Supporting Information

NH₃ treatment of TiO₂ nanotubes: From N-doping to semimetallic conductivity

Shaeel A. Al-Thabaiti¹, Robert Hahn², Ning Liu², Robin Kirchgeorg², Seulgi So², Patrik Schmuki^{1,2,*}, Sulaiman N. Basahel¹and Salem M. Bawaked¹

¹Department of Chemistry, King Abdulaziz University, Jeddah (*Saudi Arabia*) ²Department of Materials Science and Engineering, WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany

*Corresponding author e-mail: <u>schmuki@ww.uni-erlangen.de</u>

Keywords: TiO₂ - nanotubes - nitrogen doping - conductivity - electrode

Fig. S1 shows a typical SEM morphology of a 'classic' nanotube layer after an NH_3 treatment at elevated temperature >800° C. These 'classic' tubes (produced in a EG electrolyte) are of a double wall structure (see Fig. S2, left) – this double layer structure makes the tube more prone to sintering and collapse than the single wall tubes (Fig. 1 and Fig. S2, right).

Fig. S2 'Double wall' vs. 'single wall' tubes. (a-d) TEM images for double wall (a,c) and single wall (b,d) morphology of TiO_2 nanotubes. SEM top-view images of TiO_2 nanotubes after fracture close to the bottom of tubes for the double wall (e) and single wall (f) nanotubes. TEM images of the double wall (g) and single wall (h) TiO_2 nanotubes after annealing. The inset is an SEM top-view image of the double wall nanotubes, is taken from a fracture after annealing (Reproduced with permission [1]. Copyright 2013 Royal Society of Chemistry.).

Methods:

Titanium foils (99.6% purity, Advent) with a thickness of 0.1mm were sonicated in ethanol for several minutes, followed by rinsing with deionised water and drying under a N₂ stream. TiO₂ nanotubes samples were prepared using the methodology as described by Mirabolghasemi et al. [1]. For this, a computer controlled power source (LAB/SM1600 by ET-Systems) was employed. After anodization, the samples were rinsed with deionised water and dried in a nitrogen stream. For the characterization of the sample morphology a field-emission scanning electron microscope Hitachi FE-SEM S4800 equipped with an Energy Dispersive X-ray Spectroscopy (EDX, EDAX/TSL Genesis 4000) was used.

The nitrogen doping of the TiO₂ layer was carried out by heating the samples at 450° C in a quartz tube under a continuous NH₃ flux (20 ml/min) for 120 min. The treated TiO₂-nanotube layers were cooled down to room temperature under N₂ flow before contact with ambient air. For comparison, some TiO₂ nanotube layers were annealed in air at 450°C for 2 h to form an anatase crystal structure. The nitrogen reduced (modified samples) undergo a similar procedure but at higher starting temperature (900 °C) for only 10 minutes treatment time, followed by a second diffusion treatment at 500 °C in pure nitrogen for 30 min.

To examine the crystalline structure of the treated samples, XRD-measurements were performed using Cu K α radiation with an X`pert Philips MPD PW 3040 instrument.

The chemical composition of the samples was characterized by X-ray photoelectron spectroscopy (PHI 5600 XPS) using Al K α monochromated radiation. The spectra were corrected for spectral shifts using Ti2p at 459.1 eV.

For 2-point solid state measurements nanotube-tops were contacted by sputter evaporated Au dots through a mask (2mm in diameter). Using the two point approach was found to be in line with reported results from four point measurements [2].

The electrochemical experiments were carried out at room temperature in a cell with a three-electrode arrangement using an Autolab (PGSTAT 30) setup. The samples were contacted with a Cu back-plate (as working electrode) and then pressed against an O-ring opening in the wall of the cell, leaving an exposed area of 1 cm². A Pt-gauze served as counter electrode and an Ag/AgCl electrode connected to a Haber-Luggin capillary was used as a reference electrode. For cyclic voltammetry, 5 mM Fe(CN)₆-^{2/-} ³ solution and 0.1 M NaCl as support with a sweep rate of 5 mV/s was used. Potentiostatic cyclovoltammetry (CV) was carried out in a potential window from +100mV to +300mV vs. Ag/AgCl reference electrode in aqueous 0.1M HCl (made from 37% HCL, Sigma-Aldrich) at a sweep-rate of 100mV/s.

Photocurrent spectra were taken in the range of 300 to 600 nm at an applied potential of 500 mV using a three electrode arrangement (Ag/AgCl, 3 M KCl, as reference and Pt as counter electrode) in an electrochemical cell equipped with a quartz glass window in 0.1 M sodium sulphate solution. The illumination setup consisted of an Oriel 6356 150 W Xe arc lamp as a light source and an Oriel XCornerstone 7400 1/8 monochromator. The data was obtained from photo transients with 10 seconds light exposure and with a step size of 20 nm.

References:

- [1] H. Mirabolghasemi, N. Liu, K. Lee, P. Schmuki, Chem. Commun., 2013, 49, 2067.
- [2] C. Fabrega, F. Hernandez-Ramırez, J. D. Prades, R. Jimenez Dıaz, T. Andreu
- and J. R. Morante, Nanotechnology 2010, 21, 445703