Supplementary Information

Silver-Mediated Radical Cyclization: Construction of Δ^{2}-Isoxazolines from α-Halo Ketoximes and 1,3-Dicarbonyl Compounds

Yan-Yun Liu, Xu-Heng Yang, Ji Yang, Ren-Jie Song and Jin-Heng Li*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China, and State Key Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000, China
jhli@hnu.edu.cn

List of Contents

(A) General Experimental Procedure
(B) Analytical data for 3-5
(C) References
(D) Spectra

(A) General Experimental Procedure

(a) Materias

Substrates $\mathbf{1 a - 1 k}$ were prepared according to literature procedures. ${ }^{[1]}$
(b) General Procedures for Silver-Mediated Synthesis of Isoxazolines 3:

Conditions A: To a Schlenk tube were added α-halo ketoxime 1 (0.3 mmol), 1,3-dicarbonyl compound 2 (2a-2e) (0.6 mmol), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (0.6 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.3 mmol) and DMA (3 mL). Then the tube was charged with argon, and was stirred at 50 ${ }^{\circ} \mathrm{C}$ for about 20 h until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the reaction mixture was washed with brine. The aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate $=20: 1$) to afford the desired product 3 .

Conditions B: To a Schlenk tube were added α-halo ketoxime 1 (0.3 mmol), 1,3-dicarbonyl compound 2 (2f-2q) (0.6 mmol), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (0.6 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.3 mmol) and DMA (3 mL). Then the tube was charged with argon, and was stirred at 50 ${ }^{\circ} \mathrm{C}$ for about 20 h until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the reaction mixture was washed with brine. The aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate $=20: 1$) to afford the desired product 3 .

(c) Table S1. Screening Optimizing Reaction Conditions

Table S1. Screening Optimal Conditions ${ }^{[a]}$

Ph Entry		$\xrightarrow[\text { DMA, } 20 \mathrm{~h}]{\text { [Ag], base }}$			
	$\begin{gathered} {[\mathrm{M}]} \\ \text { [equiv] } \end{gathered}$	Base [equiv]		Isolated Yield [\%]	
				3 aa	4aa
1	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (0.1)	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1)	DMA	9	trace
2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (1)	$\mathrm{K}_{2} \mathrm{CO}_{3}(1)$	DMA	63	trace
3	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1)	DMA	80	trace
4	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2.5)	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1)	DMA	79	trace
5	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1)	DMA	0	15
6	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{K}_{2} \mathrm{CO}_{3}(2)$	DMA	50	trace
7	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	-	DMA	trace	0
8	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1)	DMA	16	trace
9	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1)	DMA	16	trace
10	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	KOAc (1)	DMA	44	trace
11	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{Et}_{3} \mathrm{~N}$ (1)	DMA	15	trace
12	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	DABCO (1)	DMA	76	trace
13	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{K}_{2} \mathrm{CO}_{3}(1)$	DMF	41	trace
14	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1)	DMSO	30	trace
15	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1)	toluene	trace	trace
16	$\mathrm{AgNO}_{3}(2)$	$\mathrm{K}_{2} \mathrm{CO}_{3}(1)$	DMA	6	trace
17	AgOAc (2)	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1)	DMA	16	trace
18	$\mathrm{Ag}_{2} \mathrm{O}$ (2)	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1)	DMA	19	trace
19^{b}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2)	$\mathrm{K}_{2} \mathrm{CO}_{3}(1)$	DMA	75	trace
20	$\mathrm{Cu}(\mathrm{OAc})_{2}(2)$	$\mathrm{K}_{2} \mathrm{CO}_{3}(1)$	DMA	trace	15
21	$\mathrm{Phl}(\mathrm{OAc})_{2}$ (2)	$\mathrm{K}_{2} \mathrm{CO}_{3}(1)$	DMA	trace	trace

${ }^{a}$ Reaction conditions: 1a (0.3 mmol), 2a (2 equiv), [M], base, and DMA (N, N-diethylacetamide, 3 mL) at room temperature under argon. ${ }^{b}$ At 50 ${ }^{\circ} \mathrm{C}$.

(d) Scheme S1 Base-Mediated the Reaction of 2-Chloro-1-phenylethanone

Oxime (1a) with 1,3-Dicarbonyl compounds (2)

As shown in Scheme S1, the reaction of 2-chloro-1-phenylethanone oxime (1a) with 1,3-dicarbonyl compounds 2 in the presence of bases alone were performed to increasing the length of the carbon chain. The results in Table 1 indicated that only 15% yield of 5 -(acetoxyimino)-5-phenylpentan-2-one (4aa) was isolated from 2-chloro-1-phenylethanone oxime (1a) and pentane-2,4-dione (2a) in the presence of 1 equiv $\mathrm{K}_{2} \mathrm{CO}_{3}$ (entry 5; Table 1). Thus, the effect of bases was screened, and the results demonstrated that $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was a preferred base in view of the yield, and the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was found to affect the yield (Eq 1): While the reaction afforded the desired product 4 aa in 40% yield at a loading of 1 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the yield was increased from 40% to 60% at 2 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and to 58% using 3 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$. 1,3-Diketones 2 c and 2d, containing a or two phenyl groups adjacent to the carbonyl group, provided the corresponding products 4ac and 4ad in excellent yields. Using 3-keto ester 20, however, only nucleophilic replacement product 5ao was obtained in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or $\mathrm{Cs}_{2} \mathrm{CO}_{3}(\mathrm{Eq} 2)$.

Scheme S1 Base-Mediated the Reaction of 2-Chloro-1-phenylethanone Oxime (1a) with 1,3-Dicarbonyl compounds (2).

(e) Scheme S2 Control Experiments

To elucidate the mechanism, some control experiments were carried out (Scheme S2). The results in Eq 3 showed that the reactivity of substrate $\mathbf{5 a}$ was rather lower using $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ alone. To our delight, substrate $\mathbf{5 a o}$ could be readily converted to isoxazoline $\mathbf{3 a a}$ in the presence of both $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (94% yield). These suggest that substrate $\mathbf{5 a}$ a may be an intermediate for this Ag -mediated transformation. Subsequently, two radical inhibitors, BHT (2,6-di-tert-butyl-4-methylphenol) and hydroquinone, were added to this Agmediated reaction (Eq 3): a stoichiometric amount of BHT (2 equiv) or hydroquinone (2 equiv) resulted in no conversion of substrate 5ao. Identical results were observed from the reaction substrate 1a and diketone $\mathbf{2 a}$ in the presence of either BHT or hydroquinone (Eq 4). These results imply that this Ag-mediated transformation includes a radical process, and the generation of a radical at the 2 position of 1,3 -dicarbonyl compounds can be triggered by $\mathrm{Ag}_{2} \mathrm{CO}_{3} .{ }^{8}$

Notably, the silver salts were recovered and reused among this current reaction (Eq 5). ${ }^{8 e}$ Excess $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and all silver species were filtrated after the reaction and in turn treated with nitric acid and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to recover fresh $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. Interestingly, the fresh $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ was also efficient for this current reaction without loss of activity (Eq 5).

Scheme S2 Control Experiments.

(B) Analytical data for 3-5

1,1'-(3-phenyl-4,5-dihydroisoxazole-5,5-diyl)diethanone (3aa):

White solid, mp 78.3-79.6 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.67-7.64 (m, 2H), 7.47-7.39 (m, 3H), 3.78 (s, 2H), 2.36 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 202.4,156.6,131.0,128.9,127.7,126.9,97.5,40.1,25.9$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):$ 1719, 1689; LRMS (EI, 70 eV) m/z (\%): 231 ($\mathrm{M}^{+}, 4$), 189 (100), 160 (21), 118 (85); HRMS m / z (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$232.0968, found 232.0964.

1,1'-(3-phenyl-4,5-dihydroisoxazole-5,5-diyl)dipropan-1-one (3ab):

White solid, mp 89.0-89.9 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.67-7.64 (m, 2H), 7.46-7.38 (m, 3H), 3.78 (s, 2H), 2.84-2.64 (m, 4H), 1.09 (t, J=7.2 $\mathrm{Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 205.4,156.6,130.9,128.9,127.9,126.9$, 97.7, 40.7, 31.7, 7.3; IR (KBr, cm^{-1}): 1720, 1693; LRMS (EI, 70 eV) m/z (\%): 259 $\left(\mathrm{M}^{+}, 1\right), 203$ (20), 146 (18), 57 (100); HRMS m / z (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 260.1281, found 260.1282 .

5-benzoyl-3-phenyl-4,5-dihydroisoxazole-5-carbonitrile (3ae):

White solid, mp 102.2-103.5 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 8.28-8.26 (m, 2H), 7.71-7.68 (m, 3H), 7.56 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 3 \mathrm{H})$, $4.65(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 185.2, 156.8, 135.1, 131.4, 130.7, 128.9, 127.2, 126.9, 116.9, 81.5, 43.7; IR (KBr, cm ${ }^{1}$): 1691; LRMS (EI, 70 eV) m/z (\%): 276 (${ }^{+}, 1$), 249 (2), 221 (2), 105 (100); HRMS $m / z\left(\right.$ ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$277.0972, found 277.0983.

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid methyl ester (3af):

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.67-7.64$ (m, 2H), 7.46-7.38 (m, 3H), 3.94-3.83 (m, 5H), 2.42 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 202.4,167.9$, $156.5,130.8,128.8,127.8,126.9,92.6,53.6,40.9,25.8 ; \mathrm{IR}^{\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1751,1695 ; ~}$ LRMS (EI, 70 eV) m/z (\%): 247 (${ }^{+}, 4$), 188 (46), 177 (36), 144 (100); HRMS m/z (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$248.0917, found 248.0909.

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3ag):

Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta: 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}$, 3H), 4.32-4.27 (m, 2H), 3.94-3.81 (m, 2H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 202.5,167.3,156.5,130.8,128.8,127.9,126.9,92.7$, 62.9, 40.8, 25.8, 13.9; IR (KBr, cm^{-1}): 1749, 1698; LRMS (EI, 70 eV) m/z (\%): 261
$\left(\mathrm{M}^{+}, 3\right), 176$ (7), 162 (14), 144 (100); HRMS m / z (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$ 262.1074, found 262.1083.

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid isopropyl ester (3ah):
Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: ~ 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37$ (m, $3 \mathrm{H}), 5.15-5.08(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 202.4,166.8,156.4,130.7,128.8,128.0,126.9,92.8$, 71.0, 40.6, 25.7, 21.4 (2C); IR (KBr, cm^{-1}): 1754, 1693; LRMS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%):$ $275\left(\mathrm{M}^{+}, 3\right), 188$ (50), 160 (18), 144 (100); HRMS m / z (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}$276.1230, found 276.1243.

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid benzyl ester (3ai):

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: ~ 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34$ (m, 8H), 5.27 (s, 2H), 3.96-3.82 (m, 2H), $2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 202.2, 167.2, 156.5, 134.5, 130.8, 128.8, 128.6 (2C), 128.3, 128.2, 126.9, 92.7, 68.3, 40.8, 25.8; IR (KBr, cm^{-1}): 1746, 1688; LRMS (EI, 70 eV) m/z (\%): 323 ($\mathrm{M}^{+}, 1$), 236 (8), 188 (15), 91 (100); HRMS m / z (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$324.1230, found 324.1256.

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid 2-methoxyethyl ester (3aj):

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}$, $3 \mathrm{H}), 4.38-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 201.6,167.4,156.4,130.8,128.8,127.9,126.9$, 92.5, 69.7, 65.4, 58.8, 40.6, 25.6; IR (KBr, cm^{-1}): 1756, 1696; LRMS (EI, 70 eV) m/z (\%): $291\left(\mathrm{M}^{+}, 1\right), 221$ (5), 188 (64), 144 (100); HRMS m/z (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$292.1179, found 292.1190.

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid allyl ester (3ak):
Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.66-7.64$ (m, 2H), 7.45-7.37 (m, 3H), 5.95-5.85 (m, 1H), 5.37-5.26 (m, 2H), 4.72 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94-3.83(\mathrm{~m}$, 2H), 2.42 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 202.4,167.0,156.5,130.8,130.6$, 128.8, 127.9, 126.9, 119.6, 92.7, 67.1, 40.8, 25.8.; IR ($\mathrm{KBr}^{\mathrm{cm}}{ }^{-1}$): 1749, 1690; LRMS (EI, 70 eV) m/z (\%): 273 ($\mathrm{M}^{+}, 3$), 202(6), 188 (50), 144 (100); HRMS m/z (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$274.1074, found 274.1082.

3-phenyl-5-propionyl-4,5-dihydroisoxazole-5-carboxylic acid methyl ester (3al):
Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.65-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}$, 3H), 3.89 ($\mathrm{s}, 2 \mathrm{H}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}$), 2.85-2.80 (m, 2H), $1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 205.4,168.0,156.5,130.8,128.8,127.9,126.9,92.6,53.6,41.3$, 31.5, 7.2; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1756,1694 ;$ LRMS (EI, 70 eV) m/z (\%): 261 ($\mathrm{M}^{+}, 1$), 202 (10), 144 (16), 57 (100); HRMS m / z (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$262.1074, found 262.1083.

5-butyryl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3am):
Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta: ~ 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}$, 3H), 4.31-4.26 (m, 2H), 3.93-3.82 (m, 2H), 2.77 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67-1.61 (m, $2 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 204.8, 167.5, 156.5, 130.8, 128.8, 128.0, 126.9, 92.8, 62.9, 41.0, 39.9, 16.6, 13.9, 13.4; IR (KBr, cm^{-1}): 1750, 1689; LRMS (EI, 70 eV) m/z (\%): $289\left(\mathrm{M}^{+}, 1\right), 216$ (12), 144 (16), 71 (100); HRMS m / z (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$290.1387, found 290.1396.

5-isobutyryl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid methyl ester (3an):

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: ~ 7.68-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}$, 3H), 3.89 (s, 2H), 3.83 (s, 3H), 3.32-3.25 (m, 1H), 1.18 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.11 (d, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 208.9,168.2,156.5,130.8,128.8$, 127.9, 127.0, 92.7, 53.5, 41.8, 36.8, 18.9, 18.7; IR (KBr, cm^{-1}): 1752, 1697; LRMS (EI, 70 eV) m/z (\%):275 ($\mathrm{M}^{+}, 1$), 232 (42), 172 (70), 71 (100); HRMS m/z (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$276.1230, found 276.1242.

5-benzoyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3ao): ${ }^{[2]}$
Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.14-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.69(\mathrm{~m}$, 2H), 7.61-7.57 (m, 1H), 7.49-7.38 (m, 5H), $4.56(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.21(\mathrm{~m}$, 2H), 3.72 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta: 189.9,169.0,156.1,133.9,133.3,130.7,130.0,128.7,128.6,128.0,127.0,91.9$, 62.7, 42.1, 13.7; LRMS (EI, 70 eV) m/z (\%): 323 ($\mathrm{M}^{+}, 1$), 250 (88), 190 (18), 105 (100).

5-acetyl-N,3-diphenyl-4,5-dihydroisoxazole-5-carboxamide (3ap):

Pale yellow solid, mp 149.2-150.7 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 8.76 (s, 1H), 7.67-.7.60 (m, 4H), 7.48-7.34 (m, 5H), 7.17 (t, J = 7.6 Hz, 1H), 4.29 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (d, $J=18 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 197.6,166.3,158.0,136.4,131.2,129.1,128.9,127.1,125.3,119.9,93.1$,
40.8, 25.3; IR (KBr, cm ${ }^{-1}$): 1730, 1681; LRMS (EI, 70 eV) m/z (\%): $308\left(\mathrm{M}^{+}, 1\right), 207$ (18), 188 (89), 146 (100); HRMS m / z (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$309.1234, found 309.1230.

1,1'-(3-p-tolyl-4,5-dihydroisoxazole-5,5-diyl)diethanone (3ca):

White solid, mp 74.6-75.9 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.54 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75$ (s, 2H), 2.37 (s, 3H), 2.35 (s, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 202.5,156.5,141.3,129.5,126.9,124.9,97.4$, 40.2, 25.7, 21.4; IR (KBr, cm^{-1}): 1720, 1687; LRMS (EI, 70 eV) m/z (\%): $245\left(\mathrm{M}^{+}\right.$, 12), 203 (75), 160 (52), 132 (100); HRMS m / z (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 246.1125, found 246.1142 .

1,1'-(3-(4-methoxyphenyl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3da):
White solid, mp 88.9-90.1 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.60-7.56 (m, 2H), 6.93-6.89 (m, 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (s, 2H), $2.34(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 202.6,161.6,156.1,128.6,120.2,114.2,97.3,55.3,40.3$, 25.8; IR (KBr, cm ${ }^{-1}$): 1717, 1690; LRMS (EI, 70 eV) m/z (\%): 261 (${ }^{+}$, 29), 219 (42), 176 (49), 148 (100); HRMS m/z (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$262.1074, found 262.1083.

1,1'-(3-(4-chlorophenyl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3ea):

White solid, mp 78.4-79.6 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.58 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.73 (s, 2H), $2.35(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 202.1,155.7,137.0,129.2,128.2,126.3,97.8,39.8,25.8 ; \mathrm{IR}$ $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1719,1688 ;$ LRMS (EI, 70 eV) m/z (\%): $267\left(\mathrm{M}^{+}+2,3\right), 265\left(\mathrm{M}^{+}, 9\right), 222$ (100), 180 (63); HRMS m / z (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}$266.0578, found 266.0586.

1,1'-(3-(4-bromophenyl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3fa):

White solid, mp 97.1-98.1 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.62-7.47 (m, 4H), 3.73 (s, 2H), $2.35(\mathrm{~s}, 6 \mathrm{H}){ }^{13}{ }^{13} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 202.1$, 155.8, 132.1, 128.3, 126.7, 125.3, 97.8, 39.8, 25.8; IR (KBr, cm^{-1}): 1718, 1688; LRMS (EI, 70 eV) m/z (\%): $311\left(\mathrm{M}^{+}+2,10\right), 309\left(\mathrm{M}^{+}, 11\right), 267$ (100), 226 (47); HRMS m / z (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrNO}_{3}(\mathrm{M}+\mathrm{H})^{+}$310.0073, found 310.0076.

4-(5,5-diacetyl-4,5-dihydroisoxazol-3-yl)benzonitrile (3ga):

White solid, mp 128.5-129.5 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.77-7.69 (m, 4H), $3.76(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}){ }^{13}{ }^{13} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 201.6$,
155.4, 132.6, 132.0, 127.4, 117.9, 114.2, 98.3, 39.3, 25.8; $\mathrm{IR}^{\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1721,1689 ; ~}$ LRMS (EI, 70 eV) m/z (\%): 256 ($\mathrm{M}^{+}, 1$), 214 (100), 186 (45), 171 (63); HRMS m/z (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$257.0921, found 257.0921.

1,1'-(3-(4-nitrophenyl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3ha):

White solid; mp 138.0-139.7 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.24(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 201.5,155.1,148.8,133.8,127.8,124.0,98.4,39.4,25.8$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1722,1687$; LRMS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%): 276\left(\mathrm{M}^{+}, 1\right), 234$ (100), 206 (43), 191 (44); HRMS m/z (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$277.0819, found 277.0823.

1,1'-(3-(thiophen-3-yl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3ia):
White solid; mp 109.6-110.4 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.53-7.52 (m, 1H), 7.46-7.44 (m, 1H), 7.39-7.37 (m, 1H), $3.74(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13}{ }^{1} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 202.3,152.6,129.4,127.3,127.0,125.4,97.2,40.7$, 25.8; IR (KBr, cm^{-1}): 1717, 1686; LRMS (EI, 70 eV) m/z (\%): 237 ($\mathrm{M}^{+}, 10$), 195 (100), 166 (16), 152 (55); HRMS $m / z(E S I)$ calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$238.0532, found 238.0538.

(E)-5-(acetoxyimino)-5-phenylpentan-2-one (4aa):

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.67$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44-7.38 (m, 3H), 3.09 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 206.1,168.9,165.3,133.3,130.7,128.7,127.2,39.7$, 29.8, 22.1, 19.8; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1763, 1698; HRMS m / z (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}$234.1125, found 234.1127.

(E)-4-(benzoyloxyimino)-1,4-diphenylbutan-1-one (4ac):

White solid, mp 92.3-93.4 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 8.09-8.07 (m, 2H), 7.94-7.91 (m, 2H), 7.85-7.83 (m, 2H), 7.61-7.54 (m, 2H), 7.50$7.41(\mathrm{~m}, 7 \mathrm{H}), 3.46-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta:$ 197.6, 166.5, 163.7, 136.1, 133.5, 133.4, 130.9, 129.6, 128.8 (2C), 128.7, 128.6, 128.0, 127.3, 35.2, 22.9; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1727, 1677; HRMS m / z (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}$358.1438, found 358.1434.

(E)-4-(acetoxyimino)-1,4-diphenylbutan-1-one (4ad):

White solid, mp 80.4-81.6 ${ }^{\circ} \mathrm{C}$ (uncorrected); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.92 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38$ ($\mathrm{m}, 5 \mathrm{H}$), 3.30-3.20 (m, 4H), $2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 197.5$, 168.7, 165.4, 136.2, 133.4, 133.3, 130.7, 128.7, 128.6, 127.9, 127.2, 35.1, 22.7, 19.7; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1758, 1681; HRMS $m / z(\mathrm{ESI})$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$296.1281, found 296.1273.

(E)-ethyl 2-benzoyl-4-(hydroxyimino)-4-phenylbutanoate (5ao):

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.63(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, 2H), 7.59-7.52 (m, 3H), 7.43-7.32 (m, 5H), $4.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}$, $2 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 194.6, 169.3, 157.0, 135.8, 135.2, 133.6, 129.4, 128.6 (2C), 128.5, 126.6, 61.6, 50.5, 26.4, 13.6.

(C) Reference

1 (a) J. M. Hatcher, M. C. Kohler and D. M. Coltart, Org. Lett., 2011, 13, 3810; (b) T. C. Wabnitz, S. Saaby and K. A. Jørgensen, Org. Biomol. Chem., 2004, 2, 828; (c)
V. Pavlishchuk, F. Birkelbach, T. Weyhermuller, K.Wieghardt and P. Chaudhuri, Inorg. Chem., 2002, 41, 4405; (d) S. K. Boyer, R. A. Pfund, R. E. Portmann, G. H. Sedelmeier and H. F. Wetter, Helv. Chim. Acta., 1988, 71, 337.

2 M. Yamauchi, J. Heterocyclic Chem., 2002, 39, 1013.
(D) Spectra

1,1'-(3-phenyl-4,5-dihydroisoxazole-5,5-diyl)diethanone (3aa):

20130110-1 jey

要
$\begin{array}{ll}\overrightarrow{8} & \text { 总 } \\ \text { in } & \text { Wh } \\ 1 & 1\end{array}$

1,1'-(3-phenyl-4,5-dihydroisoxazole-5,5-diyl)dipropan-1-one (3ab):

5-benzoyl-3-phenyl-4,5-dihydroisoxazole-5-carbonitrile (3ae):

20130406-1 jh-lyy-09
 lyy-09

 7 \% $\%$諳

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid methyl ester (3af):

${ }^{20130328-1 ~ j o t y ~} 1$ ly - 3	熢	\%						
$1 y y^{-3}$ 㠬	\%	\%	$\frac{\sigma_{6}}{6}$	(\%	i	\|

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3ag):

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid isopropyl ester (3ah):
20130314-1 jh-1yy-01

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid benzyl ester (3ai):

5-acetyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid 2-methoxyethyl ester

20130328-1 jiperilyy-5	융	告					
	\%	$\frac{7}{6}$		1		-	1

5－acetyl－3－phenyl－4，5－dihydroisoxazole－5－carboxylic acid allyl ester（3ak）：

20130318－1 j b－ 1 yy －06 $1 \mathrm{yy}-06$		覀					
	官	\％		－1	些奖	－	if

3-phenyl-5-propionyl-4,5-dihydroisoxazole-5-carboxylic acid methyl ester (3al):
$20130318-1$ jh-1yy-04
$1 y y-04$
lyy-04

오오옹

 \int

$20130318-\frac{1}{5 . j h}-1 y y-04$
$1 y y-04$

5-butyryl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3am):

5-isobutyryl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid methyl ester (3an):

5-benzoyl-3-phenyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3ao):
$20130406-1$ jh $\mathrm{h}-1 \mathrm{yy}-07$
lyu-07

 $j \int$

1

而
$\frac{0}{6}$

5－acetyl－N，3－diphenyl－4，5－dihydroisoxazole－5－carboxamide（3ap）：

$20130318-1 \mathrm{jh}-1 \mathrm{yy}-07$
1yy－07
 \iint_{\int}

$20130318-1 \mathrm{jh}-1 \mathrm{gg}-07$	面	\％	\％	35列言空	8	※80	
lyy－07 察	8	管	\％		｜		－

1,1'-(3-p-tolyl-4,5-dihydroisoxazole-5,5-diyl)diethanone (3ca):

20130406-1 jhe-1yy-08
$20130406-1$ jity $-1 y-08$
$1 y u-08$

1,1'-(3-(4-methoxyphenyl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3da):

1,1'-(3-(4-chlorophenyl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3ea):

1,1'-(3-(4-bromophenyl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3fa):
$20130425-1$ jh-1yy-01 1yy-01

4-(5,5-diacetyl-4,5-dihydroisoxazol-3-yl)benzonitrile (3ga):

20130418-1 jitylyy-04
lyy-04

1,1'-(3-(4-nitrophenyl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3ha):

1,1'-(3-(thiophen-3-yl)-4,5-dihydroisoxazole-5,5-diyl)diethanone (3ia):

20130901-1 jb- lyy
lyy

Cosersos)

(E)-5-(acetoxyimino)-5-phenylpentan-2-one (4aa):

lyy $20121225-1 \mathrm{jh}-1 \mathrm{yy}$

$\underbrace{\text { irnivitivin }}$

$\int \sqrt{\infty}$ \iiint

(E)-4-(benzoyloxyimino)-1,4-diphenylbutan-1-one (4ac):

$1 \mathrm{ly}-0$

"लनmingmy

(E)-4-(acetoxyimino)-1,4-diphenylbutan-1-one (4ad):

(E)-ethyl 2-benzoyl-4-(hydroxyimino)-4-phenylbutanoate (5ao):

