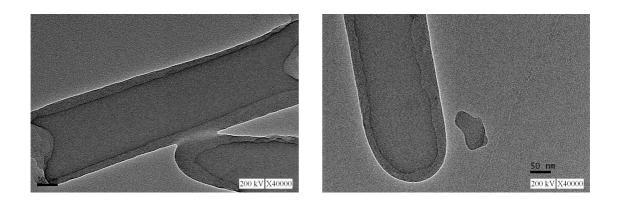

Template-assisted *in situ* polymerization for forming blue organic light-emitting nanotubes


Li-Chi Lee^{*a*}, Han-Han^a, Yu-Tang Tsai^b, Gang-Lun Fan^a, Hsiang-Fang Liu^a, Chung-Chih Wu^{*b}, Jing-Jong Shyue^c, Shih-Sheng Sun^d, Chien-Liang Liu^a, Pi-Tai Chou^a and Ken-Tsung Wong^{*a}

Supporting Information

Preparation of organic nanotubes: A concentrated solution of **VB-FNPD** (2 mg in 60 μ L THF) was drop-casted on an AAO membrane (Whatman, diameter of 47 mm, thickness of 60 μ m, pore size of 0.2 μ m), which was then immediately clamped with glass slides and pressed with two-kilogram weight overnight to facilitate the infiltration and to reduce the evaporation of solvent. Afterward, the **VB-FNPD**-filled AAO membrane was annealed at 120 °C for 30 min. under nitrogen with the protection of glass slides. The glass slide-sandwiched sample further proceeded with the thermal *in situ* polymerization at 165 °C for 10 min. and then 175 °C for 40 min. After cooling to the ambient temperature, the nanotubes-implanted AAO membrane was treated with potassium hydroxide aqueous solution (1.0 M, 20 mL) with ultrasonication for 2 h to remove the template and release the nanotubes. The aqueous suspension was centrifuged (8000 rpm, 2 min), decanted and added with fresh deionized water (20 mL) for three cycles, giving purified poly-**VB-FNPD** nanotubes,), which were then dispersed in ethanol for further characterization.

Scheme S1 Preparation of poly-VB-FNPD nanotubes uses AAO-templated *in situ* polymerization.

Fig. S1 Selected TEM images of poly-**VB-FNPD** nanotubes showing the meniscus (left) and close ends (right). The images also indicate the inhomogeneous tube thickness (25~50 nm).

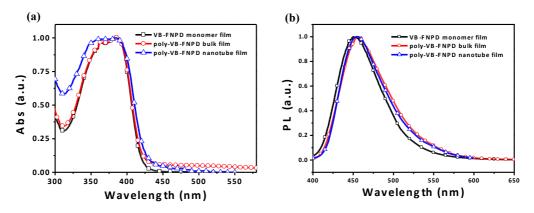
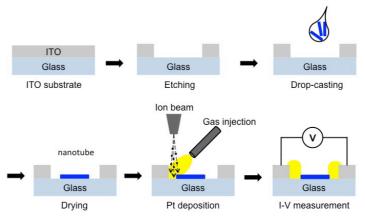
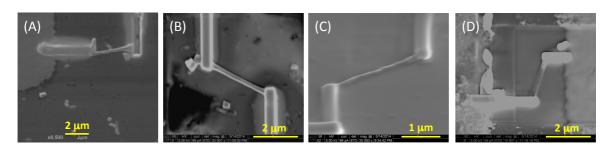


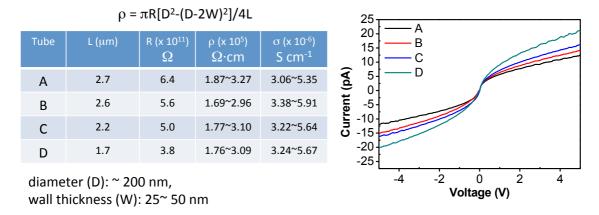
Fig. S2 Absorption (a) and emission (b) spectra of VB-FNPD.

Photoluminescenece (PL) quantum yield measurements:


The PL quantum yields were then measured using an integration sphere (Hamamatsu C10027). Solution: The monomer **VB-FNBD** (1 mg) was dissolved in THF (1 mL) and then mixed with 99.5% EtOH (1 mL). Then, diluted this mixed solution (1 mL) with 99.5% EtOH (9 mL). The poly-**VB-FNPD** nanotubes obtained from the standard protocol as mentioned in Schem 1 was dispersed in 99.5% EtOH.

Films: The monomer **VB-FNBD** (10 mg) dissolved in chlorobenzene (1 mL) was spin-coated (3000 rpm, 40 second) on an ITO glass. The sample was heated under nitrogen at 110 °C for 30 mins for removing the solvent. The nanotube film was formed by drop-casting of a 30 μ L of poly-**VB-FNPD** nanotubes suspension in EtOH on an ITO galss.


Fabrication of the nano device with focused ion beam:


For the laboratory-scale fabrication of nano-devices, the use of a focused ion beam (FIB) is a rapid and flexible method for making stable, low-resistance ohmic contacts at nanoscale.

Nanotube sample (in Ethanol solvent) was drop-casted onto a glass substrate with photo-lithography patterned ITO electrodes. Then, the FIB micromanipulator (FEI Nova 600i) was used for the platinum (Pt) electrode deposition, which was accomplished by using a focused beam of gallium ions (Ga^+) to sputter trimethylcyclopentadienylplatinum (CH_3)₃Pt(C_pCH_3) to selectively deposit Pt atoms for connecting the ITO electrodes to the nanotube. In order to avoid damaging to the organic sample, the Ga^+ ions were accelerated to 30 kV at 28pA, and the thickness of FIB-written Pt metal on the electrode is 100 nm. The DC electrical property of the FIB-written nanotube device was measured using an HP-4156 parameter analyzer. The fabrication of the nano device for conductivity measurement is illustrated in Scheme S2.

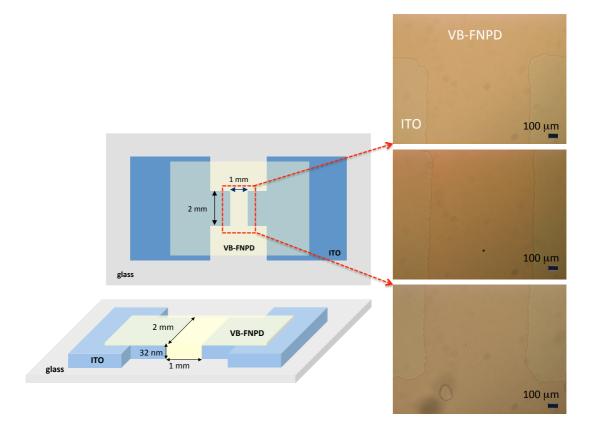

Scheme S2 FIB-assisted fabrication of nanodevice for conductivity measurement.

Fig. S3 The SEM images of four nanodevices (A~D) obtained by FIB-assisted fabrication for the conductivity measurements, the corresponding data, and the I-V profiles.

The conductivity measurement of a spin-casted VB-FNPD film: The monomer VB-FNBD (10 mg) dissolved in chlorobenzene (1 mL) was spin-coated (3000 rpm, 40 second) on an pre-etched ITO electrode (thickness 100 nm, sheet resistance \sim 45 (ohm/sq) as shown in Scheme S4, The sample was heated under nitrogen at 110 °C for 30 mins for removing the solvent. The thickness was determined with AFM (NT-MDT) to be 32 nm. The device was measured with a semiconductor device analyser (Agilent Technologies B1500A) to give the I-V profile as shown in Fig. S4.

Scheme S3. Device structure used for the conductivity measurement of a spin-casted **VB-FNPD** film and the photos (Nikon) taken from the designated regions.

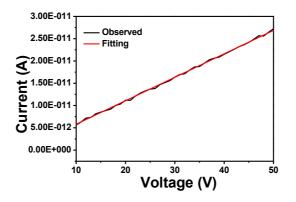
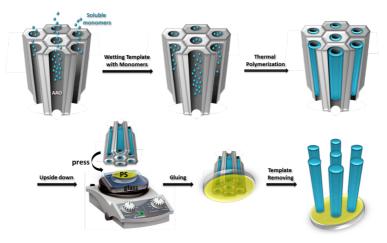
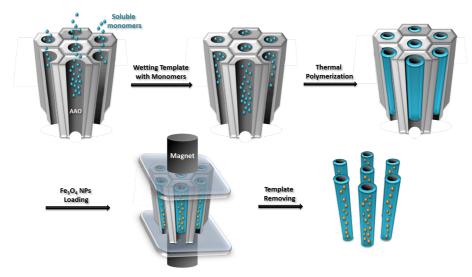
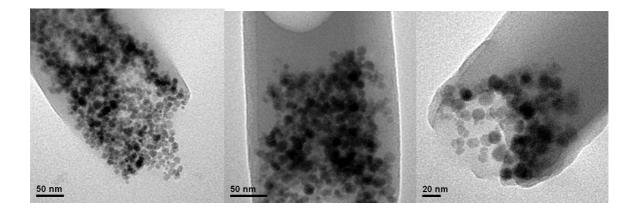



Fig. S4. Fitting slope: 5.26187×10^{-13} , device resistance (R): 1.9×10^{12} (ohm). With active layer with spacing (L): 1 mm, area (A) = 32 (nm) x 2 (mm), the calculated film bulk resistance (r) (R = rL/A): 1.216×10^5 (ohm-m) and the conductivity (s): 8.22×10^{-6} (S/m) or 8.22×10^{-8} (S/cm).

Before being subjected to de-template in aqueous KOH, the nanotube-implanted AAO membrane was pressed on a pre-heated (230 °C) melt polystyrene (PS) ($M_w = 250,000 \text{ g/mol}$) (Scheme S4).


Scheme S4 The processes for the preparation of poly-VB-FNPD nanotube arrays.

Since we used commercially available AAO, which contains some channels are even not open on both sides. The nanotube-implanted AAO membrane was covered with the Fe_3O_4NP solution without removing (vacuum) the air inside the channels. The inside air and hybrophobic surface of poly-VB-FNPD nanotubes will impede the movement of hydrophilic Fe_3O_4NP solution inside the nanotubes. Therefore, it is necessary to have an external force to facilitate the impregnation of Fe_3O_4NP . It is worthy to note that the impregnation of the magnetic particles without the assistance of an external magnetic field was unsuccessful. We only observed limited Fe_3O_4NP insertion close to the nanotube tip.


Before being subjected to de-template in aqueous KOH, the nanotube-implanted AAO membrane was drop-casted with an ethanol solution (60 μ L) of magnetic Fe₃O₄ nanoparticles (Fe₃O₄NP) (12±1 nm) capped with oleylamine/oleic acid as prepared according to our previous method.¹ Then, the AAO membrane was immediately clamped with glass slides. The sandwiched sample was fixed with two small magnets overnight to facilitate the

¹ C.-W. Lai, Y.-H. Wang, C.-H. Lai, M.-J. Yang, C.- Y. Chen, P.-T. Chou, C.-S. Chan, Y. Chi, Y.-C. Chen and J.-K. Hsiao *Small*, 2008, **4**, 218.

introduction of Fe_3O_4 NPs into the poly-VB-FNPD tubes. After then, the AAO template was removed and the Fe_3O_4 NP/OLET nanocomposites were isolated follow the protocols described in Scheme S1.

Scheme S5 The processes for the preparation of Fe_3O_4 nanoparticles (Fe_3O_4 NP) and poly-VB-FNPD magnetic nanocomposites.

Fig. S5 Representative TEM images of poly-**VB-FNPD** nanotubes loaded with Fe_3O_4NP . It is clear to see that the degrees of the NPs loading into the poly-**VB-FNPD** nanotubes are randomly distributed depending on the different locations. The precise determination of the Fe_3O_4NP loading efficiency is rather difficult. However, an average loading percentage (w/w %) may be obtainable by conducting a TGA analysis of the loaded nanotubes.