + D]⁻. HRESIMS (done in chloroform-d) is shown in Fig. S8: m/z calcd for $[M + D]^+ C_{119}H_{193}O_{12}N_9D^+$, 1942.4910; found 1942.4861; error 2.5 ppm.

Fig. S6. ¹³C NMR spectrum (100 MHz, chloroform-d, 293K) of 1.

Fig. S8. High resolution electrospray ionization mass spectrum of 1.

2.3 Amphiphile 2 protonated by HCl

The ¹H NMR spectrum of **2** is shown in Fig. S9. ¹H NMR (400 MHz, DMSO- d_6 , 293 K) δ (ppm): 7.77–7.75 (d, 2H), 7.49–7.36 (m, 2H), 7.22 (d, J = 4 Hz, 2H), 7.03–6.87 (m, 12H), 4.56–4.43 (m, 18H), 4.12 (m, 4H), 3.78–3.67 (m, 24H), 3.32–3.10 (m, 33H), 1.84 (d, J = 4 Hz, 2H), 1.51–1.49 (m, 2H), 1.30–1.25 (m, 37H), 1.22–1.17 (m, 31H), 1.11–1.07 (t, J = 6 Hz, 4H), 0.86–0.82 (t, J = 4 Hz, 3H). The ¹³C NMR spectrum of **2** is shown in Fig. S10. ¹³C NMR (100 MHz, DMSO- d_6 , 293 K) δ (ppm): 130.15, 47.03, 28.59, 22.01, 13.89, 8.63, 8.42. LRESIMS (done in H₂O-d) is shown in Fig. S11: m/z 971.3 [2 – 9Cl⁻ – 7H⁺]²⁺.

Figure S9. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 293K) of **2**.

Fig. S11. Low resolution electrospray ionization mass spectrum of 2.

3. Determination of critical aggregation concentration of protonated 1 in water

Fig. S12. Transmittance at 339 nm as a function of the amphiphilic pillar[5]arene 2 concentration. There are two linear segments in the curve and a sudden reduction of the slope, implying that the CAC of 2 is approximately 1.70 $\times 10^{-5}$ M.

4. Self-assembly of 1 (1.00 × 10^{-4} M) in water before and after adding HCl

Fig. S13. TEM images of $1 (1.00 \times 10^{-4} \text{ M})$ in water: (a) 1; (b) after adjusting pH of (a) to 5.0 by adding HCl (1.00 M); (c) after adjusting pH of (b) to 8.0 by adding a NaOH aqueous solution (1.00 M).

5. Self-assembly of 1 (1.00 × 10^{-4} M) in water switched by CO₂

Fig. S14. TEM images of 1 $(1.00 \times 10^{-4} \text{ M})$ in water: (a) before bubbling CO₂; (b) after bubbling CO₂ for 30 s; (c) after bubbling CO₂ for 1 minute; (d) after bubbling CO₂ for 3 minutes; (e) after bubbling CO₂ for 5 minutes; (f) after bubbling N₂ to (b) or warming up for 5 minutes.

6. Transmittance study of CO₂-switch reversible process

Fig. S15. The repeated cycles by bubbling CO_2 and bubbling N_2 or warming up to 70 °C.

References:

- S1. (a) X. Hu, L. Chen, W. Si, Y. Yu and J.-L. Hou, *Chem. Commun.*, 2011, 47, 469–4696; (b) Y. Ma, X. Ji, F. Xiang, X. Chi, C. Han, J. He, Z. Abliz, W. Chen and F. Huang, *Chem. Commun.*, 2011, 47, 12340–12342.
- S2. Q. Zhang, Z. Gao, F. Xu, S. Tai, X. Liu, S. Mo and F. Niu, *Langmuir*, 2012, 28, 11979–11987.