Supporting Information

For

In situ generation of sulfoxide with predetermined chirality via structural template with a chiral-at-metal of ruthenium complex

Zheng-Zheng Li, Su-Yang Yao, Jin-Ji Wu and Bao-Hui Ye*
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China

EXPERIMENTAL

Materials. 3-chloroperbenzoic acid (m-CPBA) and (S)-(-)-1,1'-binaphtol (S-binol) were bought from Aladdin and used without purification. Other reagent grade chemicals obtained from commercial sources were used as received. $\mathrm{CD}_{3} \mathrm{CN}-d_{3}$ was used in NMR experiments. $\left[\mathrm{Ru}(\text { bpy })_{2} \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{1}$, 2-(isopropylthio)benzoic acid (OS-iPr) ${ }^{2}$, $\Delta-\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{py})_{2}\right]\left[\mathrm{O}, \mathrm{O}^{\prime}\right.$-dibenzoyl-D-tartrate $] \cdot 12 \mathrm{H}_{2} \mathrm{O}^{3}$ and Λ - $\left[\mathrm{Ru}(\text { bpy })_{2}(\mathrm{py})_{2}\right]\left[\mathrm{O}, \mathrm{O}^{\prime}\right.$-dibenzoyl-L-tartrate $] \cdot 12 \mathrm{H}_{2} \mathrm{O}^{3}$ were synthesized according to methods described in the literatures.
(1) Sprintschnik, G.; Sprintschnik, H. W.; Kirsch, P. P.; Whitten, D. G. J. Am. Chem. Soc. 1977, 99, 4947.
(2) H. V. Huynh, C. H. Yeo and Y. X. Chew, Organometallics, 2010, 29, 1479-1486.
(3) X. Hua and A. Zelewsky, Inorg. Chem., 1995, 34, 5791-5797.

Physical Measurements.

Elemental ($\mathrm{C}, \mathrm{H}, \mathrm{N}$ and S) analyses were performed on an Elementar Vario EL analyzer. Electrospray ionization mass spectra (ESI-MS) were obtained on a Thermo LCQ DECA XP mass spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian Mercury-Plus 300 spectrometer. JASCO J-810 CD spectropolarimeter (1 sec response, 3.41 nm bandwidth, scanning speed of 200 $\mathrm{nm} / \mathrm{min}$, accumulation of 3 scans). HPLC analyses were carried out on a Shimadzu LC 20 with UV detector SPD-20A (Daicel Chiralpak AY-H column, $250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, Hexane/(EtOH: $\mathrm{MeOH}) / \mathrm{TFA}=85 /(3: 1) 15 / 0.3$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature $35^{\circ} \mathrm{C}, 254 \mathrm{~nm}$).

Synthesis of complexes

$\Delta-\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{OS}-\mathrm{iPr})\right] \mathrm{PF}_{6}(\Delta-1): \Delta-\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{py})_{2}\right][\mathrm{O}, \mathrm{O}$ '-dibenzoyl-D-tartrate $] \cdot 12 \mathrm{H}_{2} \mathrm{O}(560$ $\mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{OS}-\mathrm{iPr}(118 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(34.5 \mathrm{mg}, 0.25 \mathrm{mmol})$ and ethylene glycol (4 mL) were added into a 10 mL of three neck flask. The mixture was magnetically stirred and heated at $120^{\circ} \mathrm{C}$ for 4 h under argon protection. Then, 15 mL saturated aqueous KPF 6 solution was added into the cooled reaction mixture. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the organic extracts were combined and subjected to silica gel chromatography with acetonitrile and later $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{sat})=50: 6: 2$ as eluents. The product eluent was concentrated and the resulting material was dissolved in minimal amounts of ethanol/water, then an excess of
solid KPF_{6} was added to the above solution. The orange precipitate was collected, and washed with water twice, then dried under high vacuum to afford $\boldsymbol{\Delta} \mathbf{- 1}$. Yield: $306 \mathrm{mg}(81 \%)$. The absolute configuration of $\mathbf{\Delta - 1}$ was determined by X-ray crystallography, and ee value is 98% obtained by ${ }^{1} \mathrm{H}$ NMR using S-Binol as a chiral shift reagent. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{PRuS}$: C 47.81, H 3.61, N 7.43, S 4.25. Found: C 47.56, H 3.77, N 7.53, S 4.04. ESI-MS: $m / z=608\left[M-F_{6}\right]^{+} .{ }^{1} \mathrm{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.46(\mathrm{~d}, 1 \mathrm{H}), 8.65(d, 1 \mathrm{H}), 8.54(d, 1 \mathrm{H}), 8.36(d, 1 \mathrm{H}), 8.25(m, 3 \mathrm{H})$, $8.06(d, 1 \mathrm{H}), 7.86(m, 4 \mathrm{H}), 7.73(d, 1 \mathrm{H}), 7.63(d, 1 \mathrm{H}), 7.41(m, 2 \mathrm{H}), 7.24(m, 3 \mathrm{H}), 7.12(t, 1 \mathrm{H})$, $2.84(m, 1 H), 0.78(d, 3 H), 0.51(d, 3 H) . \mathrm{CD}\left(\Delta \varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}, \mathrm{MeCN}\right): 282 \mathrm{~nm}(-42), 297 \mathrm{~nm}(+106)$.
$\Lambda-\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{OS}-\mathrm{iPr})\right] \mathrm{PF}_{6}(\mathbf{\Lambda - 1})$: The synthesis and isolation of the title complex were similar to those for $\Delta-1$, with $\Lambda-\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{py})_{2}\right]\left[\mathrm{O}, \mathrm{O}^{\prime}\right.$-dibenzoyl-L-tartrate $] \cdot 12 \mathrm{H}_{2} \mathrm{O}$ in place of Δ - $\left[\mathrm{Ru}(\text { bpy })_{2}(\text { py })_{2}\right][\mathrm{O}, \mathrm{O}$ '-dibenzoyl-D-tartrate $] \cdot 12 \mathrm{H}_{2} \mathrm{O}$. Yield: $306 \mathrm{mg}(81 \%)$. The Λ-configuration was determined by CD spectroscopy, and the ee value is 98% obtained by ${ }^{1} \mathrm{H}$ NMR using S-Binol as a chiral shift reagent. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{PRuS}$: C 47.81, H 3.61, N 7.43, S 4.25. Found: C 47.65, H 3.80, N 7.32, S 3.94. ESI-MS: $m / z=608\left[M-\mathrm{PF}_{6}\right]^{+} .{ }^{1} \mathrm{H}$ NMR $(300.1 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 9.46(\mathrm{~d}, 1 \mathrm{H}), 8.66(d, 1 \mathrm{H}), 8.54(d, 1 \mathrm{H}), 8.36(d, 1 \mathrm{H}), 8.27(m, 3 \mathrm{H}), 8.06(d, 1 \mathrm{H}), 7.87$ $(m, 4 \mathrm{H}), 7.73(d, 1 \mathrm{H}), 7.63(d, 1 \mathrm{H}), 7.41(m, 2 \mathrm{H}), 7.24(m, 3 \mathrm{H}), 7.12(t, 1 \mathrm{H}), 2.85(m, 1 \mathrm{H}), 0.78(d$, $3 \mathrm{H}), 0.51(d, 3 \mathrm{H}) . \mathrm{CD}\left(\Delta \varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}, \mathrm{MeCN}\right): 281(+40), 297(-101)$.
$\Delta-\left[\mathrm{Ru}(\mathrm{bpy})_{2}\{(\mathrm{R})-\mathrm{OSO}-\mathrm{iPr}\}\right] \mathrm{PF}_{6}(\Delta-2): \Delta-1(75 \mathrm{mg}, 0.1 \mathrm{mmol})$ and m-CPBA (26 mg, 0.15 mmol) were dissolved in 50 mL of methanol. The reaction was stirred in the dark for 5 h at room temperature. The solvent was removed under reduce pressure, yielding a yellow-orange solid. Using $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ ultrasonic extract the solid for 10 min , the resulting solid was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$ and air-dried. Yield: $73 \mathrm{mg}(96 \%)$. The absolute configuration of $\boldsymbol{\Delta} \mathbf{- 2}$ was determined by X-ray crystallography, and the ee value is 98% obtained by ${ }^{1} \mathrm{H}$ NMR using S-Binol as a chiral shift reagent. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{PRuS}$: C 46.82, H 3.54, N 7.28, S 4.17. Found: C 46.51, H 3.68, N 7.46, S 4.01. ESI-MS: $\mathrm{m} / \mathrm{z}=624\left[M-2 \mathrm{PF}_{6}\right]^{+}{ }^{1} \mathrm{HNMR}(300.1 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 9.22(d 1 \mathrm{H}), 8.99(d 1 \mathrm{H}), 8.60(d 1 \mathrm{H}), 8.33(m 3 \mathrm{H}), 8.28(d 1 \mathrm{H}), 8.05(t 2 \mathrm{H}), 7.93(m$ $4 \mathrm{H}), 7.74(d d 2 \mathrm{H}), 7.53(t 1 \mathrm{H}), 7.37(t 1 \mathrm{H}), 7.27(m 3 \mathrm{H}), 3.14(m 1 \mathrm{H}), 0.68(d 3 \mathrm{H}), 0.58(d 3 \mathrm{H})$. $\mathrm{CD}\left(\Delta \varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}, \mathrm{MeCN}\right): 276 \mathrm{~nm}(-13), 292 \mathrm{~nm}(+52)$.
$\Lambda-\left[\operatorname{Ru}(\mathrm{bpy})_{2}\{(\mathrm{~S})-\mathrm{OSO}-\mathrm{iPr}\}\right] \mathrm{PF}_{6}(\mathbf{\Lambda - 2})$: The synthesis and isolation of the title complex were similar to those for $\Delta \mathbf{- 2}$, with $\Lambda-1(75 \mathrm{mg}, 0.1 \mathrm{mmol})$ in place of $\Delta-1$. Yield: $73 \mathrm{mg}(96 \%)$. The absolute configuration of $\Lambda-2$ was determined by X-ray crystallography, and the ee value is 98% obtained by ${ }^{1} \mathrm{H}$ NMR using S-Binol as a chiral shift reagent. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{PRuS}$: C 46.82, H 3.54, N 7.28, S 4.17. Found: C 46.62, H 3.65, N 7.41, S 3.97. ESI-MS: m/z =624 $\left[M-2 \mathrm{PF}_{6}\right]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(300.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 9.22(d 1 \mathrm{H}), 8.98(d 1 \mathrm{H}), 8.60(d 1 \mathrm{H}), 8.35(m 3 \mathrm{H})$, $8.28(d 1 \mathrm{H}), 8.05(t 2 \mathrm{H}), 7.91(m 4 \mathrm{H}), 7.74(d d 2 \mathrm{H}), 7.53(t 1 \mathrm{H}), 7.37(t 1 \mathrm{H}), 7.25(\mathrm{~m} 3 \mathrm{H}), 3.15(\mathrm{~m}$ $1 \mathrm{H}), 0.68(d 3 \mathrm{H}), 0.58(d 3 \mathrm{H}) . \mathrm{CD}\left(\Delta \varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}, \mathrm{MeCN}\right): 277 \mathrm{~nm}(+21), 293 \mathrm{~nm}(-51)$.

One-step method: $\quad \Delta$ - $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{py})_{2}\right][\mathrm{O}, \mathrm{O}$ '-dibenzoyl-D-tartrate $] \cdot 12 \mathrm{H}_{2} \mathrm{O}$ / $\Lambda-\left[\mathrm{Ru}(\text { bpy })_{2}(\text { py })_{2}\right]\left[\mathrm{O}, \mathrm{O}^{\prime}\right.$-dibenzoyl-L-tartrate $] \cdot 12 \mathrm{H}_{2} \mathrm{O}(112 \mathrm{mg}, 0.1 \mathrm{mmol})$, OS-iPr ($23.6 \mathrm{mg}, 0.12$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(6.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ and ethylene glycol $(0.8 \mathrm{~mL})$ were added into a 10 mL of three neck flask. The mixture was magnetically stirred and heated at $120^{\circ} \mathrm{C}$ for 4 h under argon
protection. After cooling, methanol (50 mL) and m-CPBA ($35 \mathrm{mg}, 0.20 \mathrm{mmol}$) were added to the reaction mixture. The result solution was stirred in the dark at room temperature for 4 h . The methanol solvent was removed under reduced pressure, then the solution was washed with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 15 \mathrm{~mL})$. After that, 5 mL saturated aqueous KPF 6 was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic extracts were combined and subjected to silica gel chromatography with acetonitrile and later $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{sat})=50: 6: 2$ as eluents. The product eluent was concentrated, the resulting material was dissolved in minimal amounts of ethanol/water. An excess of solid KPF_{6} was added to the above solution, the orange precipitate was collected, washed with water twice, and dried under high vacuum to afford $\boldsymbol{\Delta} \mathbf{- 2} / \boldsymbol{\Lambda} \mathbf{- 2}$. Yield: $c a$. 83\%.
(R)-OSO-ipr: $\Lambda-2(77 \mathrm{mg}, 0.1 \mathrm{mmol})$ and trifluoroacetic acid $(76 \mu \mathrm{~L}, 1 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(3$ mL) were added into a 10 mL of three neck flask. The mixture was magnetically stirred and heated at $80^{\circ} \mathrm{C}$ for 2 h under argon protection. The reaction mixture was cooled to room temperature and concentrated to give an orange solid. Then, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The $\mathrm{Et}_{2} \mathrm{O}$ solutions were combined and dried over MgSO_{4}, then, filtered. The solvent was removed under reduced pressure and dried under high vacuum to give a light yellow powder. Yield: 90%. The e.e. value of 88.2% was determined by chiral HPLC analysis. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$: C 56.58, H 5.70, S 15.11. Found: C 56.11, H 6.09, S 14.89. ESI-MS: $\mathrm{m} / \mathrm{z}=211[M-\mathrm{H}]^{-1}{ }^{1} \mathrm{HNMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(m 2 \mathrm{H}), 7.81(t 1 \mathrm{H}), 7.59(t 1 \mathrm{H})$, $3.27(m 2 H), 1.54(d 1 H), 0.98(t 1 H) . \mathrm{CD}\left(\Delta \varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}, \mathrm{MeCN}\right): 296 \mathrm{~nm}(+108)$.
(S)-OSO-ipr: The synthesis and isolation of this complex were similar to those for (R)-OSO-ipr, with $\Delta-2$ in place of $\Lambda-2$. Yield: ca. 90%. The e.e. value of 91.6% was determined by chiral HPLC analysis. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$: C 56.58, H 5.70, S 15.11. Found: C 56.23, H 5.95, S 14.87. ESI-MS: $\mathrm{m} / \mathrm{z}=211[M-\mathrm{H}]^{-1}{ }^{1} \mathrm{HNMR}\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(m 2 \mathrm{H}), 7.81(t 1 \mathrm{H}), 7.59(t 1 \mathrm{H})$, 3.27(m2H), $1.54(d 1 \mathrm{H}), 0.98(t 1 \mathrm{H}) . \mathrm{CD}\left(\Delta \varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}, \mathrm{MeCN}\right): 296 \mathrm{~nm}(-110)$.

Fig. S1. CD spectra of $\Lambda-1$ and $\Delta-1$ in $\mathrm{CH}_{3} \mathrm{CN}(40 \mu \mathrm{M})$.

Fig. S2. The aromatic region ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{CD}_{3} \mathrm{CN}$: a) in the absence of S-binol for rac-1; b) in the presence of 40 eq S-binol for rac-1; c) in the presence of 40 eq S-binol for $\boldsymbol{\Delta} \mathbf{- 1}$; d)in the presence of 40 eq S-binol for $\boldsymbol{\Lambda} \mathbf{- 1}$.

Fig. S3. CD spectra of $\Lambda-2$ and $\Delta-2$ in $\mathrm{CH}_{3} \mathrm{CN}(40 \mu \mathrm{M})$..
a)
 M \qquad M
b)
 $\Lambda \Delta$ \qquad Mh

d)

Figure S4. Excerpts of the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{CD}_{3} \mathrm{CN}$): a) in the absence of S-binol for rac-2, b) in the presence of 40 eq S-binol for rac-2, c) in the presence of 40 eq S-binol for $\mathbf{\Delta - 2}, d)$ in the presence of 40 eq S-binol for $\mathbf{\Lambda - 2}$.

Figure S5. HPLC traces of $\Lambda-\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (conditions: see, Z. Lin, M. A. Celik, C. Fu, K. Harms, G. Franking, E. Meggers, Eur. Chem. J. 2011, 17, 1260.)

