Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electric Supplementary Information (ESI)

Stability of α "-Fe₁₆N₂ in hydrogenous atmosphere

Shinpei Yamamoto^{*,1}, Ruwan Gallage^{1,2}, Seiji Isoda¹, Yasunobu Ogata³, Yoshihiro Kusano⁴, Naoya Kobayashi², Tomoyuki Ogawa⁵, Naoaki Hayashi¹, Migaku Takahashi³, and Mikio Takano¹

¹ Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida Ushinomiya, Sakyo, Kyoto 606-8501, Japan

² T&T Innovations Inc., 1-4 Meijishinkai, Otake, Hiroshima 739-0652, Japan

³ New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aza-Aoba, Aramaki, Aoba, Sendai 980-8579, Japan.

⁴ Department of Fine & Applied Arts, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima, Kurashiki, Okayama 712-8505, Japan

⁵ Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aza-Aoba, Aramaki, Aoba, Sendai 980-8579, Japan

In-situ XRD experiments:

In-situ XRD measurements in hydrogenous atmospheres (Experiments A ~ G) were done using a Bruker New D8 ADVANCE diffractometer (Cu K α radiation, $\lambda = 1.54$ Å) equipped with an Anton Paar XRK900 reactor chamber (inner volume, 400 cm³). Diffraction patterns were collected in a 2 θ range from 41 ° to 85 ° with a step of 0.04 ° and an exposure time of 0.8 sec/step (*ca.* 970 sec/scan). Purities of H₂ and He gases are higher than 99.9999 %. Rietveld analyses were performed by using a commercially available program (TOPAS ver. 4.2). Details of the experiments are shown below:

Experiments A~E: The α "-Fe₁₆N₂ samples were prepared in the XRK900 reactor chamber attached to the diffractometer in two steps including reduction of iron oxide powder in H₂ at 573 K and nitridation in NH₃ at 423 K. The standard XRD patterns of the as-prepared samples (Run#0, see Figures and Tables S1~S5) were collected in the final stage of nitridation. Then, each sample was set to a certain fixed temperature of 393, 398, 403, 413, or 423 K at a rate of 12 K/min and kept at that temperature for 30 min in the He gas flow (300 cm³/min). Then, the chamber was purged by H₂ (300 cm³/min) for 10 min and the measurements were started under H₂ flow (50 cm³/min).

Experiment F: This experiment was similarly performed as the Experiments A~E, except for the purging (150 cm³/min H₂+150 cm³/min He) and the measurement (25 cm³/min H₂+25 cm³/min He) gases. The *insitu* measurement was performed at 413 K. See Figure and Table S6 for the standard XRD pattern of the asprepared sample (Run#0).

Experiment G: the starting SiO₂-coated α "-Fe₁₆N₂ sample was set in the XRK900 reactor chamber in air and an XRD measurement was performed at room temperature to collect the standard pattern (Run#0, see Figure and Table S7). The *in-situ* measurement was performed at 423 K. The other procedures are similar to the Experiments A ~ E.

Experiment	А	В	С	D	Е	F	G
<i>T</i> [K]	393	398	403	413	423	413	423
Atmosphere	H ₂ ^{a)}	H ₂ ^{a)}	$H_2^{a)}$	$H_2^{a)}$	$H_2^{a)}$	H ₂ /He mixture ^{b)}	$H_2^{a)}$
Sample	in-situ ^{c)}	in-situ ^{c)}	in-situ ^{c)}	in-situ ^{c)}	in-situ ^{c)}	in-situ ^{c)}	SiO ₂ -coated ^{d)}

Conditions for the *in-situ* XRD experiments.

a) H_2 (50 cm³/min) flow.

b) $H_2(25 \text{ cm}^3/\text{min}) + \text{He}(25 \text{ cm}^3/\text{min})$ mixture gas flow.

c) Prepared *in-situ* by reduction of iron oxide powder in H₂ at 573 K followed by nitridation in NH₃ at 423 K.

d) Coated with SiO₂ *ex-situ*.

SiO₂-coating of α "-Fe₁₆N₂ particles: α "-Fe₁₆N₂ powder¹ (300 mg) was dispersed in a three neck flask containing a mixed solution of ethanol (150 ml), water (2 ml) and ammonium hydroxide (28%, 3 ml). While stirring, 5 ml of tetraethylorthosilicate (TEOS) in ethanol (6.3 % by volume) was injected into the suspension at a rate of 500 µl/h using an injection pump. Stirring continued for another 10 hrs after the addition of TEOS. Finally, particles were washed three times with ethanol, centrifuged, and dried at room temperature.

The other characterization methods: mass spectroscopic analysis of gases evolved on heating up to 560 K (10 K/min) in flowing H₂ was performed using a TG-DTA2000SA thermogravimetric / differential thermal analysis apparatus equipped with an MS9610 quadrupole mass spectrometer (Bruker AXS). The uncoated α "-Fe₁₆N₂ sample for the mass spectroscopic measurement was prepared in two steps, oxide-to-metal reduction in a H₂ stream and subsequent metal-to-nitride conversion using an NH₃ stream.¹ The sample surface was slightly oxidized since the sample was handled in air before the measurement. Transmission electron microscopic (TEM) observation was performed by using JEOL JEM-1400. TEM specimens were prepared by dropping a particle-containing solution on a carbon-coated copper grid.

Reference for the Supporting Information

 Ogawa, T.; Ogata, Y.; Gallage, R.; Kobayashi, N.; Hayashi, N.; Kusano, Y.; Yamamoto, S.; Kohara, K.; Doi, M.; Takano, M.; Takahashi, M. *Appl. Phys. Express*, **2013**, *6*, 073007-1.

Figure S1. *In-situ* XRD patterns of the α "-Fe₁₆N₂ sample heat-treated in H₂ for certain periods of time (*t*) at 393 K (Experiment A). Main diffraction peaks from α "-Fe₁₆N₂ and α -Fe are indicated by α " and α , respectively. The bottom pattern is the one collected before the H₂-treatment (Run#0). For *t* of the patterns, please see Table S1.

Figure S2. *In-situ* XRD patterns of the α "-Fe₁₆N₂ sample heat-treated in H₂ for certain periods of time (*t*) at 398 K (Experiment B). Main diffraction peaks from α "-Fe₁₆N₂ and α -Fe are indicated by α " and α , respectively. The bottom pattern is the one collected before the H₂-treatment (Run#0). For *t* of the patterns, please see Table S2.

Figure S3. *In-situ* XRD patterns of the α "-Fe₁₆N₂ sample heat-treated in H₂ for certain periods of time (*t*) at 403 K (Experiment C). Main diffraction peaks from α "-Fe₁₆N₂ and α -Fe are indicated by α " and α , respectively. The bottom pattern is the one collected before the H₂-treatment (Run#0). For *t* of the patterns, please see Table S3.

Figure S4. *In-situ* XRD patterns of the α "-Fe₁₆N₂ sample heat-treated in H₂ for certain periods of time (*t*) at 413 K (Experiment D). Main diffraction peaks from α "-Fe₁₆N₂ and α -Fe are indicated by α " and α , respectively. The bottom pattern is the one collected before the H₂-treatment (Run#0). For *t* of the patterns, please see Table S4.

Figure S5. *In-situ* XRD patterns of the α "-Fe₁₆N₂ sample heat-treated in H₂ for certain periods of time (*t*) at 423 K (Experiment E). Main diffraction peaks from α "-Fe₁₆N₂ and α -Fe are indicated by α " and α , respectively. The bottom pattern is the one collected before the H₂-treatment (Run#0). For *t* of the patterns, please see Table S5.

Figure S6. *In-situ* XRD patterns of the α "-Fe₁₆N₂ sample heat-treated in H₂/He mixture for certain periods of time (*t*) at 423 K (Experiment F). Main diffraction peaks from α "-Fe₁₆N₂ and α -Fe are indicated by α " and α , respectively. The bottom pattern is the one collected before the H₂-treatment (Run#0). For *t* of the patterns, please see Table S6.

Figure S7. *In-situ* XRD patterns of the SiO₂-coated α "-Fe₁₆N₂ sample heat-treated in H₂ for certain periods of time (*t*) at 423 K (Experiment G). Main diffraction peaks from α "-Fe₁₆N₂ are indicated by α ". The bottom pattern is the one collected before the H₂-treatment (Run#0). For *t* of the patterns, please see Table S7.

Figure S8. Mass spectroscopic data of the uncoated α "-Fe₁₆N₂ sample taken upon heating in a H₂ stream. The intensities for mass numbers of Mz = 17 (NH₃) and Mz = 18 (H₂O) increase from *ca.* 500 K and then decrease. Evolution of H₂O is due to the reduction in the iron oxides layer on the surface of the α "-Fe₁₆N₂ sample (see The other characterization methods in the ESI). Evolution of NH₃ follows the evolution of H₂O probably because NH₃ cannot form on the iron oxides surface. Simultaneous evolution of N₂ was also detected but its amount was very small (see the right panel).

Figure S9. Fraction of decomposed α "-Fe₁₆N₂ (*D*) plotted against heating time (*t*) at (a) 393 K, (b) 398 K, (c) 403 K, (d) 413 K and (e) 423 K in H₂. The solid symbols represent the experimental data. The red and green lines represent the least-squares fittings using eqs.(3) and (4), respectively.

Figure S10. (a) Fraction of decomposed α "-Fe₁₆N₂ (*D*) plotted against *t* at 413 K in H₂/He mixture (red symbols) and H₂ (black symbols). (b) Analyses of *D* collected in H₂/He mixture at 413 K. The red and green lines are the least-squares fittings using eqs.(3) and (4), respectively.

Run# <i>t</i> [hr]	+ [hr]	R _{exp} ^{c)}	D d)	C e)	α "-Fe ₁₆ N ₂			α-Fe		
Kun#	ι [hr]	K _{exp} ^c	K _{wp} ^u	50)	<i>a</i> [Å]	<i>c</i> [Å]	w _{Fe16N2} ^{f)}	<i>a</i> [Å]	w _{Fe} ^{g)}	
0 ^{b)}	0	2.78	3.45	1.24	5.71802(20)	6.30714(36)	0.937	2.87115(41)	0.063	
1	0.13	2.75	3.51	1.28	5.71638(20)	6.30094(34)	0.933	2.86967(38)	0.067	
2	0.67	2.76	3.76	1.36	5.71654(23)	6.29927(40)	0.893	2.87054(41)	0.107	
3	1.21	2.76	3.71	1.34	5.71650(26)	6.29717(44)	0.846	2.87094(33)	0.154	
4	1.75	2.77	3.80	1.37	5.71664(29)	6.29611(49)	0.788	2.87168(28)	0.212	
5	2.29	2.77	4.11	1.48	5.71629(35)	6.29638(58)	0.743	2.87188(26)	0.257	
6	2.83	2.77	4.15	1.50	5.71505(41)	6.29518(67)	0.692	2.87127(24)	0.308	
7	3.37	2.78	4.22	1.52	5.71663(44)	6.29528(74)	0.637	2.87162(24)	0.363	
8	3.91	2.78	4.35	1.56	5.71458(49)	6.29340(79)	0.588	2.87099(23)	0.412	
9	4.45	2.78	4.26	1.53	5.71404(50)	6.29237(82)	0.536	2.87033(21)	0.464	
10	4.99	2.79	4.28	1.53	5.71379(52)	6.29410(83)	0.491	2.87035(20)	0.509	
11	5.53	2.79	4.28	1.53	5.71402(55)	6.29344(87)	0.449	2.87002(19)	0.551	
12	6.07	2.79	4.21	1.51	5.71506(58)	6.29550(90)	0.410	2.87053(17)	0.591	
13	6.61	2.79	4.14	1.48	5.71472(58)	6.29461(90)	0.377	2.87023(16)	0.624	
14	7.15	2.79	4.22	1.51	5.71611(62)	6.29382(98)	0.345	2.87015(16)	0.655	
15	7.69	2.79	4.20	1.51	5.71581(61)	6.29328(97)	0.324	2.86991(14)	0.676	
16	8.23	2.80	4.16	1.49	5.71616(65)	6.2934(10)	0.292	2.86984(13)	0.708	
17	8.77	2.80	4.10	1.46	5.71694(64)	6.2947(10)	0.277	2.87000(12)	0.723	
18	9.31	2.80	3.98	1.42	5.71655(65)	6.2934(10)	0.258	2.86963(11)	0.742	

Table S1. Rietveld refinement parameters for the experiment carried out at T = 393 K under H₂^{a)} (Experiment A).

19	9.85	2.80	4.24	1.51	5.71600(72)	6.2946(11)	0.243	2.86967(11)	0.757
20	10.39	2.80	4.01	1.43	5.71696(71)	6.2948(11)	0.229	2.869641(98)	0.771
21	10.93	2.80	4.24	1.51	5.71736(78)	6.2942(12)	0.219	2.869575(99)	0.781
22	11.47	2.80	4.04	1.44	5.71733(75)	6.2938(12)	0.209	2.869668(90)	0.791
23	12.01	2.80	4.09	1.46	5.71669(77)	6.2963(12)	0.199	2.869466(87)	0.801
24	12.55	2.80	4.03	1.44	5.71630(75)	6.2953(12)	0.196	2.869412(83)	0.804
25	13.09	2.80	3.91	1.40	5.71670(74)	6.2958(12)	0.186	2.869469(77)	0.814
26	13.63	2.80	3.96	1.41	5.71799(81)	6.2946(13)	0.182	2.869553(77)	0.818
27	14.17	2.80	4.13	1.48	5.71785(88)	6.2935(14)	0.176	2.869542(78)	0.824
28	14.71	2.80	4.04	1.44	5.71814(88)	6.2938(14)	0.171	2.869495(77)	0.829
29	15.25	2.80	4.01	1.43	5.71673(85)	6.2966(14)	0.174	2.869480(73)	0.827
30	16.06	2.80	4.00	1.43	5.71732(86)	6.2946(14)	0.166	2.869486(72)	0.834
31	18.76	2.80	4.08	1.46	5.71699(91)	6.2957(15)	0.152	2.869452(70)	0.848
32	21.46	2.80	4.04	1.44	5.71866(98)	6.2906(15)	0.148	2.869360(68)	0.852
33	24.16	2.80	4.12	1.47	5.7179(10)	6.2943(16)	0.141	2.869423(68)	0.859
34	26.86	2.80	4.10	1.46	5.7206(11)	6.2890(17)	0.136	2.869455(68)	0.865
35	32.26	2.80	3.99	1.43	5.7200(12)	6.2895(18)	0.123	2.869454(65)	0.877
36	37.66	2.81	4.11	1.46	5.7190(13)	6.2925(21)	0.115	2.869366(65)	0.885
37	43.06	2.81	4.07	1.45	5.7203(15)	6.2895(22)	0.105	2.869405(64)	0.895
38	48.46	2.81	3.91	1.39	5.7238(18)	6.2846(26)	0.099	2.869481(60)	0.901
39	53.86	2.81	3.94	1.40	5.7254(19)	6.2856(28)	0.089	2.869454(60)	0.911
40	64.66	2.81	3.92	1.40	5.7265(23)	6.2812(34)	0.077	2.869481(59)	0.923

41	75.48	2.81	3.84	1.37	5.7295(27)	6.2790(39)	0.067	2.869381(56)	0.934
42	86.28	2.81	3.96	1.41	5.7292(27)	6.2829(39)	0.054	2.869356(56)	0.946
43	97.08	2.82	3.94	1.40	5.7285(31)	6.2812(44)	0.051	2.869381(56)	0.949

b) Rietveld refinement parameters of the sample determined before the H₂-treatment. Please see the Experimental procedures in the Supporting Information.

c) expected profile R factor

d) weighted profile R-factor

e) $S = R_{wp}/R_{exp}$

f) relative weight fraction of α "-Fe₁₆N₂

g) relative weight fraction of α -Fe

For details of the R_{exp} and R_{wp};

Run# t [hr]	4 [1 6 <i>u</i>]	t [hr] $R_{exp}^{c)}$	(h a	Ce)		α "-Fe ₁₆ N ₂		α-Fe		
Kun#		K _{exp} c)	K _{wp} ^u	50	<i>a</i> [Å]	<i>c</i> [Å]	w _{Fe16N2} ^{f)}	<i>a</i> [Å]	w _{Fe} ^{g)}	
0 ^{b)}	0	2.82	3.59	1.27	5.71829(20)	6.30751(35)	0.930	2.87141(28)	0.070	
1	0.13	2.67	3.78	1.42	5.71726(20)	6.30126(34)	0.916	2.86998(36)	0.084	
2	0.40	2.79	3.78	1.35	5.71734(23)	6.29971(39)	0.886	2.87086(36)	0.114	
3	0.67	2.79	4.11	1.47	5.71682(26)	6.29764(44)	0.855	2.87068(33)	0.145	
4	0.94	2.79	4.16	1.49	5.71704(28)	6.29703(47)	0.821	2.87091(30)	0.179	
5	1.21	2.79	4.36	1.56	5.71726(32)	6.29734(53)	0.782	2.87165(27)	0.218	
6	1.48	2.79	4.37	1.57	5.71734(35)	6.29675(58)	0.746	2.87172(25)	0.254	
7	1.75	2.79	4.49	1.61	5.71717(38)	6.29709(64)	0.703	2.87222(25)	0.297	
8	2.02	2.79	4.50	1.61	5.71712(42)	6.29638(70)	0.671	2.87192(24)	0.329	
9	2.29	2.80	4.64	1.66	5.71583(47)	6.29336(75)	0.636	2.87132(23)	0.364	
10	2.56	2.80	4.55	1.63	5.71534(48)	6.29162(76)	0.597	2.87116(22)	0.403	
11	2.83	2.80	4.62	1.65	5.71527(52)	6.29167(82)	0.561	2.87118(22)	0.439	
12	3.10	2.80	4.62	1.65	5.71494(54)	6.29098(86)	0.522	2.87089(22)	0.477	
13	3.37	2.80	4.64	1.66	5.71538(57)	6.29182(89)	0.488	2.87116(21)	0.512	
14	3.64	2.81	4.67	1.66	5.71502(60)	6.29092(94)	0.456	2.87079(21)	0.543	
15	3.91	2.81	4.64	1.65	5.71473(62)	6.29028(96)	0.422	2.87047(20)	0.578	
16	4.18	2.81	4.56	1.62	5.71504(65)	6.2903(10)	0.390	2.87047(19)	0.610	
17	4.45	2.81	4.57	1.63	5.71572(68)	6.2904(10)	0.363	2.87055(18)	0.637	
18	4.72	2.81	4.61	1.64	5.71571(72)	6.2898(11)	0.335	2.87042(17)	0.665	

Table S2. Rietveld refinement parameters for the experiment carried out at 398 K under H₂^{a)} (Experiment B).

19	4.99	2.82	4.47	1.59	5.71706(75)	6.2887(11)	0.307	2.87063(16)	0.693
20	5.26	2.82	4.46	1.58	5.71602(77)	6.2891(12)	0.284	2.87040(15)	0.716
21	5.80	2.82	4.32	1.53	5.71773(83)	6.2876(13)	0.244	2.87036(13)	0.756
22	6.34	2.82	4.19	1.49	5.71925(89)	6.2875(14)	0.210	2.87044(11)	0.790
23	6.88	2.82	4.32	1.53	5.7201(10)	6.2857(16)	0.185	2.870044(99)	0.815
24	7.42	2.82	4.36	1.55	5.7208(12)	6.2843(18)	0.163	2.870087(93)	0.837
25	7.96	2.82	4.13	1.46	5.7206(12)	6.2880(18)	0.140	2.870061(82)	0.860
26	9.04	2.82	4.16	1.48	5.7208(14)	6.2857(21)	0.119	2.869896(72)	0.881
27	10.12	2.82	4.08	1.45	5.7246(14)	6.2850(21)	0.096	2.870048(67)	0.904
28	11.20	2.82	4.09	1.45	5.7247(16)	6.2836(24)	0.086	2.869912(63)	0.914
29	12.28	2.82	4.17	1.48	5.7246(17)	6.2840(26)	0.080	2.869943(62)	0.920
30	13.36	2.82	4.05	1.44	5.7254(20)	6.2844(29)	0.077	2.870023(59)	0.923
31	16.06	2.82	4.14	1.47	5.7279(23)	6.2803(34)	0.067	2.869989(57)	0.933
32	18.76	2.82	4.07	1.44	5.7271(23)	6.2799(34)	0.057	2.870030(57)	0.943
33	21.46	2.82	4.12	1.46	5.7314(29)	6.2737(42)	0.062	2.870052(56)	0.938
34	24.16	2.82	4.05	1.44	5.7491(33)	6.2505(47)	0.054	2.870021(54)	0.946
35	26.86	2.82	4.00	1.42	5.7517(32)	6.2508(47)	0.052	2.870056(52)	0.948
36	32.26	2.82	4.09	1.45	5.7518(38)	6.2433(56)	0.044	2.870044(53)	0.956
37	37.66	2.82	3.94	1.40	5.7545(42)	6.2442(62)	0.039	2.870039(50)	0.961
38	43.06	2.82	4.04	1.43	5.7555(51)	6.2448(76)	0.032	2.870060(50)	0.968
39	48.46	2.82	4.35	1.54	5.7543(64)	6.2442(94)	0.029	2.870114(53)	0.971
40	53.86	2.82	4.23	1.50	5.7583(47)	6.2458(71)	0.019	2.869948(51)	0.981

- b) Rietveld refinement parameters of the sample determined before the H₂-treatment. Please see the Experimental procedures in the Supporting Information.
- c) expected profile R factor
- d) weighted profile R-factor
- e) $S = R_{wp}/R_{exp}$
- f) relative weight fraction of α "-Fe₁₆N₂
- g) relative weight fraction of α -Fe

For details of the R_{exp} and R_{wp} ;

Run# t [hr]	D c)	(h a	C e)		α "-Fe ₁₆ N ₂		α-Fe		
Kun#		K _{exp} e ^y	K _{wp} ^u	30)	<i>a</i> [Å]	<i>c</i> [Å]	$W_{\text{Fe16N2}}^{\text{f}}$	<i>a</i> [Å]	w _{Fe} ^{g)}
0 ^{b)}	0	3.00	3.62	1.21	5.71754(26)	6.30788(45)	0.938	2.87115(47)	0.062
1	0.14	2.97	3.50	1.18	5.71642(25)	6.30248(44)	0.937	2.87009(47)	0.063
2	0.41	2.97	3.82	1.29	5.71656(29)	6.29992(51)	0.889	2.87085(47)	0.111
3	0.68	2.97	3.97	1.34	5.71653(34)	6.29738(58)	0.836	2.87106(39)	0.164
4	0.94	2.98	3.97	1.33	5.71651(39)	6.29586(65)	0.772	2.87204(31)	0.228
5	1.21	2.98	3.97	1.33	5.71613(43)	6.29592(72)	0.703	2.87182(27)	0.297
6	1.48	2.98	4.10	1.38	5.71516(51)	6.29498(83)	0.635	2.87186(27)	0.365
7	1.75	2.99	4.52	1.51	5.71438(61)	6.29380(99)	0.575	2.87132(29)	0.425
8	2.02	2.99	4.28	1.43	5.71559(58)	6.29541(95)	0.516	2.87157(25)	0.484
9	2.29	2.99	4.46	1.49	5.71561(64)	6.2956(10)	0.468	2.87134(24)	0.532
10	2.56	3.00	4.34	1.45	5.71611(63)	6.2940(11)	0.411	2.87106(21)	0.589
11	2.83	3.00	4.32	1.44	5.71491(66)	6.2966(11)	0.368	2.87090(19)	0.632
12	3.10	3.00	4.53	1.51	5.71603(74)	6.2946(12)	0.337	2.87070(19)	0.663
13	3.37	3.00	4.37	1.46	5.71669(73)	6.2928(12)	0.303	2.87050(17)	0.697
14	3.64	3.00	4.49	1.50	5.71616(78)	6.2954(13)	0.287	2.87036(16)	0.713
15	3.92	3.01	4.57	1.52	5.71627(84)	6.2939(13)	0.267	2.87030(15)	0.733
16	4.19	3.01	4.56	1.51	5.71749(93)	6.2926(14)	0.245	2.87012(15)	0.755
17	4.46	3.01	4.47	1.49	5.71767(94)	6.2929(15)	0.235	2.87016(14)	0.765
18	4.73	3.01	4.59	1.52	5.71653(96)	6.2935(15)	0.217	2.86997(14)	0.783

Table S3. Rietveld refinement parameters for the experiment carried out at 403 K under H₂^{a)} (Experiment C).

19	5.00	3.01	4.41	1.47	5.71743(99)	6.2945(15)	0.212	2.87003(12)	0.788
20	5.27	3.01	4.50	1.50	5.7170(10)	6.2935(16)	0.199	2.86988(13)	0.802
21	5.81	3.01	4.47	1.49	5.7165(10)	6.2923(16)	0.187	2.86984(12)	0.813
22	6.35	3.01	4.60	1.53	5.7185(11)	6.2929(17)	0.180	2.86988(12)	0.820
23	6.89	3.01	4.56	1.51	5.7195(11)	6.2911(18)	0.171	2.86991(11)	0.829
24	7.43	3.01	4.63	1.54	5.7179(12)	6.2929(18)	0.160	2.86981(11)	0.840
25	7.97	3.01	4.57	1.52	5.7189(12)	6.2920(19)	0.159	2.86984(10)	0.841
26	9.32	3.01	4.65	1.54	5.7213(13)	6.2861(20)	0.147	2.86975(11)	0.853
27	10.67	3.01	4.62	1.53	5.7217(15)	6.2863(22)	0.141	2.86984(10)	0.859
28	12.02	3.01	4.70	1.56	5.7196(14)	6.2881(22)	0.129	2.86971(10)	0.871
29	13.37	3.01	4.58	1.52	5.7217(15)	6.2870(23)	0.124	2.86982(10)	0.876
30	14.72	3.01	4.51	1.50	5.7225(17)	6.2853(25)	0.123	2.869796(93)	0.877
31	16.07	3.01	4.71	1.56	5.7214(19)	6.2850(28)	0.112	2.869700(97)	0.888
32	18.77	3.01	4.66	1.55	5.7242(21)	6.2810(31)	0.106	2.869657(94)	0.894
33	21.47	3.01	4.81	1.60	5.7234(23)	6.2792(34)	0.089	2.869667(96)	0.911
34	24.17	3.01	4.63	1.54	5.7276(29)	6.2779(42)	0.088	2.869726(89)	0.912
35	26.87	3.02	4.56	1.51	5.7268(31)	6.2778(45)	0.072	2.869647(87)	0.928
36	32.27	3.01	4.66	1.55	5.7327(47)	6.2666(66)	0.063	2.869598(86)	0.937
37	37.67	3.01	4.73	1.57	5.7325(63)	6.2688(90)	0.042	2.869639(87)	0.958
38	43.07	3.01	4.68	1.55	5.7481(68)	6.2508(98)	0.039	2.869675(78)	0.961
39	48.47	3.02	4.83	1.60	5.7574(71)	6.233(10)	0.028	2.869537(78)	0.972
40	53.87	3.02	4.86	1.61	5.7589(51)	6.2437(78)	0.024	2.869481(78)	0.977

- b) Rietveld refinement parameters of the sample determined before the H₂-treatment. Please see the Experimental procedures in the Supporting Information.
- c) expected profile R factor
- d) weighted profile R-factor
- e) $S = R_{wp}/R_{exp}$
- f) relative weight fraction of α "-Fe₁₆N₂
- g) relative weight fraction of α -Fe

For details of the R_{exp} and R_{wp} ;

Run# t [h	+ [hu]	D c)	(h a	C e)		α "-Fe ₁₆ N ₂		α-Fe		
Kun#		K _{exp} ^c	K _{wp} ^u	50	<i>a</i> [Å]	<i>c</i> [Å]	W _{Fe16N2} ^{f)}	<i>a</i> [Å]	w _{Fe} ^{g)}	
0 ^{b)}	0	2.38	3.57	1.50	5.71736(19)	6.30683(32)	0.941	2.87074(37)	0.059	
1	0.13	2.79	4.40	1.58	5.71687(27)	6.30176(45)	0.901	2.86985(44)	0.099	
2	0.40	2.80	4.89	1.75	5.71611(35)	6.29774(60)	0.799	2.87099(33)	0.200	
3	0.67	2.80	5.21	1.86	5.71580(49)	6.29380(81)	0.670	2.87144(28)	0.330	
4	0.94	2.81	5.17	1.84	5.71654(60)	6.29424(99)	0.543	2.87197(26)	0.457	
5	1.21	2.81	4.99	1.78	5.71546(70)	6.2898(11)	0.424	2.87106(22)	0.576	
6	1.48	2.82	4.81	1.71	5.71601(82)	6.2885(12)	0.321	2.87073(18)	0.679	
7	1.75	2.82	4.59	1.63	5.71729(94)	6.2873(15)	0.244	2.87061(14)	0.757	
8	2.02	2.82	4.36	1.55	5.7199(11)	6.2831(17)	0.194	2.87036(11)	0.806	
9	2.29	2.82	3.93	1.39	5.7210(12)	6.2836(19)	0.150	2.870342(82)	0.850	
10	2.56	2.82	3.83	1.36	5.7219(14)	6.2811(22)	0.125	2.870252(70)	0.875	
11	2.83	2.83	3.91	1.38	5.7226(16)	6.2802(25)	0.107	2.870156(64)	0.893	
12	3.10	2.82	3.79	1.34	5.7197(17)	6.2858(26)	0.092	2.870193(58)	0.908	
13	3.37	2.82	3.77	1.34	5.7254(20)	6.2779(29)	0.081	2.870235(56)	0.919	
14	3.64	2.82	3.65	1.29	5.7247(20)	6.2822(30)	0.073	2.870168(52)	0.927	
15	3.91	2.83	3.76	1.33	5.7298(24)	6.2719(36)	0.075	2.870258(53)	0.925	
16	4.18	2.82	3.75	1.33	5.7283(23)	6.2738(34)	0.067	2.870197(52)	0.934	
17	4.45	2.82	3.72	1.32	5.7247(24)	6.2794(36)	0.059	2.870156(50)	0.941	
18	4.72	2.82	3.80	1.35	5.7255(26)	6.2776(39)	0.060	2.870233(51)	0.941	

Table S4. Rietveld refinement parameters for the experiment carried out at 413 K under H₂^{a)} (Experiment D).

19	4.99	2.82	3.72	1.32	5.7291(27)	6.2769(40)	0.057	2.870229(50)	0.943
20	5.26	2.82	3.80	1.35	5.7305(31)	6.2720(45)	0.057	2.870219(51)	0.943
21	6.07	2.83	3.71	1.31	5.7386(42)	6.2561(60)	0.047	2.870238(48)	0.953
22	6.88	2.83	3.72	1.31	5.7506(39)	6.2478(57)	0.043	2.870282(47)	0.957
23	7.69	2.83	3.74	1.32	5.7490(47)	6.2436(67)	0.037	2.870261(48)	0.963
24	9.31	2.83	3.73	1.32	5.7522(50)	6.2394(72)	0.034	2.870234(46)	0.966
25	10.66	2.83	3.6	1.27	5.7632(80)	6.190(12)	0.038	2.870267(43)	0.962
26	12.01	2.83	3.88	1.37	5.7547(85)	6.193(13)	0.035	2.870185(46)	0.965
27	13.36	2.83	3.95	1.40	5.7563(98)	6.185(15)	0.037	2.870228(47)	0.963
28	16.06	2.83	3.79	1.34	5.7592(98)	6.182(15)	0.029	2.870236(44)	0.971
29	18.76	2.83	3.78	1.34	5.763(10)	6.133(15)	0.022	2.870209(43)	0.978
30	21.46	2.83	3.75	1.33	5.751(11)	6.130(15)	0.019	2.870234(43)	0.981

a) $50 \text{ cm}^3/\text{min H}_2$

b) Rietveld refinement parameters of the sample determined before the H₂-treatment. Please see the Experimental procedures in the Supporting Information.

c) expected profile R factor

d) weighted profile R-factor

e) $S = R_{wp}/R_{exp}$

f) relative weight fraction of α "-Fe₁₆N₂

g) relative weight fraction of α -Fe

For details of the R_{exp} and R_{wp} ;

Oxford), pp.1–38.

Run# t [hr]	+ [hr]	$R_{exp}^{c)}$	(h a	Ce)	α "-Fe ₁₆ N ₂			α-Fe		
Kun#	ι [hr]	K _{exp} ^c	K _{wp} ^u	30)	<i>a</i> [Å]	<i>c</i> [Å]	W _{Fe16N2} ^{f)}	<i>a</i> [Å]	w _{Fe} ^{g)}	
0 ^{b)}	0	2.66	3.16	1.19	5.71766(18)	6.30672(31)	0.933	2.87070(33)	0.067	
1	0.14	2.64	4.83	1.83	5.71626(30)	6.30241(52)	0.849	2.87025(38)	0.151	
2	0.41	2.65	5.61	2.12	5.71629(50)	6.30089(84)	0.677	2.87154(29)	0.323	
3	0.68	2.66	5.62	2.11	5.71464(63)	6.2960(10)	0.496	2.87095(26)	0.504	
4	0.94	2.66	5.17	1.94	5.71553(73)	6.2932(12)	0.355	2.87051(18)	0.645	
5	1.22	2.66	4.69	1.76	5.71529(85)	6.2917(14)	0.263	2.87049(12)	0.737	
6	1.48	2.67	4.19	1.57	5.7183(10)	6.2888(16)	0.196	2.870570(88)	0.804	
7	1.75	2.67	4.05	1.52	5.7180(13)	6.2888(20)	0.150	2.870479(75)	0.850	
8	2.02	2.67	3.87	1.45	5.7187(15)	6.2861(24)	0.118	2.870419(67)	0.882	
9	2.29	2.67	3.97	1.49	5.7232(19)	6.2824(28)	0.095	2.870444(64)	0.905	
10	2.56	2.67	3.69	1.38	5.7253(21)	6.2800(31)	0.083	2.870509(57)	0.917	
11	2.83	2.67	3.87	1.45	5.7268(25)	6.2764(38)	0.073	2.870561(57)	0.927	
12	3.10	2.68	3.80	1.42	5.7282(31)	6.2766(45)	0.060	2.870447(55)	0.940	
13	3.37	2.68	3.77	1.41	5.7305(36)	6.2670(52)	0.056	2.870419(55)	0.944	
14	3.64	2.68	3.86	1.44	5.7517(39)	6.2435(56)	0.048	2.870430(55)	0.952	
15	3.91	2.68	3.77	1.41	5.7407(49)	6.2565(70)	0.046	2.870495(51)	0.954	
16	4.18	2.68	3.75	1.40	5.7398(53)	6.2583(75)	0.037	2.870483(51)	0.963	
17	4.99	2.68	3.78	1.41	5.7473(74)	6.238(11)	0.035	2.870426(49)	0.965	
18	6.34	2.68	3.74	1.40	5.749(11)	6.189(17)	0.027	2.870393(47)	0.973	

Table S5. Rietveld refinement parameters for the experiment carried out at 423 K under H₂^{a)} (Experiment E).

19	7.69	2.68	3.74	1.40	5.749(12)	6.174(17)	0.026	2.870351(47)	0.974
20	9.04	2.68	3.97	1.48	5.757(15)	6.108(22)	0.018	2.870316(49)	0.982
21	10.39	2.68	3.87	1.44	5.7603(84)	6.122(12)	0.013	2.870418(46)	0.987

b) Rietveld refinement parameters of the sample determined before the H₂-treatment. Please see the Experimental procedures in the Supporting Information.

c) expected profile R factor

d) weighted profile R-factor

e) $S = R_{wp}/R_{exp}$

f) relative weight fraction of α "-Fe₁₆N₂

g) relative weight fraction of α -Fe

For details of the R_{exp} and R_{wp};

Run#	<i>t</i> [hr]	R _{exp} ^{c)}	R_{wp}^{d}	S ^{e)}	α "-Fe ₁₆ N ₂			α-Fe	
					<i>a</i> [Å]	<i>c</i> [Å]	w _{Fe16N2} ^{f)}	<i>a</i> [Å]	w _{Fe} ^{g)}
0 ^{b)}	0	2.74	3.69	1.35	5.71772(19)	6.30694(34)	0.940	2.87061(37)	0.060
1	0.13	2.70	4.26	1.58	5.71617(21)	6.30222(38)	0.918	2.86946(38)	0.082
2	0.40	2.71	4.62	1.70	5.71636(25)	6.29930(45)	0.862	2.86989(34)	0.138
3	0.67	2.71	4.67	1.72	5.71684(32)	6.29681(55)	0.792	2.87098(29)	0.208
4	0.94	2.71	4.72	1.74	5.71676(37)	6.29556(63)	0.717	2.87121(25)	0.283
5	1.21	2.72	4.83	1.78	5.71759(43)	6.29574(73)	0.643	2.87184(23)	0.357
6	1.48	2.72	4.77	1.75	5.71743(50)	6.29534(84)	0.561	2.87174(23)	0.439
7	1.75	2.72	4.67	1.72	5.71728(53)	6.29218(89)	0.493	2.87126(21)	0.507
8	2.02	2.73	4.59	1.68	5.71697(55)	6.29074(92)	0.419	2.87102(18)	0.581
9	2.29	2.73	4.46	1.63	5.71703(61)	6.2911(10)	0.362	2.87087(16)	0.638
10	2.56	2.70	4.11	1.52	5.71738(70)	6.2889(11)	0.308	2.87051(14)	0.692
11	2.83	2.73	4.36	1.60	5.71798(75)	6.2875(12)	0.264	2.87046(12)	0.736
12	3.10	2.73	4.23	1.55	5.71887(85)	6.2860(13)	0.227	2.87024(11)	0.773
13	3.37	2.53	4.10	1.62	5.72078(94)	6.2838(15)	0.194	2.870126(95)	0.806
14	3.64	2.73	4.11	1.51	5.7204(10)	6.2855(16)	0.163	2.870084(88)	0.837
15	3.91	2.73	3.95	1.45	5.7219(11)	6.2851(17)	0.144	2.870123(80)	0.856
16	4.18	2.73	3.97	1.45	5.7205(11)	6.2866(17)	0.129	2.870066(76)	0.871
17	4.45	2.73	3.98	1.46	5.7221(13)	6.2849(20)	0.114	2.870054(73)	0.886
18	4.72	2.73	3.91	1.43	5.7231(14)	6.2839(21)	0.107	2.870057(69)	0.893

Table S6. Rietveld refinement parameters for the experiment carried out at 413 K under H₂/He mixture gas^{a)} (Experiment F).

19	4.99	2.73	3.9	1.43	5.7244(13)	6.2816(20)	0.098	2.869976(68)	0.902
20	5.26	2.73	4.01	1.47	5.7270(16)	6.2776(24)	0.091	2.869909(69)	0.909
21	6.61	2.73	3.90	1.43	5.7267(18)	6.2805(27)	0.067	2.869932(63)	0.933
22	7.96	2.73	3.99	1.46	5.7317(22)	6.2709(32)	0.061	2.869959(62)	0.939
23	9.31	2.73	4.23	1.55	5.7313(26)	6.2723(37)	0.053	2.869878(62)	0.947
24	10.66	2.73	4.18	1.53	5.7337(31)	6.2683(44)	0.056	2.869948(62)	0.944
25	12.01	2.73	4.11	1.51	5.7313(35)	6.2712(50)	0.050	2.869875(61)	0.950
26	13.36	2.73	4.06	1.49	5.7516(33)	6.2496(48)	0.045	2.869895(56)	0.955
27	16.06	2.73	4.19	1.53	5.7513(39)	6.2459(57)	0.041	2.869826(57)	0.959
28	18.76	2.73	4.10	1.50	5.7461(47)	6.2524(68)	0.035	2.869861(56)	0.965
29	21.46	2.73	4.17	1.53	5.7472(69)	6.247(10)	0.030	2.869818(55)	0.970
30	24.16	2.73	4.18	1.53	5.7549(39)	6.2532(60)	0.020	2.869929(56)	0.980

a) $25 \text{ cm}^3/\text{min H}_2 + 25 \text{ cm}^3/\text{min He}$

 b) Rietveld refinement parameters of the sample determined before the H₂-treatment. Please see the Experimental procedures in the Supporting Information.

- c) expected profile R factor
- d) weighted profile R-factor
- e) $S = R_{wp}/R_{exp}$
- f) relative weight fraction of α "-Fe₁₆N₂
- g) relative weight fraction of α -Fe

For details of the R_{exp} and R_{wp} ;

Oxford), pp.1–38.

Run#	<i>t</i> [hr]	R _{exp} ^{c)}	$R_{wp}{}^{d)} \\$	S ^{e)}	α "-Fe ₁₆ N ₂			α-Fe	
					<i>a</i> [Å]	<i>c</i> [Å]	$w_{\rm Fe16N2}^{\rm f}$	a [Å]	$w_{\rm Fe}{}^{\rm g)}$
0 ^{b)}	0	2.68	3.78	1.41	5.71344(26)	6.29021(44)	0.986	2.86931(59)	0.014
1	0.30	2.64	4.08	1.55	5.71379(34)	6.30379(57)	0.988	2.86916(99)	0.012
2	1.54	2.65	3.96	1.49	5.71278(35)	6.30478(60)	0.990	2.8686(13)	0.010
3	2.89	2.65	3.96	1.49	5.71243(36)	6.30501(62)	0.990	2.8716(17)	0.010
4	4.24	2.65	3.93	1.48	5.71160(35)	6.30421(61)	0.990	2.8689(15)	0.010
5	5.59	2.65	4.12	1.55	5.71141(38)	6.30397(67)	0.989	2.8668(13)	0.011
6	6.94	2.65	4.10	1.55	5.71158(39)	6.30467(68)	0.990	2.8668(13)	0.010
7	8.29	2.65	4.09	1.54	5.71123(38)	6.30460(68)	0.987	2.8686(17)	0.013
8	9.64	2.65	4.11	1.55	5.71188(39)	6.30445(69)	0.988	2.8657(12)	0.012
9	10.99	2.65	3.95	1.49	5.71172(38)	6.30466(67)	0.985	2.8696(16)	0.015

Table S7. Rietveld refinement parameters for the experiment using SiO₂-coated α "-Fe₁₆N₂ sample at 423 K under H₂^{a)} (Experiment G).

a) $50 \text{ cm}^3/\text{min H}_2$

b) Rietveld refinement parameters of the sample determined before the H₂-treatment. Please see the Experimental Section in the Supporting Information for details.

c) expected profile R factor

d) weighted profile R-factor

e) $S = R_{wp}/R_{exp}$

f) relative weight fraction of α "-Fe₁₆N₂

g) relative weight fraction of α -Fe

For details of the R_{exp} and R_{wp} ;

Table S8: Average crystallite size, CS, of the α "- Fe₁₆N₂ samples before the H₂-treatment estimated by using the Scherrer formula.

Experiment	Α	В	С	D	Ε	F	G
CS [nm]	34.9	34.3	32.2	34.8	35.6	35.4	28.2