Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Ruthenium Catalyzed C-H bond Borylation

José A. Fernández-Salas, Simone Manzini, Lorenzo Piola, Alexandra M. Z. Slawin, and Steven P. Nolan*

EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST (UK).

Contents

General Considerations	S2
Experimental Procedures and Characterization	S2
General procedure for the synthesis of complexes 2	S2
Characterization of ruthenium complexes (2a-2e)	S3-S4
Optimization of the conditions for the borylation of 2-	S4
phenylpyridine	
Borylation of 2-phenylpyridine using [Ru(<i>p</i> -cymene)Cl ₂] ₂ .	S4-S5
General procedure for the ruthenium-catalyzed borylation	S5
Characterization of the borylated pyridines (4a-4i)	S5-S6
General procedure for the one-pot reaction	S7
References	S7
NMR spectra	S8-S28
ORTEP of the molecular structure of 2a	S29

GENERAL CONSIDERATIONS:

Anhydrous toluene was dispensed from a solvent purification system from Innovative Technology. Anhydrous N,N-dimethylacetamide was distilled from sodium (Na) under argon (Ar) atmosphere. Anhydrous solvents (DMF, NMP and 1,4-dioxane) were used as received. All solvents were degassed and stored in a glovebox. Catalyst syntheses were performed in an MBraun glovebox containing dry argon and less than 1 ppm oxygen or using standard Schlenk techniques.¹H, ¹³C, ³¹P and ¹⁹F Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker Avance 300 or Bruker Avance II 400 Ultrashield NMR spectrometers. Chemical shifts are reported in δ ppm. Mass spectrometry was performed by the EPSRC National Mass Spectrometry Service Centre at Swansea University, Grove building, Singleton Park, Swansea, SA2 8PP, Wales, UK. Elemental analyses were performed at the London Metropolitan University. Bis(pinacolato)diboron was purchased from BASF and used as received. Complex 1 was synthesised according to the previously reported procedure.¹ Pyridines **3a-c** were purchased from Sigma Aldrich and used as received. Pyridines **3d**,² **3e**,² **3f**,² **3g**,³ **3h**,² **3i**⁴ and **3j**² were prepared according to the literature.⁵

EXPERIMENTAL PROCEDURES AND CHARACTERIZATION:

General procedure to the synthesis of complexes 2.

In the glovebox, complex 1^1 (500 mg, 0.58 mmol) was dissolved in toluene (10 ml) in a 25 ml Schlenk flask. Outside the glovebox the desired silane was added (6 equiv.). The reaction was stirred for the determined time at 100°C, then the volatiles were removed *under vacuo*. The resulting residue was washed with pentane three time, yielding **2** in the reported yield.

Complex	Silane	t (h)	Yield
2a	Et ₃ SiH	16 h	85 %
2b	(EtO) ₃ SiH	3 h	69 %
2c	PhMe ₂ SiH	3 h	60 %
2d	Ph ₂ MeSiH	16 h	65 %
2e	Ph ₃ SiH	16 h	70 %

[RuH₂(PPh₃)(η⁵-3-phenylindenyl)(SiEt₃)] (2a):

¹H NMR (400 MHz, C₆D₆): δ 7.570 (m, 2H), 7.46 (m, 1H), 7.19 (m, 7H), 7.01 (m, 4H), 6.89 (m, 10H) 6.64 (m, 1H), 6.52 (m, 1H), 5.47 (m, 1H), 5.02 (m, 1H), 1.16 (t J= 8.3 Hz, 9H), 0.74 (sext. J = 7.11 Hz 3H), 0.63 (sext. J = 7.11 Hz 3H) -12.89 (bs, 1H), -13.83 (bs, 1H); ¹³C NMR (101 MHz, 101 MHz).

C₆D₆): δ 138.0, 137.5, 137.4, 134.1 (d, J = 11.4 Hz), 129.3, 129.1 (d J = 1.5 Hz), 128.6, 127.5, 126.1, 125.5, 125.3, 123.4, 121.6, 108.6, 106.5, 93.0, 89.9 (d, J = 3.0 Hz), 73.7 (d, J=8.8 Hz), 13.5, 9.8; ³¹P NMR (162 MHz, C₆D₆): δ 66.2. Anal. Calcd. for C₃₉H₄₃PRuSi: C, 69.72%; H, 6.45%. Found: C, 69.62%; H, 6.48%.

[RuH₂(PPh₃)(η⁵-3-phenylindenyl)(SiOEt₃)] (2b):

¹H NMR (400 MHz, C₆D₆): δ 7.56 (m, 2H), 7.48 (m, 1H), 7.15 (m, 7H), 7.01 - 6.83 (m, 13H) 6.66 (m, 1H), 6.42 (m, 1H), 5.69 (m, 1H), 3.89 (m, 6H), 1.26 (t, *J* = 7.9 Hz, 9H) -12.26 (bs, 1H), -13.24 (bs, 1H); ¹³C NMR (101 MHz, C₆D₆): δ 138.0, 137.5, 137.0, 134.0 (d, *J* = 11.4 Hz), 129.6, 129.2, 129.1 (d, *J* = 1.5 Hz), 128.6, 127.6, 127.5, 126.4, 126.3, 125.9, 123.7, 121.6, 110.6, 106.5, 94.0, 89.9 (d, *J* = 4.4 Hz), 73.1 (d, *J* = 8.8 Hz), 57.8, 18.8; ³¹P NMR (162 MHz, C₆D₆): δ 60.6. Anal. Calcd. for C₃₉H₄₃PRuSi: C, 65.16; H, 5.89. Found: C, 65.25; H, 5.95.

[RuH₂(PPh₃)(η⁵-3-phenylindenyl)(SiMe₂Ph)] (2c):

¹H NMR (400 MHz, C₆D₆): δ 7.87 (m, 2H), 7.46 (m, 1H), 7.39 (m, 2H), 7.27 - 7.12 (m, 9H), 6.99 (m, 3H), 6.89 (m, 9H), 6.75 (m, 1H), 6.69 (m, 1H), 6.58 (m, 1H), 5.28 (m, 1H), 4.88 (m, 1H), 0.65 (s, 3H), 0.36 (s, 3H), -13.00 (bs, 2H); ¹³C NMR (101 MHz, C₆D₆): δ 152.1, 138.1, 137.6, 137.5, 134.5 (d, J = 11.4 Hz), 134.4, 129.7 (d, J = 4.0Hz), 129.1, 128.5, 128.3, 128.2, 128.1, 127.9, 126.4, 126.7, 126.3, 124.1, 122.0, 109.3, 107.0, 94.1, 91.2 (d, J = 4.4 Hz), 76.5 (d, J = 8.8 Hz), 10.7, 10.4; ³¹P NMR (162 MHz, C₆D₆): δ 66.5. Anal. Calcd. for C₄₁H₃₈PRuSi: C, 71.28; H, 5.54. Found: C, 71.15; H, 5.65.

[RuH₂(PPh₃)(η⁵-3-phenylindenyl)(SiMePh₂)] (2d):

¹H NMR (400 MHz, C₆D₆): δ 7.82 (m, 4H), 7.46 (m, 5H), 7.29 (m, 5H), 7.17 (m, 5H) 7.04 (m, 7H), 6.99-6.75 (m, 16H), 6.68 (m, 1H), 6.50 (m, 1H), 4.96 (m, 2H), 0.60 (s, 3H), -11.81 (bs, 1H), -13.20 (bs, 1H); ¹³C NMR (101MHz, C₆D₆): δ 149.5, 148.1, 137.4, 137.0, 136.9, 135.7, 134.8, 135.2, 134.4, 133.9, 133.8, 130.0, 129.8, 129.2, 128.7, 127.7, 127.5, 126.2, 126.0, 123.8, 121.8, 109.6, 106.7, 93.5, 92.4 (d, J = 4.4 Hz), 75.5 (d, J = 8.8 Hz), 8.62; ³¹P NMR (162MHz, C₆D₆): δ 63.3. Anal. Calcd. for C₄₆H₄₀PRuSi: C, 73.24; H, 5.35. Found: C, 73.23; H, 5.43.

[RuH₂(PPh₃)(η⁵-3-phenylindenyl)(SiPh₃)] (2e):

¹H NMR (400 MHz, CD₂Cl₂): δ 7.66 (m, 1H), 7.49 (m, 8H), 7.28 (m, 6H), 7.13 (m, 18H) 6.86 (m, 9H), 6.58 (m, 7H), 5.89 (m, 1H), 4.76 (m, 1H), 4.10 (m, 1H), 4.22 (m, 1H), -11.55 (d, *J* = 30.0 Hz, 1H), -13.25 (d, J = 30.0 Hz, 1H); ¹³C NMR (101 MHz, CD₂Cl₂): δ 145.9, 137.3, 136.7, 136.7, 136.3, 136.1, 135.3, 133.8, 133.7, 130.4, 130.2, 129.5, 129.3, 128.6, 128.4, 128.5, 128.2, 127.5, 127.4, 127.3, 126.6, 126.4, 125.9, 124.1, 122.0, 111.1, 107.4, 93.6 (d, *J* = 3.6 Hz), 93.5, 74.1 (d, J) = 3.6 Hz),

8.8 Hz); ³¹P (162MHz, CD₂Cl₂) δ 58.7. Anal. Calcd. for C₅₁H₄₂PRuSi: C, 75.16; H, 5.19. Found: C, 69.88, H, 5.20.

ĺ	N B ₂ Pin ₂ [Ru] (2a Solv 110 16	e (1 equiv.) -2d)(mol%) ent °C h 4a	
Entry	[Ru] (mol %)	Solvent	Conv. ^a 2a (%)
1	2a (2.5)	Toluene	20
2	2a (2.5)	NMP	_b
3	2a (2.5)	DMF	_b
4	2a (2.5)	DMAc	_b
5	2a (2.5)	1,4-dioxane	>95
6	2a (2.5)	1,4-dioxane ^c	_b
7	2a (2.5)	1,4-dioxane ^d	_b
8	2b (2.5)	1,4-dioxane	19
9	2c (2.5)	1,4-dioxane	10
10	2d (2.5)	1,4-dioxane	12
11	2e (2.5)	1,4-dioxane	27
12	2a (2.0)	1,4-dioxane	>95
13	2a (1.5)	1,4-dioxane	>95
14	2a (1.0)	1,4-dioxane	85

Optimization of the conditions for the borylation of 2-phenylpyridine.

^a Conversion determined by ¹H-NMR spectroscopy. ^b Starting material was recovered unchanged. ^c 60°C. ^d 80°C.

Borylation of 2-phenylpyridine using [Ru(*p*-cymene)Cl₂]₂.

2	AdCO ₂ H	1,4-dioxane	68
3	AdCO ₂ H	NMP	_b
4	KOAc	1,4-dioxane	76
5	MesCO ₂ H	1,4-dioxane	23
6	PhCO ₂ H	1,4-dioxane	63
7	PPh ₃	1,4-dioxane	_b

^a Conversion determined by ¹H-NMR spectroscopy. ^b Starting material was recovered unchanged.

General procedure for the ruthenium-calayzed borylation:

In a vial fitted with a screwcap, in the glovebox, bis(pinacolato)diboron (0.25 mmol), the corresponding pyridine (**3a-3j**) (0.25 mmol) and **2a** (0.00375 mmol, 1.5 mol%) were dissolved in 1,4-dioxane (0.5 mL). Then, outside of the glovebox, the resulting mixture was stirred 16 h at 110°C. Solvent was removed under reduced pressure. The crude material was purified by recrystallization from dichloromethane/hexane.

2-[2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]pyridine (4a):⁶

¹H NMR (300 MHz, CDCl₃): δ 8.67 (d, J = 5.5 Hz, 1H), 8.01-7.92 (m, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.72 (d, J = 7.4 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.41 (td, J = 7.4, 1.2 Hz, 1H), 7.36 (ddd, J = 7.2, 5.5, 1.2 Hz, 1H), 7.29 (td, J = 7.4, 1.2 Hz, 1H), 1.43 (s, 12H).

10-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[h]quinolone (4b):⁶

¹H NMR (300 MHz, CDCl₃): δ 8.90 (dd, *J* = 4.6, 1.6 Hz, 1H), 8.19 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 8.9 Hz, 1H), 7.77 (d, *J* = 7.0 Hz, 1H), 7.73-7.66 (m, 1H), 7.66 (d, *J* = 8.9 Hz, 1H), 7.52 (dd, *J* = 7.9, 4.5 Hz, 1H), 1.55 (s, 12H).

2-[4-Methyl-2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-pyridine (4c):⁷

¹H NMR (300 MHz, CDCl₃): δ 8.63 (ddd, J = 5.6, 1.5, 1.0 Hz, 1H), 7.92 (ddd, J = 8.0, 7.4, 1.5 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.31 (ddd, J = 7.4, 5.6, 1.0 Hz, 1H), 7.11 – 7.07 (m, 1H), 2.39 (s, 3H), 1.43 (s, 12H).

2-[4-Methoxy-2-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-pyridine (4d):

¹H NMR (300 MHz, CDCl₃): δ 8.59 (d, J = 5.7 Hz, 1H), 7.90 (td, J = 8.0, 1.5 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.28-7.23 (m, 2H), 6.81 (dd, J = 8.4, 2.5 Hz, 1H), 3.88 (s, 3H), 1.42 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7, 156.6, 142.9, 141.8, 129.9, 122.8, 121.4, 116.8, 116.4,

113.8, 80.2, 55.3, 27.1; **MS** (ESI): *m*/*z* 312 (M+H⁺, 100); **HRMS** (ESI): Calcd. for C₁₈H₂₃BNO₃ (M+H⁺), 312.1766; found 312.1768.

2-[4-Fluoro-2-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-pyridine (4e):

¹H NMR (300 MHz, CDCl₃): δ 8.65 (d, J = 5.9 Hz, 1H), 8.03-791 (m, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.63 (dd, J = 8.4, 4.7 Hz, 1H), 7.39-7.33 (m, 2H), 6.96 (td, J = 8.7, 2.5 Hz, 1H), 1.41 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6 (d, J = 252.4 Hz), 155.6, 143.1, 142.2, 132.9, 123.1 (d, J = 8.6 Hz), 122.4, 118.2 (d, J = 19.9 Hz), 117.2, 115.0 (d, J = 23.8 Hz), 80.3, 27.0; ¹⁹F NMR (282 MHz, CDCl₃): δ -110.0; **MS** (ESI): m/z 300 (M+H⁺, 81); **HRMS** (ESI): Calcd. for C₁₇H₁₉BFNO₂ (M+H⁺), 300.1567; found 300.1566.

2-[4-Methoxycarbonyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]pyridine (4f):

¹H NMR (300 MHz, CDCl₃): δ 8.72 (d, J = 5.0 Hz, 1H), 8.36 (d, J = 1.0 Hz, 1H), 8.06-7.98 (m, 2H), 7.88 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.45 (ddd, J = 7.5, 5.6, 1.0 Hz, 1H), 3.93 (s, 3H), 1.44 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 167.8, 155.5, 143.9, 142.5, 141.5, 133.0,

132.7, 130.0, 124.1, 121.5, 118.7, 80.9, 52.6, 27.4. **MS** (ESI): *m/z* 340 (M+H⁺, 93); **HRMS** (ESI): Calcd. for C₁₉H₂₃BNO₄ (M+H⁺), 340.1715; found 340.1718.

2-[5-Methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]pyridine (4g):⁶

¹H NMR (300 MHz, CDCl₃): δ 8.65 (ddd, J = 5.6, 1.6, 1.0 Hz, 1H), 7.95 (ddd, J = 8.0, 7.4, 1.6 Hz, 1H), 7.75 (dt, J = 8.0, 1.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.35 (ddd, J = 7.5, 5.6, 1.2 Hz, 1H), 7.17 (d, J = 2.3 Hz, 1H), 6.98 (dd, J = 8.0, 2.3 Hz, 1H), 3.84 (s, 3H), 1.41 (s, 12H).

2-[5-Fluoro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]pyridine (4h):

¹H NMR (300 MHz, CDCl₃): δ 8.64 (d, J = 5.7 Hz, 1H), 7.99 (td, J = 7.7, 1.5 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.48-7.37 (m, 1H), 7.30 (dd, J = 7.9, 2.7 Hz, 1H), 7.03 (t, J = 8.1 Hz, 1H), 1.45 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 165.1 (d, J = 245.1 Hz), 155.0, 142.9, 141.9, 140.0 (d, J = 1.5

12.7 Hz), 130.3 (d, J = 7.8 Hz), 123.4, 118.7 (d, J = 26.4 Hz), 117.8, 117.5 (d, J = 2.9 Hz), 81.0, 27.4; ¹⁹F NMR (282 MHz, CDCl₃): δ -105; **MS** (ESI): m/z 300 (M+H⁺, 100); **HRMS** (ESI): Calcd. for C₁₇H₁₉BFNO₂ (M+H⁺), 300.1567; found 300.1567.

2-[5-Methoxycarbonyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]pyridine (4i):6

2-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl)pyridine (4j):

¹H NMR (300 MHz, CDCl₃): δ 8.77 (dd, J = 5.5, 0.7 Hz, 1H), 8.34-8.26 (m, 2H), 8.01 (ddd, J = 8.1, 7.5, 1.6 Hz, 1H), 7.93-7.86 (m, 3H), 7.55 (ddd, J = 8.5, 6.8, 1.5Hz, 1H), 7.47 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.39 (ddd, J = 7.5, 5.5, 1.1 Hz, 1H), 1.42 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 144.5, 142.0, 135.1, 133.9, 131.9, 130.0, 130.1, 128.8, 127.4, 125.6, 123.2, 122.2, 122.2, 81.1, 27.5. **MS** (ESI): m/z 332 (M+H⁺, 100); **HRMS** (ESI): Calcd. for C₂₁H₂₃BNO₂ (M+H⁺), 300.1816; found 332.1820.

General procedure for the one pot borylation Suzuki-Miyaura coupling.

In a vial fitted with a screwcap, in the glovebox, bis(pinacolato)diboron (0.25 mmol), the 2phenylpyridine (**3a**) (0.25 mmol) and **2a** (0.00375 mmol, 1.5 mol%) were dissolved in 1,4-dioxane (0.5 mL). Then, outside of the glovebox, the resulting mixture was stirred 16 h at 110°C. Volatiles was removed under reduced pressure. Then Suzuki-Miyaura coupling was carried out following a procedure developed in our laboratory.⁸ In the glovebox, KOH (0.375 mmol, 1.5 equiv) was added to the mixture. A solution of the palladium pre-catalyst [Pd(IPr*)(cinnamyl)Cl] in DME (1 mL of DME, 3.0 mol%) and the chloroanisole (0.375 mmol, 1.5 equiv.) were added sequentially. The reaction mixture was then stirred (800 rpm) at room temperature or 60°C during 16 h. Then the solution was cooled, quenched with water (5 mL), and the aqueous layer was extracted with DCM (3 x 10 mL). The combined organic layers were dried over MgSO4 and the volatiles were evaporated in vaccuo. The crude product was finally purified by flash chromatography on silica gel.

2-(4'-methoxy-[1,1'-biphenyl]-2-yl)pyridine (5):9

¹H NMR (300 MHz, CDCl₃): δ 8.64 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.71-7.62 (m, 1H), 7.47-7.36 (m, 4H), 7.15-7.04 (m, 3H), 6.90 (d, *J* = 7.9 Hz, 1H), 6.82-6.72 (m, 2H), 3.79 (s, 3H).

REFERENCES:

(1) Manzini, S.; Urbina-Blanco, C. A.; Poater, A.; Slawin, A. M. Z.; Cavallo, L.; Nolan, S. P. Angew. Chem., Int. Ed. 2012, 51, 1042.

(2) Xu, J.; Cheng, G.; Su, D.; Liu, Y.; Wang, X.; Hu, Y. Chem. Eur. J. 2009, 15, 13105.

(3) Li, X.; Zou, D.; Leng, F.; Sun, C.; Li, J.; Wu, Y.; Wu, Y. Chem. Commun. 2013, 49, 312.

- (4) Molander, G. A.; Trice, S. L. J.; Kennedy, S. M. J. Org. Chem. 2012, 77, 8678.
- (5) Liu, C.; Yang, W. Chem. Commun. 2009, 6267.
- (6) Kawamorita, S.; Miyazaki, T.; Ohmiya, H.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2011, 133, 19310.
- (7) Maity, A.; Anderson, B. L.; Deligonul, N.; Gray, T. G. Chem. Sci. 2013, 4, 1175.
- (8) Chartoire, A.; Lesieur, M.; Falivene, L.; Slawin, A. M. Z.; Cavallo, L.; Cazin, C. S. J.; Nolan, S. P. Chem. Eur. J. 2012, 18, 4517.
- (9) Punji, B.; Song, W.; Shevchenko, G. A.; Ackermann, L. Chem. Eur. J. 2013, 19, 10605

NMR SPECTRA:

2a: ¹H NMR in C₆D₆

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR C_{6}D_{6}

2b: ¹H NMR C₆D₆

 ${}^{13}\text{C}\{{}^{1}\text{H}\}\,\text{NMR}$ in C_6D_6

2d. ¹H NMR in C_6D_6

ORTEP of the molecular structure of 2a: Thermal ellipsoids drawn at 50% probability and most hydrogen atoms omitted for clarity.

