Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Enantioselective Cascade Reaction between α , β -Unsaturated Carbonyls and

Malonic Half-thioesters: Rapid Access to Chiral δ-lactones

Qiao Ren, Shaofa Sun,* Jiayao Huang, Wenjun Li, Minghu Wu, Haibing Guo, and

Jian Wang*

^a Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei Province 437100, People's Republic China
 ^b Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Email: chmwangj@nus.edu.sg

Supporting Information

Contents:

1. General Information	S2
2. Experimental Procedure for Decarboxylative Reaction of MAHTs to Enals	S3
3. Proposed Mechansim	S13
4. Application	S15
5. HPLC and NMR Spectra	S18

1. General Information

Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H and ¹³C NMR spectra were recorded on a Bruker ACF300 (300 MHz) or AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode, and a Finnigan/MAT 95XL-T mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. The enantiomeric excesses of products were determined by chiral phase HPLC analysis. Optical rotations were recorded on Jasco DIP-1000 polarimeter.

2. Experimental Procedure for Decarboxylative Reaction of MAHTs to Enals

Typical procedure for the decarboxylative reaction:

To a solution of cinnamaldehyde **1a** (26.4 mg, 25.2 uL, 0.2 mmol,) in DCM (0.5 mL) was added catalyst **V** (25.6 mg, 0.04 mmol) at 0 °C. After 40 min, malonic acid half thioester **2c** (98.1 mg, 0.5 mmol) was added in one portion. Then, TEA (50.5 mg, 69.6 uL, 0.5 mmol) in 0.5 mL DCM was added dropwise *via* syringe in 10 min at 0 °C. The resulting reaction mixture was kept stirring at 0°C for 24 h. The crude product was purified by silica gel flash chromatography, eluted by hexane/EtOAc = 10:1 to afford the desired product **3ac** as white solid (46.7 mg, 82% yield).

(4*S*,6*S*)-4-phenyl-6-(phenylthio)tetrahydro-2*H*-pyran-2-one (3ac) (Table 2, entry 1). 46.7 mg, 82% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.61 – 7.59 (m, 2H), 7.36 (ddd, *J* = 7.7, 4.0, 1.7 Hz, 5H), 7.30 – 7.26 (m, 1H), 7.17 – 7.16 (m, 2H), 5.74 (dd, *J* = 11.3, 4.1 Hz, 1H), 3.19 (tt, *J* = 12.3, 4.4 Hz, 1H), 2.88 (ddd, *J* = 17.7, 5.1, 2.3 Hz, 1H), 2.58 – 2.51 (m, 2H), 2.04 – 1.97 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.4, 141.5, 133.3, 131.8, 129.2, 129.1, 128.6, 127.5, 126.4, 86.3, 37.4, 37.2, 36.3; HRMS (EI) calcd for C₁₇H₁₆O₂S 284.0871, found 284.0876; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 28.2 min, *t*_R (minor) = 23.0 min, *ee* = 92%; [α]²⁵_D = -96.6 (*c* = 1.08 in DCM).

(4*S*,6*S*)-4-(4-chlorophenyl)-6-(phenylthio)tetrahydro-2*H*-pyran-2-one (3bc) (Table 2, entry 2). 52.9 mg, 83% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.60 – 7.58 (m, 2H), 7.38 – 7.34 (m, 3H), 7.34 – 7.31 (m, 2H), 7.11 – 7.09 (m, 2H), 5.72 (dd, *J* = 11.3, 4.1 Hz, 1H), 3.17 (tt, *J* = 12.2, 4.5 Hz, 1H), 2.86 (ddd, *J* = 17.6, 5.1, 2.2 Hz, 1H), 2.56 – 2.46 (m, 2H), 2.00 – 1.93 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.1, 134.0, 133.3, 133.3, 131.6, 129.2, 129.2, 128.7, 127.8, 86.2, 37.1, 36.9, 36.1; HRMS (EI) calcd for C₁₇H₁₅O₂CIS 318.0481, found 318.0486; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 28.4 min, *t*_R (minor) = 24.7 min, *ee* = 94%; [α]²⁵_D = -52.7 (*c* = 1.05 in DCM).

(4*S*,6*S*)-4-(4-nitrophenyl)-6-(phenylthio)tetrahydro-2*H*-pyran-2-one (3cc) (Table 2, entry 3). 57.3 mg, 87% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.21 (d, *J* = 8.7 Hz, 2H), 7.60 – 7.58 (m, 2H), 7.37 – 7.34 (m, 5H), 5.74 (dd, *J* = 11.1, 4.1 Hz, 1H), 3.35 (tt, *J* = 12.1, 4.5 Hz, 1H), 2.90 (ddd, *J* = 17.5, 5.2, 2.2 Hz, 1H), 2.61 – 2.51 (m, 2H), 2.02 (dt, *J* = 13.8, 11.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 168.5, 148.7, 147.3, 133.4, 131.3, 129.2, 128.8, 127.5, 124.3, 86.0, 37.3, 36.6, 35.7; HRMS (EI) calcd for C₁₇H₁₅O₄NS 329.0722, found 329.0723; HPLC (Chiralpak IA, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 36.5 min, *t*_R (minor) = 26.9 min, *ee* = 95%;

 $[\alpha]^{25}_{D} = -68.8 \ (c = 0.97 \text{ in DCM}).$

(4*S*,6*S*)-4-(2-nitrophenyl)-6-(phenylthio)tetrahydro-2*H*-pyran-2-one (3dc) (Table 2, entry 4). 52.0 mg, 79% yield; Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.87 (d, *J* = 8.1 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.59 (dd, *J* = 6.4, 2.8 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.37 – 7.35 (m, 4H), 5.74 (dd, *J* = 11.3, 3.8 Hz, 1H), 3.79 (td, *J* = 11.6, 5.8 Hz, 1H), 2.99 (ddd, *J* = 17.5, 5.3, 1.8 Hz, 1H), 2.64 – 2.54 (m, 2H), 2.03 (dd, *J* = 25.3, 11.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 168.7, 149.3, 136.0, 133.7, 133.3, 131.4, 129.2, 128.7, 128.3, 127.4, 124.9, 86.0, 36.5, 35.9, 32.2; HRMS (EI) calcd for C₁₇H₁₅O₄NS 329.0722, found 329.0734; HPLC (Chiralpak IA, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 30.4 min, *t*_R (minor) = 34.1 min, *ee* = 96%; [α]²⁵_D = -57.2 (*c* = 1.00 in DCM).

(4S,6S)-4-(4-methoxyphenyl)-6-(phenylthio)tetrahydro-2*H*-pyran-2-one (3ec) (Table 2, entry 5).
51.7 mg, 82% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.59 (dd, *J* = 6.4, 3.2 Hz, 2H),
7.35 (dd, *J* = 4.9, 1.9 Hz, 3H), 7.10 – 7.04 (m, 2H), 6.90 – 6.87 (m, 2H), 5.72 (dd, *J* = 11.3, 4.1 Hz, 1H),
3.80 (s, 3H), 3.13 (tt, *J* = 12.6, 3.8 Hz, 1H), 2.86 (ddd, *J* = 17.7, 5.1, 2.3 Hz, 1H), 2.55 – 2.46 (m, 2H),
2.00 – 1.92 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.6, 158.8, 133.6, 133.2, 131.80, 129.2,

128.6, 127.4, 114.4, 86.4, 55.3, 37.5, 36.7, 36.5; HRMS (EI) calcd for C₁₈H₁₈O₃S 314.0977, found 314.0987; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 42.9 min, $t_{\rm R}$ (minor) = 38.0 min, ee = 88%; $[\alpha]^{25}_{\rm D} = -74.7$ (c = 0.91 in DCM).

(4S,6S)-6-(phenylthio)-4-p-tolyltetrahydro-2H-pyran-2-one (3fc) (Table 2, entry 6). 48.6 mg, 81% yield; Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.60 (dd, J = 6.4, 3.1 Hz, 2H), 7.38 - 7.33 (m, 3H), 7.16 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 5.73 (dd, J = 11.3, 4.1 Hz, 1H), 3.15 (tt, J = 12.0, 4.4 Hz, 1H), 2.86 (ddd, J = 17.7, 5.1, 2.3 Hz, 1H), 2.55 – 2.48 (m, 2H), 2.34 (s, 3H), 2.02 – 1.94 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.6, 138.6, 137.2, 133.2, 131.8, 129.7, 129.1, 128.6, 126.2, 86.5, 37.3, 37.1, 36.4, 21.0; HRMS (EI) calcd for C₁₈H₁₈O₂S 298.1028, found 298.1028; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (major) = 25.8 min, t_R (minor) = 22.5 min, ee = 93%; $[\alpha]^{25}_{D} = -35.2$ (c = 1.05 in DCM).

(4S,6S)-4-(2-methoxyphenyl)-6-(phenylthio)tetrahydro-2H-pyran-2-one (3gc) (Table 2, entry 7). 58.3 mg, 93% yield; Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.63 – 7.59 (m, 2H), 7.36 – 7.33 (m, 3H), 7.26 (td, J = 8.0, 1.7 Hz, 1H), 7.06 (dd, J = 7.5, 1.6 Hz, 1H), 6.94 (td, J = 7.5, 0.9 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 5.74 (dd, J = 11.4, 3.9 Hz, 1H), 3.81 (s, 3H), 3.53 (tt, J = 12.0, 4.7, 1H), 2.87 (ddd, J = 17.6, 5.4, 2.1 Hz, 1H), 2.57 (dd, J = 17.6, 11.7 Hz, 1H), 2.49 (dtd, J = 13.8, 3.9, 2.1 Hz, 1H), 2.11 – 2.03 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 170.2, 156.8, 133.1, 132.1, 129.6, 129.1, 128.4, 128.4, 126.5, 120.8, 110.7, 86.4, 55.2, 35.5, 34.5, 32.0; HRMS (EI) calcd for C₁₈H₁₈O₃S 314.0977, found 314.0977; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda =$ 254 nm): t_R (major) = 20.6 min, t_R (minor) = 24.6 min, ee = 94%; $[\alpha]^{25}_D = -25.3$ (c = 1.37 in DCM).

2-methoxy-4-((4*S*,6*S*)-2-*oxo*-6-(phenylthio)tetrahydro-2*H*-pyran-4-yl)phenyl acetate (3hc) (Table 2, entry 8). 60.8 mg, 82% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.61 – 7.58 (m, 2H), 7.37 – 7.34 (m, 3H), 7.02 – 6.99 (m, 1H), 6.73 (dd, *J* = 6.7, 1.9 Hz, 2H), 5.72 (dd, *J* = 11.3, 4.1 Hz, 1H), 3.82 (s, 3H), 3.18 (tt, *J* = 12.2, 4.4 Hz, 1H), 2.88 (ddd, *J* = 17.6, 5.1, 2.2 Hz, 1H), 2.60 – 2.47 (m, 2H), 2.31 (s, 3H), 2.04 – 1.91 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.3, 169.0, 151.4, 140.4, 138.9, 133.3, 131.6, 129.2, 128.7, 123.2, 118.3, 110.7, 86.2, 55.9, 37.3, 37.2, 36.3, 20.6; HRMS (EI) calcd for C₂₀H₂₀O₅S 372.1031, found 372.1024; HPLC (Chiralpak IA, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 36.7 min, *t*_R (minor) = 40.9 min, *ee* = 92%; [α]²⁵_D = -31.6 (*c* = 1.34 in DCM).

(4S,6S)-4-(furan-2-yl)-6-(phenylthio)tetrahydro-2H-pyran-2-one (3ic) (Table 2, entry 9). 43.8 mg,

80% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.59 – 7.58 (m, 2H), 7.35 – 7.33 (m, 4H), 6.31 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.06 (d, *J* = 3.2 Hz, 1H), 5.70 (dd, *J* = 11.3, 4.0 Hz, 1H), 3.32 (tt, *J* = 11.8, 4.6 Hz, 1H), 2.94 (ddd, *J* = 17.7, 5.3, 2.1 Hz, 1H), 2.66 (dtd, *J* = 14.1, 4.0, 2.2 Hz, 1H), 2.57 (dd, *J* = 17.7, 11.9 Hz, 1H), 1.95 (dt, *J* = 14.1, 11.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 168.8, 154.4, 142.1, 133.4, 131.6, 129.2, 128.7, 110.3, 105.0, 86.0, 34.2, 33.9, 31.2; HRMS (EI) calcd for C₁₅H₁₄O₃S 274.0664, found 274.0667; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 23.3 min, *t*_R (minor) = 19.0 min, *ee* = 91%; [α]²⁵_D = -67.7 (*c* = 0.96 in DCM).

(4*S*,6*S*)-4-ethyl-6-(phenylthio)tetrahydro-2*H*-pyran-2-one (3jc) (Table 2, entry 10). 33.4 mg, 71% yield; Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.58 – 7.56 (m, 2H), 7.35 – 7.32 (m, 3H), 5.59 (dd, *J* = 11.2, 4.0 Hz, 1H), 2.68 (ddd, *J* = 17.5, 5.2, 2.0 Hz, 1H), 2.36 (dtd, *J* = 13.9, 4.0, 2.2 Hz, 1H), 2.05 (dd, *J* = 17.5, 11.6 Hz, 1H), 1.91 – 1.82 (m, 1H), 1.48 (dt, *J* = 13.9, 11.4 Hz, 1H), 1.37 (p, *J* = 7.3, 2H), 0.93 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 170.1, 133.0, 132.1, 129.1, 128.4, 86.4, 35.9, 34.8, 33.3, 28.7, 10.7; HRMS (EI) calcd for C₁₃H₁₆O₂S 236.0871, found 236.0870; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 35.2 min, *t*_R (minor) = 40.4 min, *ee* = 94%; [α]²⁵_D = -11.9 (*c* = 0.86 in DCM).

(4*S*,6*S*)-4-pentyl-6-(phenylthio)tetrahydro-2*H*-pyran-2-one (3kc) (Table 2, entry 11). 38.2 mg, 69% yield; Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.57 – 7.55 (m, 2H), 7.34 – 7.32 (m, 3H), 5.59 (dd, *J* = 11.3, 4.0 Hz, 1H), 2.67 (ddd, *J* = 17.4, 5.0, 2.0 Hz, 1H), 2.37 – 2.32 (m, 2H), 2.05 (dd, *J* = 17.4, 11.6 Hz, 1H), 1.95 – 1.91 (m, 1H), 1.48 (dt, *J* = 13.8, 11.4 Hz, 1H), 1.37 – 1.26 (m, 8H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 170.1, 133.0, 132.1, 129.1, 128.4, 86.4, 36.2, 35.8, 35.2, 31.7, 31.6, 25.9, 22.5, 14.0; HRMS (EI) calcd for C₁₆H₂₂O₂S 278.1341, found 278.1341; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 18.1 min, *t*_R (minor) = 20.7 min, *ee* = 94%; [α]²⁵_D = -20.6 (*c* = 0.89 in DCM).

(4*S*,6*S*)-6-(4-fluorophenylthio)-4-phenyltetrahydro-2*H*-pyran-2-one (3ad) (Table 2, entry 12). 51.6 mg, 85% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.62 – 7.59 (m, 2H), 7.36 (dd, J = 10.3, 4.7 Hz, 2H), 7.30 – 7.27 (m, 1H), 7.17 – 7.15 (m, 2H), 7.08 – 7.04 (m, 2H), 5.65 (dd, J = 11.3, 4.1 Hz, 1H), 3.19 (tt, J = 12.0, 4.4 Hz, 1H), 2.88 (ddd, J = 17.7, 5.1, 2.3 Hz, 1H), 2.56 – 2.50 (m, 2H), 1.96 (ddd, J = 13.9, 12.2, 11.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.4, 164.3, 162.3, 141.4, 136.2, 136.2, 129.1, 127.5, 126.5, 126.4, 116.4, 116.2, 86.4, 37.4, 37.2, 36.2; HRMS (EI) calcd for C₁₇H₁₅O₂FS 302.0777, found 302.0777; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 22.7 min, $t_{\rm R}$ (minor) = 16.6 min, ee = 91%; $[\alpha]^{25}{}_{\rm D} = -76.2$ (c = 1.01 in DCM).

(4*S*,6*S*)-6-(4-chlorophenylthio)-4-phenyltetrahydro-2*H*-pyran-2-one (3ae) (Table 2, entry 13). 50.6 mg, 79% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.54 – 7.52 (m, 2H), 7.38 – 7.31 (m, 4H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 5.69 (dd, *J* = 11.3, 4.1 Hz, 1H), 3.19 (tt, *J* = 12.3, 4.4 Hz, 1H), 2.89 (ddd, *J* = 17.7, 5.1, 2.2 Hz, 1H), 2.58 – 2.52 (m, 2H), 1.98 (dt, *J* = 13.8, 11.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.3, 141.4, 135.1, 134.7, 130.2, 129.4, 129.1, 127.6, 126.4, 86.1, 37.4, 37.2, 36.3; HRMS (EI) calcd for C₁₇H₁₅O₂ClS 318.0481, found 318.0485; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 23.8 min, *t*_R (minor) = 18.0 min, *ee* = 92%; [α]²⁵_D = -90.1 (*c* = 1.05 in DCM).

(4S,6S)-6-(4-methoxyphenylthio)-4-phenyltetrahydro-2*H*-pyran-2-one (3af) (Table 2, entry 14).
53.6 mg, 85% yield; White solid; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.56 – 7.53 (m, 2H), 7.35 (dd, J = 10.3, 4.7 Hz, 2H), 7.28 (dt, J = 3.9, 1.6 Hz, 1H), 7.15 (d, J = 7.2 Hz, 2H), 6.90 – 6.88 (m, 2H), 5.59 (dd, J = 11.2, 4.1 Hz, 1H), 3.82 (s, 3H), 3.16 (tt, J = 12.0, 4.5 Hz, 1H), 2.85 (ddd, J = 17.7, 5.1, 2.3 Hz, 1H), 2.53 – 2.45 (m, 2H), 1.94 (ddd, J = 13.9, 12.3, 11.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ S10

(ppm): 169.6, 160.6, 141.7, 136.4, 129.0, 127.4, 126.4, 121.5, 114.7, 86.7, 55.4, 37.4, 37.2, 36.3; HRMS (EI) calcd for C₁₈H₁₈O₃S 314.0977, found 314.0978; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 43.3 min, $t_{\rm R}$ (minor) = 28.1 min, ee = 92%; $[\alpha]^{25}_{D} = -60.3$ (*c* = 1.08 in DCM).

(4S,6S)-6-(2-methoxyphenylthio)-4-phenyltetrahydro-2H-pyran-2-one (3ag) (Table 2, entry 15). 52.7 mg, 84% yield; Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.61 (dd, J = 7.6, 1.6 Hz, 1H), 7.37 - 7.27 (m, 4H), 7.21 - 7.18 (m, 2H), 6.97 (td, J = 7.5, 1.1 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 5.87 (dd, *J* = 10.9, 4.3 Hz, 1H), 3.89 (s, 3H), 3.20 (tt, *J* = 12.6, 4.4 Hz, 1H), 2.88 (ddd, *J* = 17.5, 5.0, 2.3 Hz, 1H), 2.63 – 2.56 (m, 2H), 2.05 (ddd, J = 14.0, 12.2, 11.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.6, 158.4, 141.7, 134.4, 130.0, 129.0, 127.4, 126.4, 121.4, 119.9, 111.1, 84.5, 55. 9, 37.4, 37.3, 36.0; HRMS (EI) calcd for C₁₈H₁₈O₃S 314.0977, found 314.0979; HPLC (Chiralpak IA, *i*propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): t_R (major) = 11.1 min, t_R (minor) = 13.1 min, ee = 94%; $[\alpha]^{25}_{D} = -67.5$ (c = 0.96 in DCM).

(4S,6S)-6-(3,4-dimethoxyphenylthio)-4-phenyltetrahydro-2H-pyran-2-one (3ah) (Table 2, entry **16).** 54.8 mg, 80% yield; Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.35 (dd, J = 10.2, 4.7 Hz, S11

2H), 7.30 – 7.25 (m, 2H), 7.19 (dd, J = 8.3, 2.1 Hz, 1H), 7.16 – 7.13 (m, 3H), 6.85 (d, J = 8.3 Hz, 1H), 5.63 (dd, J = 11.2, 4.2 Hz, 1H), 3.89 (s, 6H), 3.20 – 3.13 (m, 1H), 2.85 (ddd, J = 17.7, 5.1, 2.3 Hz, 1H), 2.55 – 2.43 (m, 2H), 1.94 (ddd, J = 13.9, 12.3, 11.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.6, 150.1, 149.1, 141.6, 129.0, 127.9, 127.4, 126.4, 121.7, 117.7, 111.4, 86.6, 56.1, 55.9, 37.3, 37.21, 36.3; HRMS (EI) calcd for C₁₉H₂₀O₄S 344.1082, found 344.1081; HPLC (Chiralpak IA, *i*propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (major) = 46.4 min, t_R (minor) = 52.4 min, ee = 92%; $[\alpha]^{25}{}_{\rm D} = -61.1$ (c = 0.99 in DCM).

(4*S*,6*S*)-6-(phenylthio)-4-styryltetrahydro-2*H*-pyran-2-one (3lc) (Table 2, entry 17). 46.2 mg, 74% yield; Pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.55 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.31 – 7.21 (m, 8H), 6.39 (d, *J* = 15.9 Hz, 1H), 5.97 (dd, *J* = 15.9, 7.0 Hz, 1H), 5.63 (dd, *J* = 11.2, 4.0 Hz, 1H), 2.82 – 2.72 (m, 2H), 2.42 (ddd, *J* = 13.9, 6.1, 3.8 Hz, 1H), 2.29 (dd, *J* = 17.2, 11.4 Hz, 1H), 1.72 (dt, *J* = 13.8, 11.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.2, 136.3, 133.3, 131.7, 130.8, 129.9, 129.2, 128.7, 128.6, 127.9, 126.2, 86.1, 35.7, 35.1, 35.1; HRMS (EI) calcd for C₁₉H₁₈O₂S 310.1028, found 310.1035; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 36.6 min, $t_{\rm R}$ (minor) = 29.6 min, ee = 80%; $[\alpha]^{25}{\rm p} = -48.2$ (c = 0.78 in DCM).

(*R*)-S-phenyl 5-*oxo*-3-phenylpentanethioate (4). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 9.74 (s, 1H), 7.47 – 7.45 (m, 3H), 7.42 – 7.38 (m, 4H), 7.34 – 7.31 (m, 3H), 3.95 – 3.86 (m, 1H), 3.09 (d, *J* = 7.2 Hz, 2H), 3.00 – 2.89 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 200.4, 195.6, 141.8, 134.4, 129.5, 129.2, 128.8, 127.4, 127.2, 49.5, 49.0, 36.7; HRMS (EI) calcd for C₁₇H₁₆O₂S 284.0871, found 284.0878.

3. Proposed Mechanism

Our proposed mechanism is illustrated in Scheme below. Initially, malonic half-thioester 2a reacts with triethyl amine to form the intermediate **B** and follow to attack the iminium intermediate **A**. A subsequent decarboxylation triggers the formation of the Michael addition intermediate C. A hydrolysis of intermediate C would lead to a recycle of cat.VI and generates the intermediate D. The intermediate **D** undergoes a sequence of tautomerization, cyclization and nucleophilic addition to afford the product **3ac**. As proof of this mechanism, we set out to investigate the key intermediate **4**. As indicated in eqn. (2), the synthesized compound 4 was found to be an active intermediate and could generate 3ac under weak base or base-free condition (95% and 11% yield, respectively) and gave no loss of ee. Meanwhile, we found that this process did not require Cat. IV. This result suggests that the compound 4 may involve in this transformation as a potential key intermediate. To further understand this mechanism, we then investigated the proton transfer in the process of **3ac** formation. we conducted an isotopic experiment using deuterated half-thioester d-2c to react with cinnamaldehyde 1a under standard conditions. ¹H NMR analysis of *d*-3ac demonstrated the isotope labelling of two protons located at α -position of carbonyl group is ab. 49:51 (eqn. (2)). It suggests that the water (generated from the condensation of cinnamaldehyde 1a and cat. VI), functionalized as a potential proton source, is not involved in Michael addition step.

490.6 mg (2.5 mmol) of malonic acid half thioester (MAHT) **2c** was placed into a 50 mL flask and 5.0 mL of acetonitrile was added. When the MAHT **2c** has dissolved, 6.0 mL D₂O was added and the solution was stirred for 6 hours under nitrogen. The solvent was removed under vaccum and the process was repeated two more tie s to yield 473.2 mg (95% yield) of the product *d*-**2c**.^[1] ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.46 – 7.42 (m, 5H), 3.70 (s, 0.2H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 189.9, 170.5, 134.4, 130.0, 129.4, 126.4, 48.0 (t, 1C, *J* = 20.5 Hz).

To a solution of cinnamaldehyde **1a** (66.1 mg, 62.9 uL, 0.5 mmol,) in CH₃CN (2.5 mL) was added catalyst **VI** (64.0 mg, 0.1 mmol) at 0 °C. After 40 min, *d*-**2c** (249.0 mg, 1.25 mmol) was added in one portion. Then, TEA (126.2 mg, 173.9 uL, 1.25 mmol) was added dropwise at 0 °C. The resulting reaction mixture was kept stirring at 0°C for 24 h. The crude product was purified by silica gel flash chromatography, eluted by hexane/EtOAc = 10:1 to afford the desired product *d*-**3ac** as white solid (89.1 mg, 62% yield). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.60 (dd, *J* = 6.4, 3.2 Hz, 2H), 7.40 – 7.32 (m, 5H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 2H), 5.74 (dd, *J* = 11.2, 4.0 Hz, 1H), 3.23 – 3.14 (m, 1H), 2.88 (dd, *J* = 17.7, 5.0 Hz, 0.49H), 2.59 – 2.49 (m, 1H), 2.04 – 1.97 (m, 0.49H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 169.5, 141.5, 133.3, 131.8, 129.2, 129.1, 128.6, 127.5, 126.4, 86.3, 86.3, 86.3, 86.2, 37.4, 37.3, 37.2, 36.3.

4. Application

Synthesis of (-)-Paroxetine

To a solution of 4-fluorocinnamaldehyde **1m** (300.1 mg, 2.0 mmol,) in DCM (5.0 mL) was added catalyst **VI** (238.8 mg, 0.4 mmol) at 0 °C. After 40 min, malonic acid half thioester **2c** (981.1 mg, 5.0 mmol) was added in one portion. Then, TEA (695.6 uL, 5.0 mmol) in 5.0 mL DCM was added

dropwise *via* syringe at 0 °C. The resulting reaction mixture was kept stirring at 0°C for 24 h. The crude product was purified by silica gel flash chromatography, eluted by hexane/EtOAc = 10:1 to afford the desired product **3mc** as a white solid (436.2 mg, 72% yield, 91% *ee*).¹H NMR (500 MHz, CDCl₃) δ = 7.59 (dd, *J* = 6.2, 2.8 Hz, 2H), 7.39 – 7.33 (m, 3H), 7.13 (dd, *J* = 8.5, 5.3 Hz, 2H), 7.04 (t, *J* = 8.6 Hz, 2H), 5.72 (dd, *J* = 11.2, 4.1 Hz, 1H), 3.18 (ddd, *J* = 12.3, 8.4, 4.5 Hz, 1H), 2.87 (ddd, *J* = 17.6, 5.0, 2.1 Hz, 1H), 2.57 – 2.46 (m, 2H), 1.97 (dd, *J* = 25.7, 11.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 169.2, 163.0, 161.0, 137.3, 137.3, 133.4, 131.7, 129.2, 128.7, 128.0, 127.9, 116.1, 115.9, 86.2, 37.4, 36.8, 36.4; HRMS (EI) calcd for C₁₇H₁₅FO₂S 302.0777, found 302.0771; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (minor) = 23.4 min, *t*_R (major) = 25.8 min, *ee* = 91%; [α]²⁵_D = -78.2 (*c* = 1.51 in DCM).

Compound **3mc** (302.36mg, 1.0 mmol) was added to a suspension of Raney Ni (0.3 g) in absolute MeOH (5.0 mL). The mixture was stirred for 10 hours at room temperature, before the Raney Ni was removed by filtration through a celite pad. Then the catalyst was washed with absolute MeOH (3×10 mL) and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (hexane–EtOAc = 6:1) to afford the compound **4** as a colorless oil (156.1 mg, 70% yield). ¹H NMR (300 MHz, CDCl₃) δ = 9.64 (t, *J* = 1.5 Hz, 1H), 7.23 – 7.12 (m, 2H), 7.03 – 6.94 (m, 2H), 3.78 – 3.68 (m, 1H), 3.58 (s, 3H), 2.88 – 2.71 (m, 2H), 2.71 – 2.56 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 200.3, 171.8, 163.3, 160.0, 138.1, 138.1, 128.8, 128.7, 115.7, 115.4, 51.6, 49.4, 40.6, 35.3; HRMS (EI) calcd for C₁₂H₁₃FO₃ 224.0849, found 224.0841.

Sodium borohydride (11.3 mg, 0.3 mmol) was added into a solution of compound **4** (44.8 mg, 0.20 mmol) in MeOH (2.0 mL) at 0°C. The reaction mixture was stirred at 0°C for 10 min. Then water (1 mL) was added to quench this reaction. The mixture was extracted with CH₂Cl₂ and the combined organic layers were dried with MgSO₄. Filtration and evaporation of the solvent gave a residue which was purified by silica gel column chromatography (hexane–EtOAc = 3:1) to afford the product **5** as a colorless oil (39.4 mg, 87% yield, 94% *ee*). ¹H NMR (500 MHz, CD₃OD) δ = 7.25 – 7.22 (m, 2H), 7.02 – 6.99 (m, 2H), 3.54 (s, 3H), 3.42 (ddd, *J* = 11.0, 6.9, 5.3 Hz, 1H), 3.37 – 3.32 (m, 1H), 3.31 – 3.24 (m, 1H), 2.70 (dd, *J* = 15.2, 6.4 Hz, 1H), 2.59 (dd, *J* = 15.2, 9.0 Hz, 1H), 1.94 – 1.87 (m, 1H), 1.82 – 1.76 (m, 1H); ¹³C NMR (125 MHz, CD₃OD) δ = 174.3, 164.0, 162.1, 140.8, 140.8, 130.3, 130.3, 116.1, 116.0, 60.5, 51.9, 42.3, 39.9, 39.3; HRMS (EI) calcd for C₁₂H₁₅FO₃ 226.1005, found 226.0999; HPLC (Chiralpak OB-H, *i*-propanol/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm): *t*_R (major) = 11.1 min, *t*_R (minor) = 14.1 min, *ee* = 94%; [α]²⁵_D = -16.0 (*c* = 1.06 in DCM).

Reference:

[1] K. C. Fortner, M. D. Shair J. Am. Chem. Soc. 2007, 129, 1032.

[2] a) H. Shimizu, S. Fukuda, S. Sugiyama, T. Satoh *Synthesis* 2009, *8*, 1323–1335; b) M. Ochiai, K. Nishide, M. Node, E. Fujita *Chem. Lett.* 1981, 283–284.

[3] M. S. Yu, I. Lantos, Z.-Q. Peng, J. Yu, T. Cacchio Tetrahedron Lett. 2000, 41, 5647–5651.

5. HPLC and NMR Spectra Compound 3ac

Compound 3bc

Compound 3cc

Compound 3dc

Compound 3ec

Compound 3fc

Compound 3gc

Compound 3hc

Compound 3jc

Compound 3ad

Compound 3ae

Compound 3af

S32

Compound 3ag

Compound 4

.....

210 200 190

110 100 (ppm)

90 80 70

60

50

40

30

20

150 140

170 160

180

130 120

Compound *d*-3ac

Compound 6

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq638.lcd Acquired by : Admin Sample Name : RQD252 Sample ID : RQ Data File Name : rq638.lcd Method File Name : 20%IPA, 1ml-min, 60min.lcm Batch File Name : Default.lcr Description : IC column ;20%IPA ;1ml/min

min

Chromatogram

Detector A Ch1 254nm

Total

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.000	26608734	710566	50.861	56.523
2	28.459	25708355	546556	49.139	43.477
Total		52317088	1257122	100.000	100.000

Enantiomeric enriched 3ac ==== Shimadzu LCsolution Analysis Report ====

Detector A Ch1 254nm Peak# Height % 5.609 Ret. Time Area 833667 Height 25663 Area % 23.035 4.195 1 95.805 28.230 19038519 431887 94.391 2

19872186

100.000

100.000

457551

==== Shimadzu LCsolution Analysis Report ====

Enantiomeric enriched 3bc

==== Shimadzu LCsolution Analysis Report ====

S43

Racemic 3cc

==== Shimadzu LCsolution Analysis Report ====

Enantiomeric enriched 3cc

Detector II						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	26.910	897338	17032	2.382	3.302	
2	36.475	36767452	498801	97.618	96.698	
Total		37664790	515834	100.000	100.000	

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq630.Icd Acquired by : Admin : RQD249 Sample Name Sample ID : RQ Data File Name rq630.lcd : 10%IPA, 1ml-min, 40min.lcm Method File Name Batch File Name **Report File Name** : Default.lcr Description :IA column ;10%IPA ;1ml/min

Chromatogram

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	29.698	3127544	52949	48.780	51.536
2	33.067	3283933	49793	51.220	48.464
Total		6411476	102743	100.000	100.000

Enantiomeric enriched 3dc ==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq562.Icd Acquired by : Admin Sample Name : RQD189 Sample ID : RQ Data File Name : rq562.Icd Method File Name : 20%IPA, 1ml-min, 60min.Icm Batch File Name : Default.Icr Description :IC column ;20%IPA ;1ml/min

Chromatogram RQD189 C:\Users\User\Desktop\LC data\Ren Qiao\rq562.lcd

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	37.504	5838647	101256	51.328	54.254
2	42.330	5536554	85378	48.672	45.746
Total		11375202	186634	100.000	100.000

Enantiomeric enriched 3ec ==== Shimadzu LCsolution Analysis Report ====

Detector A	Ch1 254nm		
Peak#	Ret. Time	Area	Height
1	38.013	926540	16419
2	42.913	14323915	210569

15250455

Total

C	Λ	6
S	4	υ

226989

Area %

6.075

93.925

100.000

Height % 7.233 92.767

100.000

Racemic 3fc

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq611.lcd Acquired by : Admin Sample Name : RQD226 Sample ID : RQ Data File Name : rq611.lcd : 20%IPA, 1ml-min, 60min.lcm Method File Name Batch File Name Report File Name : Default.lcr :IC column ;20%IPA ;1ml/min Description

Chromatogram RQD226 C:\User\User\Desktop\LC data\Ren Qiao\rq611.lcd

Detector A Ch1 254nm

Total

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.108	10637781	302769	49.696	54.152
2	25.467	10767997	256339	50.304	45.848
Total		21405778	559109	100.000	100.000

Enantiomeric enriched 3fc

==== Shimadzu LCsolution Analysis Report ====

C	Λ	7
С	4	1

100.000

100.000

455418

18233463

Racemic 3gc

==== Shimadzu LCsolution Analysis Report ====

Enantiomeric enriched 3gc

	CH1 20 mm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.563	20067047	612236	96.845	96.949
2	24.636	653794	19268	3.155	3.051
Total		20720841	631504	100.000	100.000

Racemic 3hc

==== Shimadzu LCsolution Analysis Report ====

Enantiomeric enriched 3hc

12957592

Total

==== Shimadzu LCsolution Analysis Report ====

100.000

100.000

144743

Detector A Ch1 254ni	n
----------------------	---

Peak#	Ret. Time	Area	Height	Area %	Height %
1	36.663	23362226	268178	96.062	95.617
2	40.923	957630	12292	3.938	4.383
Total		24319856	280470	100 000	100 000

Racemic 3ic

==== Shimadzu LCsolution Analysis Report ====

Enantiomeric enriched 3ic

Racemic 3jc

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq635.Icd Acquired by : Admin Sample Name : RQD237 Sample ID : RQ Data File Name : rq635.Icd Method File Name : 10%IPA, 1ml-min, 40min.Icm Batch File Name : Report File Name : Default.Icr Description :IC column;10%IPA;1ml/min

Detector A Ch1 254nm

Total

Peak#	Ret. Time	Area	Height	Area %	Height %
1	34.895	32378652	542495	48.831	52.346
2	39.582	33928905	493863	51.169	47.654
Total		66307557	1036357	100.000	100.000

Enantiomeric enriched 3jc ==== Shimadzu LCsolution Analysis Report ====

C	5	1
С	J	L

100.000

100.000

429267

24691005

Racemic 3kc

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq624.lcd Acquired by : Admin Sample Name : RQD239 Sample ID : RQ Data File Name : rq624.lcd Method File Name : 20%IPA, 1ml-min, 60min.lcm Batch File Name : Report File Name : Default.lcr Description :IC column ;20%IPA ;1ml/min

Chromatogram

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.390	2859785	94585	49.460	51.736
2	20.758	2922266	88237	50.540	48.264
Total		5782051	182822	100.000	100.000

Enantiomeric enriched 3kc

Racemic 3ad ==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq576.lcd Acquired by : Admin Sample Name : RQD197 Sample ID : RQ Data File Name : rq576.lcd Method File Name : 20%IPA, 1ml-min, 60min.lcm Batch File Name : Report File Name : Default.lcr Description : IC column ;20%IPA ;1ml/min

Chromatogram RQD197 C:\Users\User\Desktop\LC data\Ren Qiao\rq576.lcd

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.272	4630889	178695	51.427	58.966
2	22.311	4373877	124353	48.573	41.034
Total		9004766	303048	100.000	100.000

Enantiomeric enriched 3ad

Peak#	Ret. Time	Area	Height	Area %	Height %		
1	16.577	301209	12005	4.368	6.287		
2	22.713	6594935	178957	95.632	93.713		
Total		6896144	190963	100.000	100.000		

==== Shimadzu LCsolution Analysis Report ====

Enantiomeric enriched 3ae ==== Shimadzu LCsolution Analysis Report ====

200000111					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.017	1135894	43070	3.957	5.818
2	23.832	27566808	697248	96.043	94.182
Total		28702702	740318	100.000	100.000

Racemic 3af

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq590.Icd Acquired by : Admin Sample Name : RQD198 Sample ID : RQ Data File Name : rq590.lcd Method File Name : 20%IPA, 1ml-min, 60min.lcm Batch File Name Report File Name : Default.lcr Description :IC column ;20%IPA ;1ml/min

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	27.916	4224521	99983	48.393	61.528
2	43.064	4505142	62517	51.607	38.472
Total		8729663	162500	100.000	100.000

Enantiomeric enriched 3af ==== Shimadzu LCsolution Analysis Report ====

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	28.076	392577	9216	4.082	6.449
2	43.298	9225059	133679	95.918	93.551
Total		9617636	142895	100.000	100.000

.000

Racemic 3ag

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq602.Icd Acquired by : Admin Sample Name : RQD216 Sample ID : RQ Data File Name : rq602.lcd : 20%IPA, 1ml-min, 60min.lcm Method File Name Batch File Name Report File Name : Default.lcr :IA column ;20%IPA ;1ml/min Description

Chromatogram RQD216 C:\Users\User\Desktop\LC data\Ren Qiao\rq602.lcd

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.121	22384221	887664	51.888	53.124
2	13.032	20755478	783270	48.112	46.876
Total		43139698	1670934	100.000	100.000

Enantiomeric enriched 3ag

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq606.lcd Acquired by : Admin Sample Name : RQD220 Sample ID : RQ Data File Name : rq606.lcd Method File Name : 5%IPA, 1ml-min, 60min.lcm Batch File Name : Report File Name : Default.lcr Description :IA column ;5%IPA ;1ml/min

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	47.007	59266757	479863	50.548	48.225
2	52.474	57980817	515184	49.452	51.775
Total		117247574	995047	100.000	100.000

Enantiomeric enriched 3ah

Racemic 3lc

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq831.lcd Acquired by : Admin P Sample Name : RQE245 Sample ID : RQ Data File Name : rq831.lcd Method File Name : 20%IPA, 1ml-min, 60min.lcm Batch File Name : Report File Name : Default.lcr Description :IC column with IC guard column ;20%IPA ;1 ml/min

Chromatogram RQE245 C:\Users\User\Desktop\LC data\Ren Qiao\rq831.lcd

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	29.790	16257114	336926	49.968	55.364
2	36.965	16278012	271643	50.032	44.636
Total		32535126	608569	100.000	100.000

Enantiomeric enriched 3lc

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq818.lcd Acquired by : Admin Sample Name : RQE218 Sample ID : RQ Data File Name : rq818.lcd Method File Name : 20%IPA, 1ml-min, 60min.lcm Batch File Name : Report File Name : Default.lcr Description :IC column with IC guard column ;20%IPA ;1.0 ml/min

Detector A Ch1 254nm

ſ	Peak#	Ret. Time	Area	Height	Area %	Height %
Γ	1	23.684	7026566	185963	51.415	53.779
	2	26.322	6639880	159827	48.585	46.221
Γ	Total		13666446	345790	100.000	100.000

Enantiomeric enriched 3mc ==== Shimadzu LCsolution Analysis Report ====

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.372	639316	21563	4.590	6.471
2	25.811	13290067	311654	95.410	93.529
Total		13929383	333216	100.000	100.000

Racemic 6

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Ren Qiao\rq823.lcd O Acquired by : Admin Sample Name : RQE220 OMe Sample ID : RQ Data File Name : rq823.lcd OH Method File Name : 10%IPA, 0.8ml-min, 60min.lcm Batch File Name Report File Name : Default.lcr Description :OB column with IC guard column ;10%IPA ;0.8 ml/min

Detector A Ch1 254nm

	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	11.626	7002163	187405	48.057	57.625
ſ	2	13.863	7568298	137812	51.943	42.375
	Total		14570461	325217	100.000	100.000

Enantiomeric enriched 18

Detector A	Ch1 254nm
------------	-----------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.144	28971570	602648	97.036	97.183
2	14.106	885070	17468	2.964	2.817
Total		29856640	620116	100.000	100.000