Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Total synthesis of (+)-kopsihainanine A

Masaya Mizutani, Shigeo Yasuda and Chisato Mukai*

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan. mukai@p.kanazawa-u.ac.jp

Table of Contents.

Experimental Section	S2
¹ H NMR and ¹³ C NMR spectra	S11
HPLC data	S31

Experimental Section

General. Melting points were measured with YANAGIMOTO micro melting point apparatus, and were uncorrected. Optical rotations were measured on a JASCO P-2200. Infrared spectra were measured with a SHIMADZU FTIR-8700 spectrometer for samples in CHCl₃. ¹H NMR spectra were measured with JNM-ECS400 or JNM-ECA600 spectrometers for samples in CDCl₃. Tetramethylsilane (0.00 ppm) for compounds with a phenyl group or CHCl₃ (7.26 ppm) were used as an internal standard. ¹³C NMR spectra were measured with JNM-ECS400 or JNM-ECA600 spectrometers for samples in CDCl₃. CDCl₃ (77.00 ppm) was used as an internal standard. High-resolution mass spectra and mass spectra were measured with JMS-SX102A (FAB) or JMS-T100TD (DART) mass spectrometers. Commercially available anhydrous THF, CH₂Cl₂, and toluene were employed for reactions. Et₃N was distilled from CaH₂. DMSO was distilled from CaSO₄. 3-Allyloxycarbonyl-1-benzoyl-2-oxopiperidine (7) was prepared by known method.¹ Other reagents were commercially available and used without further purification. All reactions were carried out under a nitrogen atmosphere. Silica gel (silica gel 60, 230–400 mesh) was used for chromatography. Organic extracts were dried over anhydrous Na₂SO₄.

1-tert-Butoxycarbonyl-2-(2-hydroxyethyl)-1H-indole (S4)

The coupling reaction of indole (S1) with S2 was conducted by the method reported by Bach.²

To a solution of indole (**S1**, 3.50 g, 29.9 mmol) and bromide **S2** (12.5 g, 60.1 mmol) in DMA (reagent grade without purification, 150 mL) were added 2-norbornene (5.71 g, 60.7 mmol), K₂CO₃ (8.28 g, 60.0 mmol) and Pd(OAc)₂ (710 mg, 3.16 mmol). The resulting solution was briefly evacuated and then backfilled with argon (3 times). The mixture was then placed in an oil bath at 70 °C. Vigorous stirring was applied and the mixture was reacted under a balloon pressure of argon. After 16 h, the reaction mixture was cooled to room temperature, diluted with Et₂O and filtered. The filtrate was extracted with Et₂O, washed with water and brine, dried, concentrated to dryness. The residue was chromatographed with hexane-AcOEt (5:1) to afford the crude **S3** (7.41 g).

To a solution of the crude S3 (7.41 g) in CH₂Cl₂ (90 mL) were added Boc₂O (8.00 mL, 34.9

mmol), Et₃N (6.60 mL, 47.0 mmol) and DMAP (330 mg, 2.70 mmol) at room temperature. After stirring for 3 h at the same temperature, the mixture was quenched with water and extracted with CH₂Cl₂, washed with water and brine, dried, concentrated to dryness. The residue was dissolved in MeOH (110 mL) and to the solution was added *p*-TsOH (1.00 g, 5.26 mmol) at room temperature. After stirring for 14 h, the mixture was quenched with solid NaHCO₃ (1.2 g) and filtered, concentrated to dryness. The residue was chromatographed with hexane-AcOEt (4:1) to afford **S4** (5.81 g, 74% for 3 steps) as a yellow oil: Rf = 0.2 (hexane-AcOEt = 3:1, UV, *p*-anisaldehyde); IR 3609, 3447, 1726 cm⁻¹; ¹H NMR δ 8.07 (d, 1H, *J* = 8.2 Hz), 7.46 (d, 1H, *J* = 6.9 Hz), 7.26–7.23 (m, 1H), 7.20 (td, 1H, *J* = 7.4, 1.0 Hz), 6.45 (s, 1H), 3.94 (t, 2H, *J* = 6.3 Hz), 3.31 (t, 2H, *J* = 6.3 Hz), 1.79 (brs, 1H), 1.69 (s, 9H); ¹³C NMR δ 150.6, 138.1, 136.6, 129.1, 123.6, 122.8, 119.9, 115.6, 109.0, 84.1, 61.8, 33.3, 28.2; DART MS *m*/*z* 262 (M⁺+1, 75.4); DART HRMS calcd. for C₁₅H₂₀NO₃ 262.1443, found 262.1430.

1-tert-Butoxycarbonyl-2-(2-iodoethyl)-1H-indole (8)

To a solution of **S4** (5.81 g, 22.3 mmol) in CH₂Cl₂ (90 mL) were added imidazole (2.34 g, 34.4 mmol), PPh₃ (7.00 g, 26.7 mmol) and I₂ (6.88 g, 27.0 mmol) at 0 °C. After stirring for 2 h at room temperature, the mixture was quenched with saturated aqueous Na₂S₂O₃, and the mixture was extracted with CH₂Cl₂. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt (20:1) to give **8** (7.43 g, 90%) as a colorless oil: R*f* = 0.3 (hexane-AcOEt = 20:1, UV, *p*-anisaldehyde); IR 1732 cm⁻¹; ¹H NMR δ 8.09 (d, 1H, *J* = 8.7 Hz), 7.49 (d, 1H, *J* = 7.8 Hz), 7.29–7.18 (m, 2H), 6.45 (s, 1H), 3.56 (t, 2H, *J* = 7.4 Hz), 3.44 (t, 2H, *J* = 7.4 Hz), 1.70 (s, 9H); ¹³C NMR δ 150.2, 139.6, 136.5, 128.9, 123.9, 122.9, 120.1, 115.8, 109.0, 84.2, 34.7, 28.3, 3.6; DART MS *m*/*z* 372 (M⁺+1, 71.7); DART HRMS calcd. for C₁₅H₁₉INO₂ 372.0460, found 372.0473.

2-{2-(3-Allyloxycarbonyl-1-benzoyl-2-oxopiperidin-3-yl)ethyl}-1*-tert*-butoxycarbonyl-1*H*-indole (9)

To a solution of **8** (7.43 g, 20.0 mmol) and lactam **7**¹ (4.10 g, 14.3 mmol) in distilled DMF (30 mL) was added K₂CO₃ (5.10 g, 37.0 mmol) at room temperature. The mixture was warmed to 50 °C and stirred at the same temperature for 3 h. After cooling to room temperature, the mixture was quenched with saturated aqueous NH₄Cl, and the mixture was extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane-AcOEt (4:1) to give **9** (5.68 g, 75%) as a pale yellow oil: R*f* = 0.4 (hexane-AcOEt = 3:1, UV, *p*-anisaldehyde); IR 1732, 1682 cm⁻¹; ¹H NMR δ 8.02 (d, 1H, *J* = 8.2 Hz), 7.73 (d, 2H, *J* = 7.3 Hz), 7.49–7.35 (m, 4H), 7.27–7.14 (m, 2H), 6.34 (s, 1H), 6.04–5.94 (m, 1H), 5.40 (dd, 1H, *J* = 16.9, 1.2 Hz), 5.33 (dd, 1H, *J* = 10.5, 1.2 Hz), 4.73 (d, 2H, *J* = 6.0 Hz), 3.86–3.74 (m, 2H), 3.20–3.12 (m, 1H), 3.01–2.91 (m, 1H), 2.57–2.53 (m, 1H), 2.39–2.27 (m, 2H), 2.08–1.98 (m, 3H), 1.66 (s, 9H); ¹³C NMR δ 174.9, 171.8, 171.5, 150.4, 141.1, 136.3, 135.8, 131.6, 131.3, 129.1, 128.01, 127.99, 123.3, 122.5, 119.8, 119.7, 115.4, 107.0, 83.7, 66.6, 56.3, 46.4, 34.3, 30.4, 28.2, 25.1, 20.2; DART MS *m/z* 531 (M⁺+1, 41.4); DART HRMS calcd. for C₃₁H₃₅N₂O₆ 531.2495, found 531.2510.

2-{2-(3-Allyl-1-benzoyl-2-oxopiperidin-3-yl)ethyl}-1-tert-butoxycarbonyl-1H-indole {(±)-10}

To a solution of **9** (1.10 g, 2.08 mmol) in dry THF (10 mL) was added Pd(PPh₃)₄ (192 mg, 0.166 mmol) at room temperature. The resulting solution was briefly evacuated and then backfilled with argon (10 times). After stirring for 12 h at the same temperature, the mixture was concentrated to dryness. The residue was chromatographed with hexane-AcOEt (6:1) to give (\pm)-**10** (810 mg, 80%) as a colorless oil: R*f* = 0.5 (hexane-AcOEt = 3:1, UV, *p*-anisaldehyde); IR 1734, 1695, 1680 cm⁻¹; ¹H NMR δ 8.05 (d, 1H, *J* = 8.2 Hz), 7.52 (d, 2H, *J* = 7.3 Hz), 7.44 (t, 2H, *J* = 7.6 Hz), 7.33 (t, 2H, *J* = 7.6 Hz), 7.23–7.17 (m, 2H) 6.36 (s, 1H), 5.84–5.74 (m, 1H), 5.16 (d, 1H, *J* = 11.4 Hz), 5.15 (d, 1H, *J* = 16.0 Hz), 3.81 (t, 2H, *J* = 5.7 Hz), 3.10–2.96 (m, 2H), 2.64 (dd, 1H, *J* = 13.9, 7.1 Hz), 2.42 (dd, 1H, *J* = 13.9, 7.8 Hz), 2.16–1.96 (m, 6H), 1.66 (s, 9H); ¹³C NMR δ 177.7, 175.6, 150.4, 141.8, 136.7, 136.4, 133.3, 131.3, 129.2, 128.1, 127.4, 123.3, 122.6, 119.8, 119.1, 115.5, 106.8, 83.8, 47.2, 47.0, 41.6, 36.2, 31.0, 28.2, 24.6, 19.5; DART MS *m/z* 487 (M⁺+1, 98.6); DART HRMS calcd. for

Q

CF₃ Pd₂(dba)₃ (5 mol%) (S)-(CF₃)₃-t-BuPHOX (20) (12.5 mol%) NBz Boc Boc

(+)-10

(4-CF₃C₆H₄)₂F

(S)-(CF₃)₃-t-BuPHOX (20)

. tΒu

(R)-2-{2-(3-Allyl-1-benzoyl-2-oxopiperidin-3-yl)ethyl}-1-tert-butoxycarbonyl-1H-indole {(+)-10}

Pd₂(dba)₃ (45.8 mg, 0.050 mmol) and a solution of **20** (73.9 mg, 0.125 mmol) in MTBE (20 mL) were added in a 200-mL reaction flask, and the resulting mixture was briefly evacuated and then backfilled with argon (10 times). After stirring for 30 min at room temperature, 9 (528 mg, 1.0 mmol) in MTBE (20 mL) was added to the resulting solution. The solution was briefly evacuated and then backfilled with argon (10 times). After stirring for 15 h at 40 °C, the mixture was cooled to The residue was chromatographed with room temperature and concentrated to dryness. hexane-AcOEt (6:1) to give (+)-10 (398 mg, 82%) as a colorless oil: Rf = 0.5 (hexane-AcOEt = 3:1, UV, *p*-anisaldehyde); $[\alpha]_D^{23} = +44.2$ (c = 0.98, CHCl₃); IR 1734, 1695, 1680 cm⁻¹; ¹H NMR δ 8.05 (d, 1H, J = 8.2 Hz), 7.52 (d, 2H, J = 7.3 Hz), 7.44 (t, 2H, J = 7.6 Hz), 7.33 (t, 2H, J = 7.6 Hz), 7.23–7.17 (m, 2H) 6.36 (s, 1H), 5.84–5.74 (m, 1H), 5.16 (d, 1H, J = 11.4 Hz), 5.15 (d, 1H, J = 16.0 Hz), 3.81 (t, 2H, J = 5.7 Hz), 3.10–2.96 (m, 2H), 2.64 (dd, 1H, J = 13.9, 7.1 Hz), 2.42 (dd, 1H, J = 13.9, 7.8 Hz), 2.16–1.96 (m, 6H), 1.66 (s, 9H); ¹³C NMR δ 177.7, 175.6, 150.4, 141.8, 136.7, 136.4, 133.3, 131.3, 129.2, 128.1, 127.4, 123.3, 122.6, 119.8, 119.1, 115.5, 106.8, 83.8, 47.2, 47.0, 41.6, 36.2, 31.0, 28.2, 24.6, 19.5; DART MS *m/z* 487 (M⁺+1, 98.6); DART HRMS calcd. for C₃₀H₃₅N₂O₄ 487.2597, found 487.2611; HPLC: OD-H column; $\lambda = 254$ nm; eluent: hexane/2-propanol = 97/3; flow rate: 1.0 mL/min; $t_R = 16.8 \text{ min (minor)}, t_R = 21.0 \text{ min (major)}; ee = 98\%.$

(*R*)-2-{2-(3-Allyl-2-oxo-piperidin-3-yl)ethyl}-1*H*-indole {(-)-11}

MTBE (0.033 M)

80% 98% ee

To a solution of (+)-10 (98% ee, 1.39 g, 2.86 mmol) in MeOH (30 mL) was added KOH (770 mg, 13.3 mmol) at room temperature and the mixture was warmed to reflux. After stirring for 3.5 h, the mixture was cooled and concentrated to dryness. To the residue was added water and extracted with CH₂Cl₂, washed with water and brine, dried, concentrated to dryness. The residue was chromatographed with hexane-AcOEt (1:1 to 1:2) to give (-)-11 (624mg, 77%) as a colorless powder:

R*f* = 0.3 (hexane-AcOEt = 1:2, UV, *p*-anisaldehyde); mp 167–168 °C (from AcOEt); $[\alpha]_D^{23} = -11.0$ (c = 1.46, CHCl₃); IR 3468, 3402, 3294, 3202, 1645 cm⁻¹; ¹H NMR δ 8.33 (brs, 1H), 7.48 (d, 1H, *J* = 7.8 Hz), 7.26 (d, 1H, *J* = 8.2 Hz), 7.10–7.01 (m, 2H), 6.20 (brs, 1H), 5.86–5.75 (m, 2H), 5.10 (d, 1H, *J* = 9.6 Hz), 5.09 (d, 1H, *J* = 17.4 Hz), 3.29 (brs, 2H), 2.91–2.83 (m, 1H), 2.76–2.68 (m, 1H), 2.54 (dd, 1H, *J* = 13.7, 6.4 Hz), 2.34 (dd, 1H, *J* = 13.6, 7.8 Hz), 2.16 (td, 1H, *J* = 17.7, 6.3 Hz), 1.89–1.76 (m, 5H); ¹³C NMR δ 176.3, 139.7, 136.2, 133.8, 128.8, 121.0, 119.7, 119.5, 118.5, 110.5, 99.4, 45.0, 43.0, 42.8, 37.9, 29.7, 23.7, 19.6; DART MS *m*/*z* 283 (M⁺+1, 49.5); DART HRMS calcd. for C₁₈H₂₃N₂O 283.1810, found 283.1806.

(4a*R*,11c*S*)-4a-Allyl-2,3,4,4a,5,6,7,11c-octahydro-1*H*-pyrido-[3,2-c]carbazole {(+)-12}

A solution of (-)-**11** (767 mg, 2.72 mmol) and POCl₃ (0.370 mL, 4.08 mmol) in toluene (15 mL) was heated under reflux for 30 min. The solvent was removed under reduced pressure. The crude product was dissolved in MeOH (30 mL) and treated with NaBH₄ (362 mg, 9.52 mmol) at 0 °C, stirred for 3 h. The reaction mixture was concentrated to dryness, chromatographed with AcOEt to give (+)-**12** (668 mg, 92%) as a colorless amorphous powder: Rf = 0.3 (AcOEt, UV, *p*-anisaldehyde); $[\alpha]_{\rm D}^{28} = +123$ (c = 1.02, CHCl₃); IR 3472, 3402, 3327, 1637 cm⁻¹, ¹H NMR δ 7.87 (d, 1H, *J* = 7.8 Hz), 7.78 (brs, 1H), 7.23 (d, 1H, *J* = 7.3 Hz), 7.08–6.99 (m, 2H), 5.89–5.79 (m, 1H), 5.07 (d, 1H, *J* = 10.1 Hz), 5.06 (d, 1H, *J* = 16.5 Hz), 3.95 (s, 1H), 3.30 (dd, 1H, *J* = 12.4, 4.1 Hz), 2.91 (dd, 1H, *J* = 12.9, 3.5 Hz), 2.82–2.73 (m, 1H), 2.60 (dd, 1H, *J* = 16.9, 6.4 Hz), 2.40 (dd, 1H, *J* = 14.3, 7.3 Hz), 1.95 (dd, 1H, *J* = 14.3, 7.6 Hz), 1.86–1.74 (m, 4H), 1.53–1.43 (m, 2H), 1.28–1.21 (m, 1H); ¹³C NMR δ 135.9, 135.3, 133.3, 127.1, 120.6, 120.2, 119.0, 117.0, 110.9, 110.3, 63.7, 47.2, 35.9, 33.6, 32.1, 29.6, 22.2, 20.0; DART MS *m*/*z* 267 (M⁺+1, 26.0), DART HRMS calcd. for C₁₈H₂₃N₂ 267.1861, found 267.1858; HPLC: IA column; $\lambda = 254$ nm; eluent: hexane/2-propanol/diethylamine = 80/20/0.2; flow rate: 1.0 mL/min; *t*_R = 5.3 min (major), *t*_R = 6.9 min (minor); ee = 98%.

(4a*R*,11c*S*)-4a-Allyl-7-(*tert*-butoxycarbonyl)-2,3,4,4a,5,6,7,11c-octahydro-1*H*-pyrido-[3,2-c]carba zole {(+)-13}

To a solution of (+)-**12** (500 mg, 1.88 mmol) in CH₂Cl₂ (20 mL) were added Boc₂O (0.517 mL, 2.26 mmol), Et₃N (0.450 mL, 3.21 mmol) and DMAP (23.0 mg, 0.189 mmol) at room temperature. After stirring for 12 h at the same temperature, the mixture was quenched with water and extracted with CH₂Cl₂. The extract was washed with water and brine, dried, concentrated to dryness. The residue was chromatographed with hexane-AcOEt (5:1) to give (+)-**13** (570 mg, 83%) as a colorless oil: R*f* = 0.4 (hexane-AcOEt = 3:1, UV, *p*-anisaldehyde); $[\alpha]_D^{29}$ = +53.2 (c = 1.18, CHCl₃); IR 3009, 2932, 1722, 1369 cm⁻¹; ¹H NMR δ 8.09 (t, 2H, *J* = 8.9 Hz), 7.22–7.12 (m, 2H), 5.90–5.80 (m, 1H), 5.10 (d, 1H, *J* = 16.0 Hz), 5.09 (d, 1H, *J* = 11.0 Hz), 3.88 (t, 1H, *J* = 2.5 Hz), 3.29 (dd, 1H, *J* = 13.5, 4.8 Hz), 3.07–2.84 (m, 3H), 2.35 (dd, 1H, *J* = 14.2, 7.8 Hz), 2.00 (dd, 1H, *J* = 14.2, 7.3 Hz), 1.88–1.79 (m, 2H), 1.77–1.70 (m, 1H), 1.67 (s, 9H), 1.51 (brs, 1H), 1.46–1.38 (m, 2H), 1.22 (td, 1H, *J* = 13.3, 3.2 Hz); ¹³C NMR δ 150.6, 136.0, 135.0, 134.9, 129.1, 122.9, 122.1, 121.0, 117.2, 116.7, 115.1, 83.4, 63.3, 47.1, 34.8, 33.6, 32.5, 29.4, 28.3, 23.0, 22.3; DART MS *m/z* 367 (M⁺+1, 26.3); DART HRMS calcd. for C₂₃H₃₁N₂O₂ 367.2386, found 367.2386.

(1*S*,4a*R*,11c*S*)-7-*tert*-Butoxycarbonyl-2,3(1*H*,4*H*)-dioxo-1,4a-propano-4a*H*-5,6,7,11c-tetrahydrop yrido[3,2-*c*]carbazole {(+)-17}

To a solution of (+)-13 (783 mg, 2.14 mmol) in CH_2Cl_2 (25 mL) were added Na_2CO_3 (1.15 g, 10.8 mmol) and CbzCl (0.920 mL, 6.50 mmol) at room temperature. After stirring for 12 h at the

same temperature, the mixture was quenched with water and extracted with CH_2Cl_2 , washed with water and brine, dried, concentrated to dryness. The residue was chromatographed with hexane-AcOEt (8:1 to 6:1) to give the crude **14** (1.00 g).

CeCl₃•7H₂O (15.0 mg, 0.040 mmol), NaIO₄ (64.9 mg, 0.30 mmol), and water (0.16 mL) were added sequentially to a reaction flask. The resulting suspension was heated to 50 °C and stirred for 20 min. After cooling to 0°C, AcOEt (0.40 mL), CH₃CN (0.60 mL), and a 0.050 M aqueous solution of RuCl₃ (40 mL, 0.0020 mmol) were added sequentially to the suspension. After stirring for 5 min at 0 °C, a solution of the crude **14** (101 mg) in AcOEt (0.60 mL) was added to the suspension. After stirring for 15 min at the same temperature, AcOEt (2.0 mL) and solid Na₂SO₄ (100 mg) were added to the reaction mixture. The resulting mixture was filtered off and the filter cake was washed with AcOEt. The filtrate was washed with saturated aqueous Na₂SO₃, dried, concentrated to dryness. The residue was chromatographed with hexane-AcOEt (1:1 to 1:4) to give the crude **15** (75.3 mg).

To a solution of the crude **15** (292 mg) in EtOH (8.0 mL) was added 20% Pd(OH)₂/C (56 mg) at room temperature. The resulting mixture was stirred under H₂ atmosphere at the same temperature for 20 min. Then the mixture was filtered through Celite and the filtrate was concentrated to dryness. The residue was chromatographed with AcOEt-MeOH (10:1) to give the crude **16** (209 mg).

To a suspension of IBX (338 mg, 1.21 mmol) in DMSO (0.50 mL) was added a solution of the crude **16** (69.0 mg) in DMSO (1.1 mL) at room temperature. After stirring for 12 h, the mixture was quenched with saturated aqueous Na₂S₂O₃, extracted with AcOEt. The extract was washed with water and brine, dried and concentrated to dryness. The residue was chromatographed with CH₂Cl₂-MeOH (100:1) to give (+)-**17** (36.0 mg, 33% from (+)-**13**) as a colorless solid: R*f* = 0.3 (CH₂Cl₂, UV, *p*-anisaldehyde); mp 182–184 °C (from AcOEt); $[\alpha]_D^{30} = +174$ (c = 1.13, CHCl₃); IR 1734, 1682, 1360, 1150 cm⁻¹; ¹H NMR δ 8.03 (d, 1H, *J* = 7.8 Hz), 7.61 (d, 1H, *J* = 7.8 Hz), 7.22 (dd, 1H, *J* = 7.8, 7.2 Hz), 7.15 (dd, 1H, *J* = 7.8, 7.2 Hz), 4.50 (dd, 1H, *J* = 13.2, 5.4 Hz), 4.28 (s, 1H), 3.34 (ddd, 1H, *J* = 13.2, 12.6, 3.0 Hz), 3.27 (dd, 1H, *J* = 19.2, 6.6 Hz), 3.16–3.09 (m, 1H), 2.77 (d, 1H, *J* = 17.5 Hz), 2.34 (d, 1H, *J* = 17.5 Hz), 2.13–2.05 (m, 1H), 1.95 (dd, 2H, *J* = 13.4, 5.8 Hz), 1.87–1.77 (m, 3H), 1.68 (s, 9H); ¹³C NMR δ 195.9, 171.5, 150.1, 136.8, 136.1, 126.1, 124.3, 123.2, 120.0, 115.6, 114.1, 84.4, 61.7, 52.2, 42.3, 38.9, 37.6, 33.8, 28.2, 22.7, 22.4; DART MS *m/z* 395 (M⁺+1, 41.0), DART HRMS calcd. for C₂₃H₂₇N₂O₄ 395.1971 found 395.1988.

(1*S*,3*R*,4a*R*,11c*S*)-7-*tert*-Butoxycarbonyl-3,4,5,6,7,11c-hexahydro-3-hydroxy-1,4a-propano-4a*H*-p yrido-[3,2-*c*]carbazol-2(1*H*)-one {(-)-18}

NaBH₄ (25.5 mg, 0.671 mmol) was added to *t*BuOH/THF (1:1, 4.0 mL) at 0 °C. To the resulting suspension was added (+)-**17** (33.1 mg, 0.0840 mmol) in *t*BuOH/THF (1:1, 4.0 mL) at 0 °C. After stirring for 1 h at the same temperature, the mixture was quenched with saturated aqueous NH₄Cl, extracted with AcOEt. The extract was washed with water and brine, dried and concentrated to dryness. The residue was chromatographed with hexane-AcOEt (2:1 to 1:1) to give (-)-**18** (15.0 mg, 45%) as a colorless oil: R*f* = 0.4 (hexane-AcOEt = 2:1, UV, PMA); $[\alpha]_D^{29} = -26.7$ (c = 1.20, CHCl₃); IR 3466, 2934, 1728, 1670, 1456, 1360 cm⁻¹; ¹H NMR δ 8.09 (d, 1H, *J* = 8.4 Hz), 7.64 (d, 1H, *J* = 7.2 Hz), 7.24 (dd, 1H, *J* = 8.4, 7.2 Hz), 7.16 (dd, 1H, *J* = 7.2, 7.2 Hz), 4.43 (dd, 1H, *J* = 12.6, 5.4 Hz), 4.23 (s, 1H), 4.04 (ddd, 1H, *J* = 10.8, 9.0, 5.4 Hz), 3.57 (d, 1H, *J* = 6.0 Hz), 3.27–3.19 (m, 3H), 2.44 (dd, 1H, *J* = 13.8, 9.0 Hz), 2.00–1.90 (m, 2H), 1.75–1.64 (m, 12H), 1.63–1.58 (m, 1H), 1.27 (dd, 1H, *J* = 13.8, 10.8 Hz); ¹³C NMR δ 185.6, 150.3, 136.2, 135.0, 126.1, 124.1, 122.7, 120.0, 115.5, 84.1, 68.6, 63.3, 53.8, 39.3, 37.1, 36.6, 34.7, 28.3, 22.3, 21.7; DART MS *m/z* 397 (M⁺+1, 100.0), DART HRMS calcd. for C₂₃H₂₉N₂O₄ 397.2127 found 397.2118; HPLC: AD-H column; λ = 254 nm; eluent: hexane/2-propanol = 97/3; flow rate: 1.0 mL/min; *t*_R = 26.9 min (minor), *t*_R = 29.5 min (major); ee = 99%.

(1*S*,3*R*,4a*R*,11c*S*)-3,4,5,6,7,11c-hexahydro-3-hydroxy-1,4a-propano-4a*H*-pyrido-[3,2-*c*]carbazol-2(1*H*)-one {(+)-kopsihainaine A} (1)

To a solution of (–)-18 (11.5 mg, 0.0290 mmol) in MeOH (4.5 mL) was added KOH (10.3 mg, 0.183 mmol) at room temperature and the mixture was warmed to reflux. After stirring for 3 h, the mixture was cooled and concentrated to dryness. To the residue was added water and extracted with CH_2Cl_2 , washed with water and brine, dried, concentrated to dryness. The residue was chromatographed with hexane-AcOEt (1:1 to 1:2) to give (+)-kopsihainanine A (1) (7.3 mg, 85%) as a

colorless powder: Rf = 0.2 (hexane-AcOEt = 1:1, UV, PMA); mp 168–170 °C (from AcOEt); $[\alpha]_D^{30}$ = +25.4 (c = 0.33, CHCl₃), $[\alpha]_D^{16}$ = +39.4 (c = 0.10, MeOH), $[\alpha]_D^{19}$ = +10.0 (c = 0.10, AcOEt) {lit.³} $[\alpha]_{D}^{25} = 60 \ (c = 0.10, \text{CHCl}_{3}), \text{ lit.}^{4} \ [\alpha]_{D}^{20} = 55.0 \ (c = 0.5, \text{CHCl}_{3}) \ ; \text{ IR } 3470, \ 3013, \ 2930, \ 1668, \ 1466, \$ 1095 cm⁻¹; ¹H NMR δ 7.86 (brs, 1H), 7.62 (d, 1H, J = 7.8 Hz), 7.27 (d, 1H, J = 7.8 Hz), 7.13 (dd, 2H, J = 7.8 Hz), 7.13 (dd, 2H, J = 7.8 Hz), 7.13 (d J = 7.8, 7.2 Hz), 7.04 (dd, 1H, J = 7.8, 7.2 Hz), 4.43 (dd, 1H, J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd, 1H), J = 12.6, 5.4 Hz), 4.36 (s, 1H), 4.02 (ddd), 4.4 1H, J = 10.8, 8.4, 5.4 Hz), 3.59 (d, 1H, J = 5.4 Hz), 3.26 (ddd, 1H, J = 12.6, 12.6, 3.0 Hz), 3.11–3.05 (m, 1H), 2.77 (dd, 1H, J = 17.2, 6.2 Hz), 2.38 (dd, 1H, J = 14.1, 8.6 Hz), 2.00–1.91 (m, 2H), 1.82 (ddd, 2H), 1 1H, J = 13.2, 12.0, 6.0 Hz), 1.72–1.69 (m, 2H), 1.62–1.57 (m, 1H), 1.27 (dd, 1H, J = 13.8, 10.8 Hz); ¹³C NMR δ 185.8, 136.2, 133.0, 124.6, 122.0, 120.0, 119.8, 110.5, 109.9, 68.7, 63.8, 53.8, 39.4, 37.6, 37.4, 34.5, 21.8, 19.6; DART MS m/z 297 (M⁺+1, 29.0), DART HRMS calcd. for C₁₈H₂₁N₂O₂ 297.1603 found 297.1617; HPLC: IE column; λ = 280 nm; eluent: hexane/MeOH/CH₂Cl₂/ethylenediamine = 70/6/24/0.06; flow rate: 1.0 mL/min; $t_R = 13.7$ min (minor), $t_{\rm R} = 24.6 \text{ min (major)}; ee = 99\%.$

The obtained spectral data were identical with reported kopsihainanine A.^{3,4}

References

1) D. C. Behenna, Y. Liu, T. Yurino, J. Kim. D. E. White, S. C. Virgil and B. M. Stoltz, *Nature Chem.*, 2012, **4**, 130–133.

2) L. Jiao and T. Bach, J. Am. Chem. Soc., 2011, 133, 12990-12993.

3) J. Chen, J.-J. Chen, X. Yao and K. Gao, Org. Biomol. Chem., 2011, 9, 5334–5336.

4) Z. Li, S. Zhang, S. Wu, X. Shen, L. Zou, F. Wang, X. Li, F. Peng, H. Zhang and Z. Shao, *Angew. Chem.*, *Int. Ed.*, 2013, **52**, 4117–4121.

0

NBz

0

Ξ

ΙŹ

I, 20

.

** CH 1	定量割 PKNO 1 2	十算結果 ** TIME 12.999 23.879	* AREA 445950 432579	HEIGHT 27232 10332	MK	I DNO	CONC 50.761 49.239	NAME
		TOTAL	878529	37563			100	

СН	PKNO	TIME	AREA	HEIGHT	MK	I DNO	CONC	NAME	
1	1	13.713	14229	922			0.3498		
	2	24.641	4053794	72006	s″		99.6502		
						-			
		TOTAL	4068022	72929			100		
	1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	· · · · · · · · · · · · · · · · · · ·	and a second second second						