Stereochemical Aspects and Synthetic Scope of the $S_{H} i$ at the Sulfur Atom. Preparation of Enantiopure 3-Substituted 2,3-Dihydro-1,2-Benzoisothiazole 1-Oxides and 1,1-Dioxides

José A. Fernández-Salas, M. Mercedes Rodríguez-Fernández,* M. Carmen Maestro* and José L. García-Ruano
Departamento de Química Orgánica. Universidad Autónoma de Madrid. Cantoblanco. 28049-Madrid. Spain
E-mail; mercedes.rodriguez@uam.es; carmen.maestro@uam.es:

SUPPORTING INFORMATION
 Table of contents:

General Considerations S2
Radical addition. General procedure S2
Characterization of bromo sulfinamides 4 S2-S6
Radical cyclization. General procedure S6
Characterization of benzosulfinamides 5 S6-S9
Oxidation. General procedure S9
Characterization of benzosulfonamides 6 S9-S13
NMR Spectra S14-S39

General Considerations.

NMR spectra were acquired on a Bruker AC-300 instrument at 300 and 75.5 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively. Chemical shifts (δ) are reported in parts per million relative to residual solvent signals $\left(\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.0 ppm for ${ }^{13} \mathrm{C}$ NMR spectra; MeOH- $\mathrm{d}_{4} 3,31 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and 49.0 ppm for ${ }^{13} \mathrm{C}$ NMR). ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a broad-band decoupled mode. Optical rotations were measured on a PerkinElmer 241 polarimeter. Mass spectra (MS) were obtained by ESI or FAB+ (matrix: m-NBA) ionization mode. High resolution mass spectra (HRMS) were performed by ESI ionization mode using a time of-flight (TOF) mass analyzer or FAB+ ionization mode. Analytical thin layer chromatography (TLC) was performed using precoated aluminum-packed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or phosphomolybdic acid dip. Flash column chromatography was performed using silica gel (230-400 mesh). All reactions were carried out in anhydrous solvents. THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried with molecular sieves. Commercially available starting materials were used without purification.

Sulfinimine 3 was prepared from 2-bromobenzaldehyde and (R)-tertbutanesulfinamide, according to the known literature procedure. ${ }^{1}$ The characterization was effected by comparison of its physical and spectroscopic data with those reported. ${ }^{2}$

Radical Addition. General procedure

To a solution of sulfinimine $\mathbf{3}(0.2 \mathrm{mmol})$ in DCM ($3 \mathrm{~mL}, 0.04 \mathrm{M}$), under argon atmosphere, was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($0.42 \mathrm{mmol}, 2.1$ equiv). After 5 min under stirring, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and then, the alkyl iodide ($2.0 \mathrm{mmol}, 10$ equiv), tributyltin hydride ($0.5 \mathrm{mmol}, 2.5$ equiv), triethylborane ($0.5 \mathrm{mmol}, 1 \mathrm{M}$ hexane, 2.5 equiv) and O_{2} (5 mL , via syringe) were added in this order. Successive additions of triethylborane ($0.25 \mathrm{mmol}, 1 \mathrm{M}$ hexane) and O_{2} (5 mL , via syringe) were added every 1 or 1.5 hour until the imine disappearance (TLC). Then, the reaction was treated with aq. NaHCO_{3} solution. The aqueous phase was extracted with DCM ($3 \times 5 \mathrm{~mL}$). The organic extracts were washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue purified by flash chromatography on silica gel:KF (9:1) with a $1: 1$ mixture of n-hexane:ethyl acetate as the eluent.
Sulfinamides 4a-d ${ }^{3}$ were prepared from the corresponding alkyl iodide according to the above general procedure with the following isolated yields: $\mathbf{4 a}(\mathrm{R}=\mathrm{Et}, 80 \%), \mathbf{4 b}(\mathrm{R}=i \operatorname{Pr}$, $91 \%), 4 \mathrm{c}(\mathrm{R}=\mathrm{Cy}, 90 \%), 4 \mathrm{~d}(\mathrm{R}=t \mathrm{Bu}, 75 \%)$.

[^0]$\left(S, R_{S}\right)-N$-[(2-Bromophenyl)(phenyl)methyl]-2-methylpropane-2-sulfinamide (4e), known compound ${ }^{4}$

According to the reported procedure ${ }^{5}$, to a solution of sulfinimine $3(0.16$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added phenyl magnesium bromide (0.32 mmol , 1.0 M in THF) at $-48^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h at the same temperature. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. A 92:8 diastereomeric mixture was obtained. The major diastereomer was separated by flash chromatography on silica gel (n-hexane:AcOEt, 1:1). Yield: 90%; $[\alpha]^{20}{ }_{\mathrm{D}}-36\left(c 0.50, \mathrm{CHCl}_{3}\right.$). $\left[\mathrm{Lit}^{4}[\alpha]^{20}{ }_{\mathrm{D}}-35.1(c \quad 0,97, \mathrm{EtOH}),\left(S, R_{S}\right), 99 \% d e\right]{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.61-7.59(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 141.0,140.5,133.3,129.5,129.0,128.8$, $128.0,127.8,127.4,124.0,61.2,56.1,22.7$. MS (FAB+) m/z 366-368 [(M+1) $\left.{ }^{+}, 39\right], 245-247$ (28), 73 (58), 57 (100). HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NOSBr}[\mathrm{M}+1]^{+}, 366.0527$; found 366.0526.

$\left(S, R_{S}\right)-N$ - $\{[2-B r o m o p h e n y l][3-[(t e r t-b u t y l d i m e t h y l s i l y l o x y) m e t h y l] p h e n y l\} m e t h y l-2-$ methylpropane-2-sulfinamide (4f).

To a solution of sulfinimine $3(0.16 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added fresh 3-[(tert-butyldimethylsilyloxy)methyl]phenylmagnesium bromide ${ }^{6}(0.56 \mathrm{mmol}$ in THF 1.5 mL$)$ at $-48^{\circ} \mathrm{C}$. The mixture was stirred at $-48^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer extracted with $\operatorname{AcOEt}(3 \mathrm{x} 10 \mathrm{~mL}$). The combined organic phases were washed with saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. A 95:5 diastereomeric mixture was obtained. The major diastereomer was separated by flash chromatography on silica gel (n-hexane:AcOEt, 3:1). Yield: 93\%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-53\left(c 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{dd}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dt}, \mathrm{J}=7.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 142.1,141.0,140.5,133.3,129.6,129.0,128.7,127.5,126.6,125.6,125.2$, $124.0,64.7,61.0,56.0,26.0,22.7,18.4,-5.3 . \mathrm{MS}(\mathrm{FAB}+) m / z 510-512(\mathrm{M}+1)^{+}, 452-454,389-$

[^1]391, 378-380, 355. HRMS (FAB+) calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{2} \mathrm{SiSBr}[\mathrm{M}+1]^{+}$, 510.1498; found 510.1486.

$\left(R, R_{S}\right)-N$ - $\{1-(2-B r o m o p h e n y l)-2-[d i m e t h y l(p h e n y l) s i l y l] e t h y l\}-2-m e t h y l p r o p a n e-2-~$ sulfinamide (4g).

To a solution of the sulfinimine $3(0.16 \mathrm{mmol})$ in THF (1 mL) was added the [(dimethylphenylsilyl)methyl]magnesium chloride ${ }^{7}$ (0.80 mmol in THF 1 mL) at rt . The mixture was stirred at rt for 3 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Compound $\mathbf{4 g}$ was obtained as the sole diastereoisomer. The residue was purified by flash chromatography on silica gel (n-hexane:AcOEt, 3:1). Yield: 94%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-91\left(c 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{dt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (ddd, $J=7.9,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{dd}, J=14.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45$ $(\mathrm{dd}, J=14.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $143.1,138.3,133.9,133.2,129.4,128.9,128.2,128.8,127.6,123.4,77.4,55.6,26.6,22.5,-2.2$, -3.2. MS (FAB+) m/z 438-440 [(M+1) ${ }^{+}$16], 135 (100), 57 (55). HRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NOSBrSi}[\mathrm{M}+1]^{+}, 438.0923$; found 438.0917 .

(S, R_{S})-tert-Butyl 3-(2-bromophenyl)-3-(1,1-dimethylethylsulfinamido)propanoate (4h).

To a solution of Zn^{8} dust (0.6 mmol) in anhydrous THF (1 mL) at rt under argon atmosphere, tert-butyl bromoacetate (0.6 mmol) was added. The resulting reaction mixture was heated to reflux temperature and stirred for 30 min . Then, the reaction was cooled to rt and a solution of imine $\mathbf{3}$ (0.24 mmol) in anhydrous THF (0.5 mL) was added. After 30 min , the mixture was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with ethyl acetate (3 x 10 $\mathrm{mL})$. The combined organic phases were washed with saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure. Compound $\mathbf{4 h}$ was obtained as the sole diastereoisomer. The residue was purified by flash column chromatography on silica gel (n hexane:AcOEt, 2:1). Yield: 97\%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-79\left(c 0.55, \mathrm{CHCl}_{3} .{ }^{1} \mathrm{H}\right.$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{dd}, J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{dt}, J=1.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.5$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.4,140.1,133.3,129.2,128.9,127.6,123.4,81.8,56.0,55.4,41.9,28.1,22.8 . \mathrm{MS}$

[^2]$(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}$ 807-809-811[(2M+1)+, 2], 404-406[(M+1) $\left.{ }^{+}, 80\right], 348-350(52), 57$ (100). HRMS $(\mathrm{FAB}+)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SBr}[\mathrm{M}+1]^{+}$, 404.0895; found 404.0895. Configurational assignment of compound $\mathbf{4 h}$ was effected by chemical correlation with the known aminoester: tert-Butyl (S)-3-Amino-3-(2-bromophenyl)propanoate (7) ${ }^{9}$.- A HCl solution in $\mathrm{MeOH}(0.2 \mathrm{mmol}, 1.25 \mathrm{M})$ was added to sulfinamide $\mathbf{4 h}(0.1 \mathrm{mmol})$ and the mixture stirred 1 h at rt . Then, the solvent was removed under reduced pressure and the residue acidified with an aq. HCl solution (10%) and washed with $\operatorname{AcOEt}(2 \times 5 \mathrm{~mL})$. The aqueous phase was basified with an aq. NaOH solution (10%), and extracted with $\mathrm{AcOEt}(3 \times 5 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed at vacuo. Yield: 94%. $\left.\alpha\right]^{20}{ }_{\mathrm{D}}-45\left(c 0.70, \mathrm{CHCl}_{3}\right)$. Lit. $(S)^{9}[\alpha]^{25}-45.0\left(c 1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{RMN}: \delta 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11 (td, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.9,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{dd}, J=15.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (broad s, 2H), $1.43(\mathrm{~s}, 9 \mathrm{H})$.

(R, \boldsymbol{R}_{S})- N-[(2-Bromophenyl)(cyano)methyl]-2-methylpropane-2-sulfinamide (4i).

According to the known procedure ${ }^{10}$, a solution of sulfinimine $3(0.16 \mathrm{mmol})$ and $\mathrm{Y}(\mathrm{OTf})_{3}(0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ THF $(1: 0.15,1.2 \mathrm{~mL})$ was stirred 15 min at rt Then, $\mathrm{TMSCN}(0.32 \mathrm{mmol})$ was added, and the reaction mixture was maintained 7 h with stirring under argon atmosphere. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ $\mathrm{mL})$. The combined organic phases were washed with saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. A 94:6 diastereomeric mixture was obtained. The major diastereomer was isolated by flash column chromatography on silica gel (n-hexane:AcOEt, 1:1). Yield: 90%; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.03(\mathrm{~m}, 1 \mathrm{H})$, $1.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.8,133.4,131.4,129.6,128.5,123.4,117.4,57.5$, 50.4, 22.4. MS (FAB+) m / z 315-317 [(M+1) ${ }^{+}$, 19], 69 (45), 57 (100). HRMS (FAB+) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OSBr}[\mathrm{M}+1]^{+}$, 315.0167; found 315.0170. Configurational assignment of compound $\mathbf{4 i}$ was effected by chemical correlation with the known α-amino ester: (\boldsymbol{R}) -(R)-(2-bromophenyl)glycine hydrochloride (8) ${ }^{11}$.- Sulfinamide $\mathbf{4 i}$ was treated with an aq. HCl solution $(6 \mathrm{M})$ during 6 h at $40^{\circ} \mathrm{C}$ and then, the solvent was removed at reduced pressure. Yield: $92 \% .[\alpha]^{20}{ }_{\mathrm{D}}-53(c 0.50,1 \mathrm{M} \mathrm{HCl})$. Lit. $^{11}(S)[\alpha]^{25}{ }_{\mathrm{D}}+60\left(c 1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ RMN $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 7.78$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.39-5.26(\mathrm{broad} \mathrm{s}, 1 \mathrm{H})$.

[^3]

According to the known procedure, ${ }^{12}$ to a solution of $\left(R_{S}, R\right)-N-((2-$ bromophenyl)(cyano)methyl)-2-methylpropane-2-sulfinamide 4i (0.2 mmol) in THF (1 mL) was added BH_{3}. THF ($0.6 \mathrm{mmol}, 1 \mathrm{M}$ in THF). The solution was heated to reflux 24 h and then, the solution was cooled to room temperature and water was slowly added until the evolution of hydrogen subsided. Then, $\mathrm{MeOH}(200 \mu \mathrm{l})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mu \mathrm{l})$ were added to fully decomplex the aminoborane. The solution was stirred for 10 min , basified $(10 \% \mathrm{NaOH})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Yield: 78\%; yellow oil; $[\alpha]^{20}{ }_{\mathrm{D}}-116\left(c 0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 4.77-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{broad} \mathrm{s}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=12.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=$ $12.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52$ (broad s, 2H), $1.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 139.9,133.1,128.9$, $128.7,127.5,123.5,59.5,55.8,47.0,22.7$. $\mathrm{HRMS}(\mathrm{FAB}+)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OSBr},[\mathrm{M}+1]^{+}$, 319.0480; found 319.0484.

To a solution of the above amino derivative $\mathbf{4 k}(0.18 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C},(\mathrm{BOC})_{2} \mathrm{O}(0.2 \mathrm{mmol})$ was added. The mixture was stirred overnight at rt and then, was treated with aq. NaHCO_{3}. The aqueous phase was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure. The residue was passed through a silica gel column (n hexane:AcOEt, 1:1) to obtain tert-butyl carbamate $\mathbf{4 j}$ as a colorless oil. Crude yield: $74 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz} 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz} 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{dt}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H})$.

Radical Cyclization. General procedure. ${ }^{13}$

A solution of AIBN (0.495 mmol) and tributyl tin hydride $(0.54 \mathrm{mmol})$ in dry toluene $(3.5 \mathrm{~mL})$ was added for 2 h to the corresponding sulfinamide $(0.45 \mathrm{mmol})$ and AIBN $(0.18 \mathrm{mmol})$ in previously deoxygenated dry toluene $(20 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$. The reaction was maintained 4 h before the solvent removal under reduced pressure. The residue was purified by flash chromatography on silica gel: KF (9:1).

(R, S_{S})-3-Ethyl-2,3-dihydrobenzo[d]isothiazole-1-oxide (5a).

Following the above general procedure, compound 5a was obtained as the sole diastereomer from sulfinamide $4 \mathbf{a}(0.45 \mathrm{mmol})$. Chromatography: n hexane:AcOEt, 1:1. Yield: 78%; white solid; mp $107-109^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+19(c 0.55$, CHCl_{3}); IR (KBr): 2966, 2927, 1448, 1111, 1067, $1035 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{broad} \mathrm{s}, 1 \mathrm{H})$,

[^4]4.78-4.73 (m, 1H), 2.06-1.82 (m, 2H), $1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}) \delta 145.7$, $142.3,131.3,128.8,124.8,123.6,68.5,31.6,10.4$. MS (EI+) $m / z 181\left(\mathrm{M}^{+}, 0.6\right), 163$ (91), 162 (100), 136 (31). HRMS (EI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11}$ NOS: 181.0561 ; found: 181.0567 .

(R, S_{S})-3-iso-Propyl-2,3-dihydrobenzo[d]isothiazole-1-oxide (5b).

Following the above general procedure, compound $\mathbf{5 b}$ was obtained as the sole diastereomer from sulfinamide $\mathbf{4 b}(0.45 \mathrm{mmol})$. Chromatography: n-hexane: AcOEt, 2:1. Yield: 96%; white solid; mp $95-96{ }^{\circ} \mathrm{C}$; 99% ee (HPLC, Chiralcel $\mathrm{OD}, 1.0 \mathrm{~mL} / \mathrm{min}, i-\mathrm{PrOH} /$ hexane $5 / 95, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=(S) 20.4 \mathrm{~min},(R) 35.7$ $\min) \cdot[\alpha]^{20}{ }_{\mathrm{D}}+19\left(c \quad 0.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.79-7.76 (m, $1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{broad} \mathrm{s}, 1 \mathrm{H}), 4.77-4.74(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}$, $1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7$, 141.6, 131.2, 128.9, 125.0, 123.6, 73.0, 33.2, 20.4, 16.4. IR (KBr): 1463, 1452, 1384, 1367, 1069, 1044, 1004, $758 \mathrm{~cm}^{-1}$. MS (ESI +) $m / z 218\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 196\left[(\mathrm{M}+1)^{+}, 81\right]$. HRMS (ESI+) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NOS}$: 196.0790; found: 196.0797.

(R, S_{S})-3-Cyclohexyl-2,3-dihydrobenzo[d]isothiazole-1-oxide (5c).

Following the above general procedure, compound was obtained as unique diastereomer from sulfinamide $\mathbf{4 c}(0.45 \mathrm{mmol})$. Chromatography: n-hexane: AcOEt, 2:1. Yield: 76\%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+16\left(c \quad 0.52, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 4.72(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 1.85-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.30-$ $1.18(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 145.7,141.4,131.2,128.8,124.9,123.7,72.6,43.3,30.9$, 26.8, 26.5, 26.0, 25.9. IR (NaCl): 1086, 1043, $1018 \mathrm{~cm}^{-1}$. MS (EI) $m / z 235\left(\mathrm{M}^{+}, 0.5\right), 217$ (30), 162 (100), 149 (97), 136 (68), 135 (47). HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NOS}: 235.1031$; found: 235.1039 .

(R, S_{S})-3-(tert-Butyl)-2,3-dihydrobenzo[d]isothiazole-1-oxide (5d).

Following the above general procedure, compound 5d was obtained as the sole diastereomer from sulfinamide $\mathbf{4 d}(0.45 \mathrm{mmol})$. Chromatography: n hexane:AcOEt, $1: 1$. Yield: 74%; white solid; $\mathrm{mp} 108-110^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+18$ (c 1.4, CHCl_{3}) ; IR (KBr): 2951, 2867, 1466, 1393, 1130, $1070 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H}), 5.06(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 145.8,140.6,130.6,128.7,125.2,124.9,76.9,35.3$, 26.8. MS (ESI +) $m / z 232\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 210\left[(\mathrm{M}+1)^{+}, 57\right]$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NOS}: 210.0947$; found: 210.0947 .

(S,S S_{S}-3-Phenyl-2,3-dihydrobenzo[d]isothiazole-1-oxide (5e)

Following the above general procedure, compound $\mathbf{5 e}$ was obtained as the sole diastereomer from sulfinamide $\mathbf{4 e}(0.45 \mathrm{mmol})$. Chromatography: n hexane:AcOEt, 1:1. Yield: 76\%; colorless oil; [$\alpha]^{20}{ }^{\mathrm{D}}-25\left(c \quad 0.4, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{NaCl}): 2925,2865,1452,1068,1045 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-$ $7.84(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.29$ (s, 1 H), $4.90(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) δ 146.1, 142.7, 139.1, 131.7, 129.1, 129.0, 128.9, 127.9, 124.5, 124.3, 68.7. MS (EI) $m / z 229$ ($\mathrm{M}^{+}, 0,4$), 213 (11), 212 (40), 211 (99), 210 (100). HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11}$ NOS: 229.0561; found: 229.0569.

(S, S_{S})-3-[tert-Butyldimethylsilyloxy)methyl]phenyl-2,3-dihydrobenzo[d]isothiazole-1-

 oxide (5f).

Following the above general procedure, compound $\mathbf{5 f}$ was obtained as the sole diastereomer from sulfinamide $4 \mathbf{f}$ (0.45 mmol). Chromatography: n-hexane:AcOEt, 1:1. Yield: 86%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-36$ (c 0.58, CHCl_{3}); IR (NaCl): 2932, 2905, 2838, 1440, $1460,1240,1060 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.83(\mathrm{~m}$, 1H), 7.51-7.42 (m, 2H), 7.36-7.30 (m, 2H), 7.19 (broad s, 1H), 7.14-7.09 (m, 2H), $6.29(\mathrm{~s}, 1 \mathrm{H})$, 4.88 (broad s, 1H), 4.72 (s, 2H), 0.9 (s, 9H), $0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) δ 146.1, 142.8, 142.6, 139.2, 131.7, 128.9, 126.4, 125.4, 124.6, 124.3, 68.8, 64.6, 25.9, 18.4, -5.3. MS (ESI+) $m / z 769\left[(2 \mathrm{M}+\mathrm{Na})^{+}, 9\right], 747\left[(2 \mathrm{M}+1)^{+}, 21\right], 396\left[(\mathrm{M}+\mathrm{Na})^{+}, 44\right], 374\left[(\mathrm{M}+1)^{+}, 100\right]$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{SiS}: 374.1604$; found: 374.1622.

(R, \boldsymbol{S}_{S})-3-[Dimethyl(phenyl)silylmethyl]-2,3-dihydrobenzo[d]isothiazole-1-oxide (5g).

Following the above general procedure, compound $\mathbf{5 g}$ was obtained as the sole diastereomer from sulfinamide $\mathbf{4 g}(0.45 \mathrm{mmol})$. Chromatography: n-hexane:AcOEt, 1:1. Yield: 66%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-100\left(c 1.5, \mathrm{CHCl}_{3}\right)$; IR (NaCl): 2950, 2895, 1430, 1246, 1150, $1093 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.75-7.72 (m, 1H), 7.55-7.49 (m, 3H), 7.46-7.44 (m, $1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 4 \mathrm{H}), 5.42-5.37(\mathrm{~m}, 1 \mathrm{H}), 4.28(b r o a d ~ s, 1 H), 1.64(\mathrm{dd}, J=14.9,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.17 (dd, $J=14.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 145.6,144.6$, 137.9, 133.7, 131.6, 129.8, 128.8, 128.5, 124.5, 123.3, 61.9, 23.3.-1.9, -2.6. MS (ESI+) m/z 625 [(2M +Na)+, 28], $603\left[(2 \mathrm{M}+1)^{+}, 11\right], 324\left[(\mathrm{M}+\mathrm{Na})^{+}, 99\right], 302\left[(\mathrm{M}+1)^{+}, 100\right]$. HRMS (ESI+) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NOSiS}$: 302.1029; found: 302.1036.

Following the above general procedure, compound $\mathbf{5 h}$ was obtained as the sole diastereomer from sulfinamide 4 h (0.45 mmol). Chromatography: n-hexane:AcOEt, 1:1. Yield: 73\%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}$ -169 (c 0.5, CHCl_{3}); IR (NaCl): 2977, 2953, 1724, 1369, $1150 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.83-7.81 (m, 1H), 7.58-7.48 (m, 2H), 7.40-7.37 (m, 1H), 5.57-5.53 (m, 1H), 5.37 (broad s, 1H), $3.00(\mathrm{dd}, J=16.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=16.4,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.48 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 170.2,146.5,140.5,131.6,129.2,124.7,122.9,82.0,60.8$, 41.0, 28.1. MS (ESI +) $m / z 557$ [(2M +Na) $)^{+}$, 36], $535\left[(2 \mathrm{M}+1)^{+}, 14\right], 290\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 268$ $\left[(M+1)^{+}, 81\right], 212(89)$. HRMS (ESI+) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}: 268.1001$; found: 268.1016 .

(R, S_{S})-tert-Butyl-[(1-oxide-2,3-dihydrobenzo[d]isothiazol-3-yl)methyl]carbamate (5j).

Following the above general procedure, compound $\mathbf{5} \mathbf{j}$ was obtained as the sole diastereomer from sulfinamide $\mathbf{4 j}^{14} \quad(0.45 \mathrm{mmol})$. Chromatography: n-hexane:AcOEt, 1:3. Yield: 78\%; white solid; mp $151-154{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-145$ (c 1.8, CHCl_{3}); IR (KBr): 2975, 2930, 1712, $1543,1271,1175,1025 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}$, 2H), 7.48-7.44 (m, 1H), 5.64 (broad s, 1H), 5.36 (broad s, 1H), 4.79 (broad s, 1H), 3.77-3.71 $(\mathrm{m}, 1 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 156.8,146.9,139.3,131.7$, 129.4, 124.9, 123.3, 80.2, 66.3, 44.2, 28.3. MS (ESI+) $m / z 587\left[(2 \mathrm{M}+\mathrm{Na})^{+}, 16\right], 305\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$, 100], $283\left[(\mathrm{M}+1)^{+}, 62\right], 227$ (53). HRMS (ESI +) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 283.1110; found: 283.1118.

Oxidation. General procedure.

To a solution of the corresponding cyclic sulfinamide 5 (0.45 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$, a solution of m-CPBA (0.45 mmol) in the same solvent was added. The reaction mixture was stirred for 30 min before the addition of an aq. NaHCO_{3} solution and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel. The eluent was indicated in each case.
(\boldsymbol{R})-3-Ethyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6a), known compound ${ }^{15}$

Following the above general procedure, compound $\mathbf{6 a}$ was obtained from sulfinamide 5a (0.45 mmol). Chromatography: n-hexane:AcOEt, 4:1. Yield: 98%; white solid; $\mathrm{mp} 45-47^{\circ} \mathrm{C}$; the $e e$ was determined by HPLC (Chiralcel OD, $1.0 \mathrm{~mL} / \mathrm{min}, i-\mathrm{PrOH} / n$-heptane $\left.30 / 70, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=(R) 10.2 \mathrm{~min}\right), 99 \%$ ee (Lit. $\left.{ }^{15} t_{\mathrm{R}}=(S) 6.4 \mathrm{~min},(R) 9.6 \mathrm{~min}\right) ;[\alpha]^{20}{ }_{\mathrm{D}} 54\left(c 1.7, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{15}[\alpha]^{25}{ }_{\mathrm{D}}-50.1$ c $1.06, \mathrm{CHCl}_{3}$,

[^5]81% ee (S)); IR (KBr): 3025, 2973, 2937, 1456, 1168, $1131 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, 7.6,1 \mathrm{H}), 7.61(\mathrm{dt}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}$ $1 \mathrm{H}), 4.99$ (broad s, 1H), 4.69-4.63 (m, 1H), 2.10-1.96 (m, 1H), 1.87-1.75 (m, 1H), $1.02(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 140.3,135.8,133.1,129.2,124.1,121.3,59.1,28.7,9.9 . \mathrm{MS}$ (FAB) $m / z 395\left[(2 \mathrm{M}+1)^{+}, 10\right], 198\left[(\mathrm{M}+1)^{+}, 100\right]$. HRMS (FAB) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S}$: 198.0589; found: 198.0590 .

(R)-3-iso-Propyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6b).

Following the above general procedure, compound $\mathbf{6 b}$ was obtained from sulfinamide 5b (0.45 mmol). Chromatography: n-hexane:AcOEt, 2:1.Yield: $>99 \%$; colorless oil; the $e e$ was determined by HPLC (Chiralcel OD, $1.0 \mathrm{~mL} / \mathrm{min}$, i-PrOH/hexane $\left.5 / 95, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=(S) 21.8 \mathrm{~min},(R) 32.4 \mathrm{~min}\right), 99 \% e e ;[\alpha]^{20}{ }_{\mathrm{D}}$ +67 (c 0.6, CHCl_{3}); IR (KBr): $1467,1283,1168,1131 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.78-7.76 (m, 1H), 7.65-7.59 (m, 1H), 7.55-7.49 (m, 1H), 7.39-7.36 (m, 1H), 4.86 (broad s, 1H), 4.69-4.67 (m, 1H), 2.32-2.22 (m, 1H), 1.12 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 139.2,135.8,133.1,129.3,124.3,121.4,63.3,32.8,20.1,15.4$. MS (ESI+) $m / z 445\left[(2 \mathrm{M}+\mathrm{Na})^{+}, 23\right], 234\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 212\left[(\mathrm{M}+\mathrm{H})^{+}, 18\right]$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}$: 212.0739; found: 212.0741.

(R)-3-Cyclohexyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6c).

Following the above general procedure, compound $\mathbf{6 c}$ was obtained from sulfinamide $\mathbf{5 c}$ (0.45 mmol). Chromatography: n-hexane:AcOEt, $4: 1$. Yield: 98%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+54$ (c $0.65, \mathrm{CHCl}_{3}$); IR (KBr): 3023, 2927, 1277, $1167,1155,1132 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{dt}, J=7.6,1,5 \mathrm{~Hz} 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.92 (broad, 1 H$), 4.62(\mathrm{t}, J=4.1 \mathrm{~Hz} 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 2 \mathrm{H}), 1,34-1.09(\mathrm{~m}$, 6 H). ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 139.0,135.8,133.0,129.2,124.4,121.4,62.9,42.7,30.7,26.4,25.9$, 25.8, 25.8. MS (FAB) $m / z 503\left[(2 \mathrm{M}+1)^{+}, 9\right], 252\left[(\mathrm{M}+1)^{+}, 100\right], 250$ (21). HRMS (FAB) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}: 252.1058$; found: 252.1070.
(\boldsymbol{R})-3-(tert-Butyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6d), known compound. ${ }^{16}$

Following the above general procedure, compound $\mathbf{6 d}$ was obtained from sulfinamide $\mathbf{5 d}$ (0.45 mmol). Chromatography: n-hexane:AcOEt, 3:1. Yield: 98%; white solid; mp $124-126^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+55\left(c 0.8, \mathrm{CHCl}_{3}\right)$. $\left[\mathrm{lit}{ }^{16}:[\alpha]^{18} \mathrm{D}-54(c\right.$ $\left.1.0, \mathrm{CHCl}_{3},(S)\right]$. IR (KBr): 2960, 2918, 1281, 1169, 1130. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.80-7.77 (m, 1H), 7.61-7.49 (m, 3H), $4.98(b r o a d ~ s, ~ 1 H), ~ 4.42(d, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 138,1,136.1,132.3,129.3,126.0,121.6,67.4,36.7,26.6$.

[^6]MS (FAB) $m / z 451\left[(2 \mathrm{M}+1)^{+}, 10\right], 226\left[(\mathrm{M}+1)^{+}, 100\right]$. HRMS (FAB) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}$: 226.0902; found: 226.0905 .
(S)-3-Phenyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6e), known compound. ${ }^{15,17}$

Following the above general procedure, compound 6e was obtained from sulfinamide 5e (0.45 mmol). Chromatography: n-hexane:AcOEt, 4:1. Yield: 90%, colorless oil, $[\alpha]^{20}{ }_{\mathrm{D}}+89\left(c\right.$ 1.8, $\left.\mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC (Chiralcel OJ-H, $0.8 \mathrm{~mL} / \mathrm{min}, i-\mathrm{PrOH} / n$-hexane $30 / 70, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=18.9 \mathrm{~min}$ $(S)), 99 \% e e .\left[l i t .{ }^{17}:[\alpha]^{25}{ }_{\mathrm{D}}+93.6\left(c \quad 1.0, \mathrm{CHCl}_{3}\right), \mathrm{HPLC}: t_{\mathrm{R}}=18.7 \mathrm{~min}(S), 21.1\right.$ $\min (R) ; 98 \%$ ee $(S)]$; IR (KBr): 3023, 2927, 1277, 1175, $1142 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.86-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~s}$, $1 \mathrm{H}), 5.05(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 139.8,138.7,134.8,133.4,129.5,129.3,129.1$, 127.6, 125.4, 121.2, 61.4. MS (FAB) $m / z 230$ (14), 246 [(M+1) ${ }^{+}$, 100]. HRMS (FAB) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S}$: 246.0589 ; found: 246.0582 .

(S)-3-[3-(tert-Butyldimethylsilyloxy)methyl]phenyl-2,3-dihydrobenzo[d]isothiazole-1,1-

 dioxide (6f), known compound ${ }^{17}$

Following the above general procedure, compound $\mathbf{6 f}$ was obtained from sulfinamide $\mathbf{5 f}(0.45 \mathrm{mmol})$. Chromatography: $n-$ hexane:AcOEt, 3:1. Yield: 91\%, colorless oil, $[\alpha]^{20}{ }_{D}+62$ (c 0.55, CHCl_{3}). $\left[\right.$ lit. ${ }^{17}[\alpha]^{25}{ }_{\mathrm{D}}+61.4$ (c 1.40, CHCl_{3}), 98% ee (S)]; IR (KBr): 2929, 2885, 2857, 1471, 1299, $1167 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.77-7.71 (m, 1H), 7.49-7.42 (m, 2H), 7.29-7.23 (m, 3H), 7.19-7.14 (m, 1H), 7.08$7.03(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\operatorname{broad} \mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H})$, $0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 142.8,139.9,138.6,134.9,133.3,129.5,129.2,126.7,126.2$, $125.4,125.1,121.1,64.5,61,4,25.9,18,4,-5,27 . \mathrm{MS}(\mathrm{FAB}) m / z 390\left[(\mathrm{M}+1)^{+}, 58\right], 332$ (96), 258 (100). HRMS (FAB) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{SSi}$: 390.1559 ; found: 390.1562.

(R)-3-[Dimethyl(phenyl)silylmethyl]-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6g).

Following the above general procedure, compound $\mathbf{6 g}$ was obtained from sulfinamide $5 \mathbf{g}$ (0.45 mmol). Chromatography: n-hexane:AcOEt, 4:1. Yield: 92%; colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-67$ (c 1.4, CHCl_{3}); IR (KBr): 3069, 2956, 1331, $1170 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.57-4.52 (m, 1H), $4.26(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 1 \mathrm{H}), 0.30(\mathrm{~s}, ~$, $3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 146.0,139.8,137.8,136.1,135.5,132.1,131.3,130.7$,

[^7]126.3, 123.5, 57.7, 26.3, 0.0. MS (FAB) $m / z 318\left[(\mathrm{M}+1)^{+}\right.$, 35], 240 (100). HRMS (FAB) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{SSi}$: 318.0984 ; found: 318.0978 .
(S)-tert-Butyl 2-(1,1-dioxide-2,3-dihydrobenzo[d]isothiazol-3-yl)acetate (6h), known compound ${ }^{18}$

Following the above general procedure, compound $\mathbf{6 h}$ was obtained from sulfinamide 5h (0.45 mmol). Chromatography: n-hexane:AcOEt, 4:1. Yield: 90%. The ee was determined by HPLC (Chiralcel OD, 0.7 $\mathrm{mL} / \mathrm{min}, i-\mathrm{PrOH} / n$-hexane $25 / 75, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}=12.5 \min (S), t_{\mathrm{R}}=13.8$ $(R), 99 \% e e) .[\alpha]^{20}{ }_{\mathrm{D}}-80\left(c \quad 0.50, \mathrm{CHCl}_{3}\right)$ [Lit. ${ }^{18}$: HPLC: 96\% ee (R)]; IR (KBr): 2979, 2932, $1723,1369,1299,1166 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}$, $1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=16.8,3.8, \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=16.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}) \delta 169.9,138.5,135.8,133.2,129.6,124.0,121.5,82.4,53.8,41.1,28.1$. MS (FAB) m / z $284\left[(\mathrm{M}+1)^{+}, 15\right], 228$ (100), 168 (40), 57 (57). HRMS (FAB) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}$: 284.0957; found: 284.0946 .

(R)-tert-Butyl (1,1-dioxide-2,3-dihydrobenzo[d]isothiazol-3-yl)methylcarbamate (6j).

Following the above general procedure, compound $\mathbf{6 j}$ was obtained from sulfinamide $5 \mathbf{j}$ (0.45 mmol). Chromatography: n-hexane:AcOEt, 1:1. Yield: 99%; white solid; mp $106-108^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-63\left(c \quad 0.75, \mathrm{CHCl}_{3}\right)$; IR (KBr): 2978, 2926, 1692, 1518, 1286, $1168 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70($ broad s, $1 \mathrm{H}), 5.06(\operatorname{broad~s}, 1 \mathrm{H}), 4.85(\operatorname{broad~s}, 1 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.34(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz) 156.7, 137.3, 136.4, 133.2, 129.8, 124.6, 121.5, 80.4, 58.3, 44.8, 28.3. MS (FAB) $m / z 299\left[(\mathrm{M}+1)^{+}, 92\right], 243$ (100), 57 (55). HRMS (FAB) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: 299.1066; found: 299.1060 .

(R)-3-(Aminomethyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide hydrochloride

 (6k).

A solution of $\mathrm{HCl}(0.2 \mathrm{mmol}$, 2 equiv, 1.25 M in MeOH$)$ was added to benzosultam $\mathbf{6 j}$ (0.1 mmol). The mixture was stirred at rt for 1.5 h and then, was concentrated. The residue was purified by trituration with $\mathrm{Et}_{2} \mathrm{O}$. Yield: 94%, white solid; $\mathrm{mp} 123-125^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}-53$ (c 0.54, CHCl_{3}); IR (KBr): 2990, 2924, 1271, 1158, $1132 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , methanol $\left.\mathrm{d}_{4}\right) \delta 7.90-7.71(\mathrm{~m}, 4 \mathrm{H}), 5.11(\mathrm{dd}, J=9.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=13.2,3.5 \mathrm{~Hz}, 1 \mathrm{H})$,

[^8]$3.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , methanol $-\mathrm{d}_{4}$) $\delta 138.2,134.8,131.6,126.5,122.2$, 55.9, 44.8. MS (FAB+) m/z 199 [(M+1)+, 90], 57 (100). HRMS (FAB) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$: 199.0541 ; found: 199.0540 .

(

w
\qquad -500
(

(S)-6h $\mathrm{CO}_{2} t \mathrm{Bu}$

(

[^0]: ${ }^{1}$ G. Liu, D. A. Cogan, T. D. Owens, T. P. Tang, J. A. Ellman, J. Org. Chem.1999, 64, 1278-1284.
 ${ }^{2}$ L. Cheng, L. Liu, Y. Sui, D. Wang, Y.-J. Chen, Tetrahedron: Asymmetry 2007, 18, 1833-1843.

[^1]: ${ }^{3}$ The preparation and characterization of the o-bromosulfinamides $\mathbf{4 a} \mathbf{a} \mathbf{d}$ will be reported in due course.
 ${ }^{4}$ Compound 4 e has been obtained by diastereoselective reduction of the corresponding N-sulfinyl ketimine: M. Martjuga, D. Shabashov, S. Belyakov, E. Liepinsh, E. Suna J. Org. Chem. 2010, 75, 2357.
 ${ }^{5}$ G. Liu, A. C. Cogan, J. A. Ellman J. Am. Chem. Soc. 1997, 119, 9913.
 ${ }^{6}$ The corresponding bromide was converted to the Grignard reagent in refluxing THF, following the standard procedure.

[^2]: ${ }^{7}$ C. H. Ko, D. Y. Jung, M. K. Kim, Y. H. Kim Synlett, 2005, 2, 304.
 ${ }^{8} \mathrm{Zn}$ dust, $<10 \mu(2.5 \mathrm{~g})$. Zn activation was carried out by successive washes with an aqueous solution of $\mathrm{HCl}(5 \%, 3 \mathrm{x}$ 3 mL), $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, acetone ($3 \times 3 \mathrm{~mL}$) and dry $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$.

[^3]:
 . Chem. Soc., Perkin Trans. 1, 2001, 3112.
 ${ }^{10}$ S. Mabic, A. A. Cordi Tetrahedron, 2001, 57, 8861.
 ${ }^{11}$ (a) Y. Pérez-Fuertes, J. E. Taylor, D. A. Tickell, M. F. Mahon, S. D. Bull, T.D. James J. Org. Chem. 2011, 76, 6038. (b) C. Mellin-Morliere, D. J. Aitken, S.D. Bull, S. G. Davies, H.-P. Husson Tetrahedron: Asymmetry 2001, 12, 149.

[^4]: ${ }^{13}$ J. Coulomb, V. Certal, L. Fensterbank, E. Lacôte, M. Malacria Angew. Chem. Int. Ed. 2006, 45, 633.

[^5]: ${ }^{14}$ The treatment of the non protected amino derivative $\mathbf{4 k}$, following the general procedure for radical cyclization, resulted in a complex mixture of compounds.
 ${ }^{15}$ M. Seppelt, D. Enders Synlett, 2011, 3, 402.

[^6]: ${ }^{16}$ K. H. Ahn, C. Ham, S. K. Kim, C. W. Cho, J. Org. Chem, 1997, 62, 7047.

[^7]: ${ }^{17}$ C.-B. Yu, D. W. Wang, Y. G. Zhou J. Org. Chem. 2009, 74, 5633.

[^8]: ${ }^{18}$ C-B. Yu, K. Gao, D. S. Wang, L. Shi, Y. G. Zhou Chem. Commun., 2011, 47, 5052.

