### Supporting Information

# Electrocatalytic Hydrogen Generation by a $\mu^3$ -thiolato dimanganese hexacarbonyl anion with Turnover Frequency exceeding 40,000 s^{-1}

#### Table of contents

- 1 General Procedures
- 2 Electrochemical Experiments details
- 3 Synthesis of  $[Mn(bpy)_3]^+[(CO)_3Mn(\mu-SPh)_3Mn(CO)_3]^-$
- 4 vCO IR of  $[Mn(\mu_3-SPh)(CO)_3]_4$  in hexane
- 5 Cyclic voltammograms of 1 (1.0 mM) in in CH<sub>3</sub>CN
- 6 Scan rate (V/s) vs  $i_p$  (10<sup>-6</sup>A) for 1 mM 1 in 0.1 M Bu<sub>4</sub>NPF<sub>6</sub> in CH<sub>3</sub>CN.
- 7 Cyclic information of complex 1 and the corresponding  $k_{\text{obs}}.$
- 8 Crystal Structure information
  - (1) Data collection and structure refinement
  - (2) Atomic coordinates and equivalent isotropic atomic displacement parameters (Å<sup>2</sup>)
  - (3) Bond lengths (Å)
  - (4) Bond angles (°)

**1** General Procedures. Manganese carbonyl (Sigma-Aldrich, 98%), diphenyl disulfide (Sigma-Aldrich, 99%), 2,2'-bipyridine (Sigma-Aldrich, 99%), trifluoroacetic (Sigma-Aldrich, 99%), HBF<sub>4</sub> in diethyl ether(Sigma-Aldrich, 51-57%). Hexane (AR grade) was purchased from Lab-Scan Analytical Science. CD<sub>3</sub>CN was purchased from Cambridge Isotope. All reactions were carried out under vacuum using standard vacuum line and Schlenk techniques unless otherwise stated. Photochemical reactions were performed using Legrand broadband ultraviolet lamp (200W, 200-800 nm). <sup>1</sup>H NMR spectra were recorded using either Bruker ACF300 NMR spectrometer at room temperature. Single crystal X-ray structural studies were performed on Bruker-AXS Smart Apex CCD Single-Crystal Diffactometers. Data were collected at 100(2)K using graphite monochromated Mo Kα radiation (  $\lambda$  =0.71073Å). Data collection was evaluated using SMART CCD system.

**2 Electrochemical Experiments.** (a) Cyclic voltammetry experiments were conducted with a computer-controlled potentiostat using a three electrode system. Working electrodes were 1 mm diameter planar glassy carbon disks, used in conjunction with a platinum auxiliary/counter electrodeand a silver wire miniature reference electrode connected to the test solution via a salt bridge (containing 0.5 mol  $dm^{-3} Bu_4 NPF_6$  in CH<sub>3</sub>CN). Prior to each scan, the solutions used for voltammetric analysis were de-oxygenated by purging with high purity nitrogen gas, and the working electrodes were prepared by polishing with alumina oxide (grain size 0.3 micrometer) slurry on a Buehler Ultra-pad polishing cloth, rinsing with ultrapure water, acetone, and then dried. Accurate potentials were obtained by using ferrocene (Fc) as an internal standard, which was added to the test solution at the end of the measurements. The test solutions were comprised of 1 mM of analyte and 0.1 M of the supporting electrolyte, tetrabutylammonium hexafluorophosphate ( $Bu_4NPF_6$ ), in  $CH_3CN$ .

(b) Controlled Potential Electrolysis. A solution of 1mM **1** with 50 mM TFA in 0.1M  $Bu_4NPF_6$  in CH<sub>3</sub>CN was electrolyzed at -1.50 V vs Fc<sup>+</sup>/Fc in a gas-tight electrochemical cell. The gaseous content of the reaction vessel was analyzed using a mass spectrometer, which revealed an intense signal at m/z = 2, corresponding to the production of H<sub>2</sub> with a Faraday yield of 95%.

**3** Synthesis of  $[Mn(bpy)_3]^+[(CO)_3Mn(\mu-SPh)_3Mn(CO)_3]^-$ . (a)  $Mn_2(CO)_{10}$  (100 mg, 0.26 mmol), diphenyl disulfide (113 mg, 0.52 mmol) and 2,2'-bipyridine(162 mg, 1.04 mmol) were added to a 50 mL of hexane and subjected to photolysis for 2 h and the product was obtained as yellow precipitate. Yield: 108mg, 57% (based on  $Mn_2(CO)_{10}$ ). (b)  $[Mn(CO)_4(\mu-SPh)]_2$  was prepared according to the previous report.  $[Mn(CO)_4(\mu-SPh)]_2$  (55 mg, 0.1mmol) and 2,2'-bipyridine (54 mg, 0.35 mmol) were added to 30mL hexane and stirred under visible light for 8h. Yield: 25 mg, 33%. Suitable crystal of **1** was grown by dissolving them in acetone and stored at low temperature. Anal. Calc. for  $C_{54}H_{39}Mn_3N_6O_6S_3$ : C, 57.45; H, 3.48; N, 7.44; S, 8.52; Mn, 14.60. Found: C, 58.19; H, 3.59; N, 6.91; S, 9.02; Mn, 13.92. ESI-MS (m/z): 604.7  $[Mn_2(\mu-SPh)_3(CO)_6]^-$ , 520.7  $[Mn_2(\mu-SPh)_3(CO)_3]^-$ , 464.7  $[Mn_2(\mu-SPh)_3(CO)]^-$ ,

S 3

437.0 [Mn<sub>2</sub>(μ-SPh)<sub>3</sub>]<sup>-</sup>. IR v<sub>CO</sub> (CH<sub>3</sub>CN): 1910(s), 1992(s). <sup>1</sup>H NMR δ(CD<sub>3</sub>CN): 6.94-

8.72 (m, 15H, from Ph, 24H, from 2,2'-bipyridine).

4 vCO IR of [Mn(µ<sub>3</sub>-SPh)(CO)<sub>3</sub>]<sub>4</sub> in hexane



5 Cyclic voltammograms of 1 (1.0 mM) in 0.1 M  $Bu_4NPF_6$  in  $CH_3CN$  at a scan rate of 0.1 V/ sec.



6 Scan rate (V/s) vs  $i_p$  (10<sup>-6</sup>A) for 1 mM 1 in 0.1 M  $Bu_4NPF_6$  in  $CH_3CN.$ 



7 Cyclic information of complex 1 and the corresponding  $k_{\mbox{\tiny obs}}.$ 

| Complex 1<br>(mM) | TFA(mM) | <i>i</i> <sub>c</sub> (10 <sup>-6</sup> A) | <i>i<sub>p</sub></i> (10 <sup>-6</sup> A) | k <sub>obs</sub> (s <sup>-1</sup> ) |
|-------------------|---------|--------------------------------------------|-------------------------------------------|-------------------------------------|
| 1.0               | 10      | 4.20                                       | 43.9                                      | 211                                 |
| 1.0               | 20      | 4.20                                       | 102                                       | 1138                                |
| 1.0               | 50      | 4.20                                       | 256                                       | 7167                                |
| 1.0               | 100     | 4.20                                       | 402                                       | 17672                               |
| 1.0               | 300     | 4.20                                       | 638                                       | 44567                               |

#### 8 Crystal structure information

(1) Data collection and structure refinement

| Theta range for data collection     | 2.17 to 27.00°                     |
|-------------------------------------|------------------------------------|
| Index ranges                        | -37<=h<=37, -24<=k<=24, -24<=l<=24 |
| Reflections collected               | 92570                              |
| Independent reflections             | 9816 [R(int) = 0.1186]             |
| Coverage of independent reflections | 99.5%                              |
| Absorption correction               | multi-scan                         |

| Max. and min. transmission        | 0.7457 and 0.6630                            |                           |  |  |  |
|-----------------------------------|----------------------------------------------|---------------------------|--|--|--|
| Structure solution technique      | direct methods                               |                           |  |  |  |
| Structure solution program        | SHELXS-97 (Sheld                             | lrick 2008)               |  |  |  |
| Refinement method                 | Full-matrix least-sq                         | uares on F <sup>2</sup>   |  |  |  |
| Refinement program                | SHELXL-2013 (Sh                              | eldrick, 2013)            |  |  |  |
| Function minimized                | $\Sigma w(F_o^2 - F_c^2)^2$                  |                           |  |  |  |
| Data / restraints / parameters    | 9816 / 69 / 553                              |                           |  |  |  |
| Goodness-of-fit on F <sup>2</sup> | 1.056                                        |                           |  |  |  |
| $\Delta/\sigma_{max}$             | 0.001                                        |                           |  |  |  |
| Final R indices                   | 6171 data; I>2σ(I)                           | R1 = 0.0684, wR2 = 0.1679 |  |  |  |
|                                   | all data $R1 = 0.1270, wR2 = 0.190$          |                           |  |  |  |
| Weichting scheme                  | $w=1/[\sigma^2(F_o^2)+(0.0898P)^2+35.1184P]$ |                           |  |  |  |
| weighting scheme                  | where $P = (F_o^2 + 2F_c^2)/3$               |                           |  |  |  |
| Largest diff. peak and hole       | 1.239 and -0.717 eÅ <sup>-3</sup>            |                           |  |  |  |
| R.M.S. deviation from mean        | 0.111 eÅ <sup>-3</sup>                       |                           |  |  |  |

(2) Atomic coordinates and equivalent isotropic atomic displacement parameters (Å<sup>2</sup>)

|     | x/a        | y/b        | z/c        | U(eq)     |
|-----|------------|------------|------------|-----------|
| C6X | 0.0062(15) | 0.0933(12) | 0.7779(16) | 0.188(5)  |
| C5X | 0.0529(10) | 0.0504(15) | 0.8461(15) | 0.188(5)  |
| C4X | 0.0181(10) | 0.9994(13) | 0.8577(11) | 0.188(5)  |
| C3X | 0.0567(7)  | 0.9956(16) | 0.9522(12) | 0.188(5)  |
| C2X | 0.0103(8)  | 0.9853(18) | 0.9655(13) | 0.188(5)  |
| C1X | 0.0409(10) | 0.0121(17) | 0.0527(14) | 0.188(5)  |
| O3W | 0.9680(18) | 0.034(2)   | 0.853(3)   | 0.196(16) |
| O2W | 0.0442(12) | 0.0875(15) | 0.743(2)   | 0.250(12) |
| O1W | 0.9770(10) | 0.7992(13) | 0.738(2)   | 0.244(12) |
| C1S | 0.9893(8)  | 0.7971(8)  | 0.8850(10) | 0.18      |
| Cl3 | 0.9865(6)  | 0.8903(7)  | 0.8728(9)  | 0.215(7)  |
| C12 | 0.9472(5)  | 0.7988(8)  | 0.7800(10) | 0.206(6)  |

| C11 | 0.0406(4)   | 0.8083(6)   | 0.8670(9)  | 0.263(7)    |
|-----|-------------|-------------|------------|-------------|
| Mn1 | 0.22227(3)  | 0.92429(4)  | 0.25961(4) | 0.02617(19) |
| Mn2 | 0.34116(3)  | 0.92457(4)  | 0.30018(4) | 0.0293(2)   |
| Mn3 | 0           | 0.61578(5)  | 0.25       | 0.0282(3)   |
| S1  | 0.26275(4)  | 0.97757(6)  | 0.19048(7) | 0.0279(3)   |
| S2  | 0.28016(5)  | 0.82990(6)  | 0.27191(7) | 0.0283(3)   |
| S3  | 0.30257(5)  | 0.96389(6)  | 0.37877(7) | 0.0276(3)   |
| 01  | 0.16021(14) | 0.0539(2)   | 0.2359(2)  | 0.0392(9)   |
| 02  | 0.17733(15) | 0.86035(19) | 0.3523(2)  | 0.0426(9)   |
| 03  | 0.13610(14) | 0.8675(2)   | 0.1023(2)  | 0.0455(10)  |
| 04  | 0.40471(14) | 0.0545(2)   | 0.3342(2)  | 0.0488(10)  |
| 05  | 0.42958(15) | 0.8545(2)   | 0.4451(2)  | 0.0443(9)   |
| 06  | 0.38343(16) | 0.8706(3)   | 0.1994(3)  | 0.0730(15)  |
| N1  | 0.01286(15) | 0.6964(2)   | 0.1758(2)  | 0.0306(9)   |
| N2  | 0.08897(14) | 0.6314(2)   | 0.3117(2)  | 0.0277(9)   |
| N3  | 0.98894(14) | 0.5207(2)   | 0.1725(2)  | 0.0309(9)   |
| C1  | 0.23734(18) | 0.9416(2)   | 0.0895(3)  | 0.0287(11)  |
| C2  | 0.20887(19) | 0.9874(3)   | 0.0240(3)  | 0.0347(11)  |
| C3  | 0.1874(2)   | 0.9653(3)   | 0.9437(3)  | 0.0402(13)  |
| C4  | 0.1936(2)   | 0.8967(3)   | 0.9267(3)  | 0.0385(12)  |
| C5  | 0.2219(2)   | 0.8504(3)   | 0.9915(3)  | 0.0407(13)  |
| C6  | 0.2440(2)   | 0.8723(3)   | 0.0730(3)  | 0.0364(12)  |
| C7  | 0.30373(18) | 0.7712(2)   | 0.3583(3)  | 0.0272(10)  |
| C8  | 0.30459(19) | 0.7873(3)   | 0.4303(3)  | 0.0307(11)  |
| C9  | 0.32393(19) | 0.7382(3)   | 0.4938(3)  | 0.0314(11)  |
| C10 | 0.34335(17) | 0.6738(3)   | 0.4876(3)  | 0.0294(10)  |
| C11 | 0.34251(18) | 0.6576(3)   | 0.4158(3)  | 0.0334(11)  |
| C12 | 0.32256(18) | 0.7059(3)   | 0.3514(3)  | 0.0318(11)  |
| C13 | 0.30901(17) | 0.0569(2)   | 0.3977(3)  | 0.0263(10)  |
| C14 | 0.3329(2)   | 0.0796(3)   | 0.4778(3)  | 0.0339(11)  |
| C15 | 0.3411(2)   | 0.1506(3)   | 0.4974(3)  | 0.0400(13)  |
| C16 | 0.32524(19) | 0.2011(3)   | 0.4367(3)  | 0.0325(11)  |

| C17  | 0.3007(2)   | 0.1794(3)  | 0.3568(3)  | 0.0392(12) |
|------|-------------|------------|------------|------------|
| C18  | 0.2919(2)   | 0.1082(3)  | 0.3360(3)  | 0.0396(13) |
| C19  | 0.18504(19) | 0.0039(3)  | 0.2460(3)  | 0.0307(11) |
| C20  | 0.1964(2)   | 0.8847(2)  | 0.3177(3)  | 0.0309(11) |
| C21  | 0.1697(2)   | 0.8890(3)  | 0.1643(3)  | 0.0311(11) |
| C22  | 0.37888(19) | 0.0040(3)  | 0.3193(3)  | 0.0377(13) |
| C23  | 0.3945(2)   | 0.8821(3)  | 0.3890(3)  | 0.0339(11) |
| C24  | 0.3652(2)   | 0.8908(3)  | 0.2370(3)  | 0.0442(14) |
| C25  | 0.97381(19) | 0.7302(3)  | 0.1111(3)  | 0.0425(13) |
| C26  | 0.9815(16)  | 0.787(2)   | 0.0780(19) | 0.045(5)   |
| C27  | 0.0334(8)   | 0.8076(11) | 0.1071(10) | 0.055(4)   |
| C28  | 0.0738(10)  | 0.7712(13) | 0.1721(14) | 0.047(4)   |
| C26X | 0.9820(16)  | 0.773(2)   | 0.054(2)   | 0.045(5)   |
| C27X | 0.0333(8)   | 0.7851(11) | 0.0735(11) | 0.055(4)   |
| C28X | 0.0757(10)  | 0.7522(13) | 0.1458(13) | 0.047(4)   |
| C29  | 0.06335(18) | 0.7123(3)  | 0.1997(3)  | 0.0385(12) |
| C30  | 0.10527(17) | 0.6748(2)  | 0.2731(3)  | 0.0273(10) |
| C31  | 0.15937(18) | 0.6821(3)  | 0.3000(3)  | 0.0294(11) |
| C32  | 0.19627(18) | 0.6425(3)  | 0.3658(3)  | 0.0316(11) |
| C33  | 0.17947(18) | 0.5982(3)  | 0.4061(3)  | 0.0318(11) |
| C34  | 0.12567(18) | 0.5947(3)  | 0.3771(3)  | 0.0316(11) |
| C35  | 0.97609(19) | 0.5235(3)  | 0.0936(3)  | 0.0406(13) |
| C36  | 0.9666(2)   | 0.4645(4)  | 0.0464(4)  | 0.0559(18) |
| C37  | 0.9708(3)   | 0.3995(4)  | 0.0800(5)  | 0.067(2)   |
| C38  | 0.9850(3)   | 0.3951(3)  | 0.1616(5)  | 0.0574(17) |
| C39  | 0.9929(2)   | 0.4566(3)  | 0.2062(3)  | 0.0373(12) |

## (3) Bond lengths (Å)

| C6X-C5X | 1.540(10) | C5X-C4X | 1.503(10) |
|---------|-----------|---------|-----------|
| C4X-C3X | 1.548(10) | C3X-C2X | 1.524(10) |
| C2X-C1X | 1.502(10) | O1W-O1W | 1.19(5)   |
| C1S-Cl2 | 1.715(10) | C1S-Cl1 | 1.724(10) |

| C1S-Cl3 | 1.774(10)  | Cl3-Cl1   | 2.267(9)   |
|---------|------------|-----------|------------|
| C13-C12 | 2.306(10)  | Cl2-Cl1   | 2.366(9)   |
| Mn1-C21 | 1.790(5)   | Mn1-C20   | 1.794(5)   |
| Mn1-C19 | 1.799(5)   | Mn1-S3    | 2.3892(14) |
| Mn1-S2  | 2.3930(14) | Mn1-S1    | 2.4017(12) |
| Mn1-Mn2 | 3.1646(10) | Mn2-C23   | 1.789(6)   |
| Mn2-C22 | 1.790(6)   | Mn2-C24   | 1.796(6)   |
| Mn2-S1  | 2.3817(14) | Mn2-S2    | 2.3899(14) |
| Mn2-S3  | 2.4111(13) | Mn3-N1    | 2.236(4)   |
| Mn3-N1  | 2.236(4)   | Mn3-N3    | 2.238(4)   |
| Mn3-N3  | 2.238(4)   | Mn3-N2    | 2.263(4)   |
| Mn3-N2  | 2.263(4)   | S1-C1     | 1.790(5)   |
| S2-C7   | 1.794(5)   | S3-C13    | 1.786(5)   |
| O1-C19  | 1.148(6)   | O2-C20    | 1.158(5)   |
| O3-C21  | 1.148(6)   | O4-C22    | 1.160(6)   |
| O5-C23  | 1.153(6)   | O6-C24    | 1.155(6)   |
| N1-C25  | 1.331(6)   | N1-C29    | 1.342(6)   |
| N2-C34  | 1.341(6)   | N2-C30    | 1.341(6)   |
| N3-C35  | 1.341(6)   | N3-C39    | 1.347(6)   |
| C1-C2   | 1.384(7)   | C1-C6     | 1.385(7)   |
| C2-C3   | 1.375(7)   | C3-C4     | 1.371(7)   |
| C4-C5   | 1.381(7)   | C5-C6     | 1.394(7)   |
| C7-C8   | 1.386(6)   | C7-C12    | 1.388(7)   |
| C8-C9   | 1.387(7)   | C9-C10    | 1.377(7)   |
| C10-C11 | 1.384(7)   | C11-C12   | 1.389(7)   |
| C13-C14 | 1.370(7)   | C13-C18   | 1.398(7)   |
| C14-C15 | 1.382(7)   | C15-C16   | 1.378(7)   |
| C16-C17 | 1.361(7)   | C17-C18   | 1.389(7)   |
| C25-C26 | 1.32(4)    | C25-C26X  | 1.46(4)    |
| C26-C27 | 1.38(5)    | C27-C28   | 1.37(3)    |
| C28-C29 | 1.33(3)    | C26X-C27X | 1.37(4)    |

| C27X-C28X | 1.43(3)   | C28X-C29 | 1.46(2)   |
|-----------|-----------|----------|-----------|
| C29-C30   | 1.478(7)  | C30-C31  | 1.403(6)  |
| C31-C32   | 1.376(7)  | C32-C33  | 1.385(7)  |
| C33-C34   | 1.380(6)  | C35-C36  | 1.366(8)  |
| C36-C37   | 1.360(10) | C37-C38  | 1.381(10) |
| C38-C39   | 1.385(8)  | C39-C39  | 1.488(10) |

(4) Bond angles (°)

| C4X-C5X-C6X | 94.8(8)    | C5X-C4X-C3X | 93.0(8)    |
|-------------|------------|-------------|------------|
| C2X-C3X-C4X | 90.9(7)    | C1X-C2X-C3X | 93.6(8)    |
| Cl2-C1S-Cl1 | 86.9(6)    | Cl2-C1S-Cl3 | 82.7(6)    |
| Cl1-C1S-Cl3 | 80.8(6)    | C1S-Cl3-Cl1 | 48.7(4)    |
| C1S-Cl3-Cl2 | 47.5(4)    | Cl1-Cl3-Cl2 | 62.3(3)    |
| C1S-Cl2-Cl3 | 49.7(4)    | C1S-Cl2-Cl1 | 46.7(4)    |
| Cl3-Cl2-Cl1 | 58.0(3)    | C1S-Cl1-Cl3 | 50.6(4)    |
| C1S-Cl1-Cl2 | 46.4(4)    | Cl3-Cl1-Cl2 | 59.7(3)    |
| C21-Mn1-C20 | 92.6(2)    | C21-Mn1-C19 | 91.4(2)    |
| C20-Mn1-C19 | 91.0(2)    | C21-Mn1-S3  | 169.83(15) |
| C20-Mn1-S3  | 94.34(16)  | C19-Mn1-S3  | 95.87(16)  |
| C21-Mn1-S2  | 91.06(16)  | C20-Mn1-S2  | 97.77(16)  |
| C19-Mn1-S2  | 170.79(14) | S3-Mn1-S2   | 80.67(5)   |
| C21-Mn1-S1  | 91.00(15)  | C20-Mn1-S1  | 176.08(17) |
| C19-Mn1-S1  | 90.42(14)  | S3-Mn1-S1   | 81.88(4)   |
| S2-Mn1-S1   | 80.66(4)   | C21-Mn1-Mn2 | 120.82(15) |
| C20-Mn1-Mn2 | 128.13(16) | C19-Mn1-Mn2 | 123.11(15) |
| S3-Mn1-Mn2  | 49.06(3)   | S2-Mn1-Mn2  | 48.53(3)   |
| S1-Mn1-Mn2  | 48.31(3)   | C23-Mn2-C22 | 92.1(2)    |
| C23-Mn2-C24 | 90.7(2)    | C22-Mn2-C24 | 91.0(3)    |
| C23-Mn2-S1  | 171.88(16) | C22-Mn2-S1  | 92.33(16)  |
| C24-Mn2-S1  | 95.97(17)  | C23-Mn2-S2  | 93.70(16)  |
| C22-Mn2-S2  | 171.34(17) | C24-Mn2-S2  | 95.35(19)  |
| S1-Mn2-S2   | 81.14(5)   | C23-Mn2-S3  | 91.16(16)  |

| C22 M-2 G2  | 02 22(10)  | C24 M=2 S2  | 175.2((10) |
|-------------|------------|-------------|------------|
| C22-Min2-83 | 93.22(18)  | C24-Min2-S3 | 1/5.36(19) |
| S1-Mn2-S3   | 81.83(4)   | S2-Mn2-S3   | 80.29(4)   |
| C23-Mn2-Mn1 | 123.14(15) | C22-Mn2-Mn1 | 122.72(16) |
| C24-Mn2-Mn1 | 127.20(18) | S1-Mn2-Mn1  | 48.85(3)   |
| S2-Mn2-Mn1  | 48.62(3)   | S3-Mn2-Mn1  | 48.46(3)   |
| N1-Mn3-N1   | 94.0(2)    | N1-Mn3-N3   | 161.31(13) |
| N1-Mn3-N3   | 98.59(14)  | N1-Mn3-N3   | 98.59(14)  |
| N1-Mn3-N3   | 161.31(13) | N3-Mn3-N3   | 73.0(2)    |
| N1-Mn3-N2   | 73.10(14)  | N1-Mn3-N2   | 96.49(14)  |
| N3-Mn3-N2   | 91.71(13)  | N3-Mn3-N2   | 100.34(13) |
| N1-Mn3-N2   | 96.49(14)  | N1-Mn3-N2   | 73.10(14)  |
| N3-Mn3-N2   | 100.34(13) | N3-Mn3-N2   | 91.71(13)  |
| N2-Mn3-N2   | 165.03(19) | C1-S1-Mn2   | 116.91(16) |
| C1-S1-Mn1   | 112.00(15) | Mn2-S1-Mn1  | 82.84(4)   |
| C7-S2-Mn2   | 111.65(15) | C7-S2-Mn1   | 117.96(16) |
| Mn2-S2-Mn1  | 82.85(5)   | C13-S3-Mn1  | 116.67(16) |
| C13-S3-Mn2  | 113.15(14) | Mn1-S3-Mn2  | 82.48(4)   |
| C25-N1-C29  | 118.5(4)   | C25-N1-Mn3  | 124.2(3)   |
| C29-N1-Mn3  | 117.3(3)   | C34-N2-C30  | 118.5(4)   |
| C34-N2-Mn3  | 124.8(3)   | C30-N2-Mn3  | 116.2(3)   |
| C35-N3-C39  | 118.1(5)   | C35-N3-Mn3  | 124.1(4)   |
| C39-N3-Mn3  | 117.7(3)   | C2-C1-C6    | 118.7(5)   |
| C2-C1-S1    | 116.5(4)   | C6-C1-S1    | 124.9(4)   |
| C3-C2-C1    | 121.4(5)   | C4-C3-C2    | 120.4(5)   |
| C3-C4-C5    | 118.9(5)   | C4-C5-C6    | 121.2(5)   |
| C1-C6-C5    | 119.5(5)   | C8-C7-C12   | 118.9(4)   |
| C8-C7-S2    | 124.4(4)   | C12-C7-S2   | 116.6(3)   |
| С7-С8-С9    | 119.9(5)   | С10-С9-С8   | 121.3(4)   |
| C9-C10-C11  | 118.9(4)   | C10-C11-C12 | 120.2(5)   |
| C7-C12-C11  | 120.7(4)   | C14-C13-C18 | 117.7(4)   |
| C14-C13-S3  | 118.1(4)   | C18-C13-S3  | 124.2(4)   |
| C13-C14-C15 | 121.4(5)   | C16-C15-C14 | 120.8(5)   |

| C17-C16-C15   | 118.4(5)  | C16-C17-C18    | 121.4(5)  |
|---------------|-----------|----------------|-----------|
| C17-C18-C13   | 120.2(5)  | O1-C19-Mn1     | 178.4(5)  |
| O2-C20-Mn1    | 176.8(5)  | O3-C21-Mn1     | 178.7(4)  |
| O4-C22-Mn2    | 177.7(5)  | O5-C23-Mn2     | 178.2(4)  |
| O6-C24-Mn2    | 176.2(5)  | C26-C25-N1     | 123.4(18) |
| N1-C25-C26X   | 123.5(17) | C25-C26-C27    | 118.(3)   |
| C28-C27-C26   | 118.(2)   | C29-C28-C27    | 120.(2)   |
| C27X-C26X-C25 | 118.(3)   | C26X-C27X-C28X | 118.(2)   |
| C27X-C28X-C29 | 119.0(19) | C28-C29-N1     | 119.6(12) |
| N1-C29-C28X   | 120.9(11) | C28-C29-C30    | 121.6(12) |
| N1-C29-C30    | 116.5(4)  | C28X-C29-C30   | 121.3(11) |
| N2-C30-C31    | 121.4(4)  | N2-C30-C29     | 116.7(4)  |
| C31-C30-C29   | 121.9(4)  | C32-C31-C30    | 119.2(4)  |
| C31-C32-C33   | 119.4(4)  | C34-C33-C32    | 118.2(5)  |
| N2-C34-C33    | 123.3(5)  | N3-C35-C36     | 122.8(6)  |
| C37-C36-C35   | 119.6(6)  | C36-C37-C38    | 118.8(6)  |
| C37-C38-C39   | 119.4(6)  | N3-C39-C38     | 121.4(5)  |
| N3-C39-C39    | 115.8(3)  | C38-C39-C39    | 122.8(4)  |