Electronic Supplementary Material (ESI) for Chemical Communications.

Supplementary Information

Aryloxymaleimides for cysteine modification, disulfide bridging and the dual functionalization of disulfide bonds

Cristina Marculescu, ${ }^{a}$ Hanno Kossen, ${ }^{a}$ Rachel E. Morgan, ${ }^{a}$ Patrick Mayer, ${ }^{a}$ Sally A. Fletcher, ${ }^{a}$ Berend Tolner, ${ }^{\text {b }}$ Kerry Chester, ${ }^{\text {b }}$ Lyn H. Jones, ${ }^{\text {c James R. Baker*a }}$
${ }^{a}$ Department of Chemistry, University College London, 20 Gordon St, London, UK; Tel: (+44) 2076792653; E-mail: j.r.baker@ucl.ac.uk. ${ }^{b}$ UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK,
${ }^{\text {c Pfizer, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, } 610 \text { Main Street,Cambridge MA 02139, USA }}$

Table of contents

I. Materials 3
II. General methods 3
III. Supporting schemes and figures
III. 1 Synthetic scheme for the preparation of aryloxymaleimides 16-18 5
III. 2 Stability of succinimide bridged somatostatin 14 and maleimide bridged somatostatin 47 under cytoplasm mimicking conditions 7
III. 3 Hydrolytic stability of succinimide bridged somatostatin 45 and maleimide bridged somatostatin 48 8
III. 4 Trypsin digest of dual labelled somatostatin conjugate $\mathbf{2 5}$ 8
IV. Synthesised compounds 9
V. NMR spectra 24
VI. Protein modification 48
VI. 1 Modification of Grb2 (L111C) SH2 48
VI. 2 Modification of somatostatin 48
VI. 3 Modification of anti-CEA ds-scFv shMFE 55
VII. LC-MS traces of protein conjugates 56
VIII. References 71

I. Materials

All commercially available chemicals were used as received without further purification. Lyophilised somatostatin was purchased from Sigma Aldrich. The anti-CEA ds-scFv shMFE23 antibody fragment was prepared according to a literature protocol ${ }^{1}$ and the Grb2 (L111C) SH2 adaptor protein was prepared according to a literature protocol ${ }^{2}$.

All buffer solutions were prepared with double-deionised water and filter-sterilised.

II. General methods

All reactions were carried out at room temperature, under argon unless otherwise stated. ${ }^{1} \mathrm{H}$-NMR spectra were recorded on Bruker AMX600 (600 MHz) instruments at room temperature. The chemical shifts are expressed in parts per million (ppm) referenced to the residual solvent peaks. Data are reported as follows: δ, chemical shift; integration, multiplicity (recorded as br, broad; s, singlet; d, doublet; t , triplet; q , quadruplet; qn , quintet, and m , multiplet), coupling constants (J in Hertz, Hz). ${ }^{13}$ C-NMR spectra were recorded on the same instruments at 150 MHz . The chemical shifts are expressed in parts per million (ppm), referenced to the residual solvent peaks. Assignments were obtained using DEPT experiments. Infrared spectra were obtained on a Perkin Elmer Spectrum 100 FTIR Spectrometer operating in ATR mode. Data is reported as follows: wavenumber (cm^{-1}), intensity (recorded as br, broad; s, strong; m, medium; w, weak). Melting points were measured with a Gallenkamp and are uncorrected. High and low resolution mass spectrometry was performed using a VG70 SE operating in modes ES, EI, FAB or CI depending on the sample. Normal phase silica gel 60 (0.04-0.063 mm, 230-400 mesh) (BDH) and sand (VWR) were used for flash chromatography. All reactions were monitored by thin layer chromatography (TLC), using TLC plates pre-coated with silica gel $60 \mathrm{~F}-254$ on aluminium (Merck KGaA) and KMnO_{4} as chemical stain.

Somatostatin, anti-CEA ds-scfv antibody fragment and their conjugates were analysed by LCMS using a Waters Acquity UPLC connected to Waters Acquity Single Quad Detector [column: Acquity UPLC BEH C18 $1.7 \mu \mathrm{~m} 2.1 \times 50 \mathrm{~mm}$; wavelength 254 nm ; mobile phase $95: 5$ water (0.1% formic acid) : acetonitrile (0.1% formic acid), gradient over 4 min to $5: 95$ water (0.1% formic acid) : acetonitrile (0.1% formic acid); flow rate $0.6 \mathrm{~mL} / \mathrm{min}$; MS mode ES+/-; scan range (m / z) = 95-2090 Da; scan time 0.25 s]. Data was obtained in continuum mode. Sample volumes were between 10-30 $\mu \mathrm{L}$. The electron spray source of the MS was operated with a capillary voltage of 3.5 kV and a cone voltage of 20-200 V. Nitrogen was used as the nebulizer and desolvation gas at a total flow of 600 L / h. Total mass spectra for protein samples were reconstructed from the ion series using the MaxEnt 1 algorithm pre-installed on the MassLynx software.

Protein concentrations and UV-absorbances were obtained on a Carry BIO 100 UV-Vis spectrophotometer (Varian) equipped with a temperature controlled $12 \times$ sample holder in quartz cuvettes (1 cm path length, volume $75 \mu \mathrm{~L}$) at room temperature, unless otherwise stated. Samples were baseline corrected.

III. Supporting schemes and figures

III. 1 Synthetic scheme for the synthesis of aryloxymaleimides 16-18

1 eq. 36 0.03 eq. Cul 0.03 eq. DIPEA 0.03 eq. AcOH
DCM, 4 h, r.t.

Scheme S1. Synthesis of aryloxymaleimides 16-18
III. 2 Stability of succinimide bridged somatostatin 14 and maleimide bridged somatostatin 47 under cytoplasm mimicking conditions

Fig. S1. Stability of succinimide bridged somatostatin 14 (brown) and maleimide bridged somatostatin 47 (blue) under cytoplasm mimicking conditions between $0-4 \mathrm{~h}$

III. 3 Hydrolytic stability of succinimide bridged somatostatin 45 and maleimide bridged somatostatin 48

45

48

Conjugate	\% Hydrolysed	
	after dialysis in pH 8 buffer	after 1 h @ 37 ${ }^{\circ} \mathrm{C}, \mathrm{pH} 8$
	75	91
48	92	95

Fig. S2. Comparison between the hydrolytic stability of the succinimide bridged somatostatin 45 and maleimide bridged somatostatin 48

III. 4 Trypsin digest of dual labelled somatostatin conjugate 25

25:

R_{1}	Ring hydrolysed	Mass F_{1}	R_{2}	Ring hydrolysed	Mass F_{3}	Mass F_{2}
PEG	No	618	PEG	No	799	740
PEG	Yes	637	PEG	Yes	817	
CH_{3}	No	486	CH_{3}	No	666	
CH_{3}	Yes	504	CH_{3}	Yes	684	

Possible fragments after the trypsin digest of $\mathbf{2 5}$

SI Fig 3. Mass trace of the digest mixture after 15 h

IV. Synthesised compounds

3-Bromo-1-methyl-pyrrole-2,5-dione ${ }^{3}$ (5)

To N-methylmaleimide ($2.87 \mathrm{~g}, 25.0 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(125 \mathrm{~mL})$, bromine ($2.60 \mathrm{~mL}, 55.5 \mathrm{mmol}$) was added dropwise and the resulting mixture was refluxed for 2 h . The solvent was removed in vacuo and the resulting solid was dissolved in ethyl acetate (30 mL) and washed with 15% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(20 \mathrm{~mL})$ and then with brine $(10 \mathrm{~mL})$. The product was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was evaporated in vacuo to afford 6.39 g of 2,3-dibromosuccinimide as yellow crystals. The succinimide product was dissolved in acetic acid (150 mL), then sodium acetate ($5.94 \mathrm{~g}, 71.6$ mmol) was added and the reaction mixture was refluxed for 2.5 h . The reaction mixture was left to cool down to room temperature and then the solvent was evaporated in vacuo. The crude mixture was dissolved in ethyl acetate (50 mL) and washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 25 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent evaporated in vacuo. Purification by
flash chromatography (petroleum ether : ethyl acetate, gradient elution from $80: 20$ to $60: 40$) afforded the title compound $\mathbf{5}$ as white crystals ($2.86 \mathrm{~g}, 15.1 \mathrm{mmol}$) in 65% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.88(1 \mathrm{H}, \mathrm{s}), 3.07(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.7(\mathrm{C}), 165.5(\mathrm{C}), 132.0(\mathrm{CH})$, 131.5 (C), 24.7 (CH_{3}); IR 3105 (w), 2947 (w), 1776 (m), 1704 (s), 1588 (s), 1493 (s), 1388 (m), 1231 (m), 969 (s), 706 (s); MS (Cl+) m/z (relative intensity): 192 ($\left.{ }^{81} \mathrm{M}+\mathrm{H}\right]^{+}, 100$), 190 ($\left.{ }^{79} \mathrm{M}+\mathrm{H}\right]^{+}, 100$). Exact mass calcd. for $\left[\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{Br}\right]^{+}+\mathrm{H}$: 189.9504. Measured: 189.9501 (Cl+); m.p.: $100{ }^{\circ} \mathrm{C}$ (lit. m.p. ${ }^{1}: 88-89^{\circ} \mathrm{C}$).

1-Methyl-3-phenoxy-pyrrole-2,5-dione (6)

To a solution of phenol ($207 \mathrm{mg}, 2.20 \mathrm{mmol}$) in dry dioxane (1 mL) potassium tert-butoxide (264 mg , $2.31 \mathrm{mmol})$ in dry dioxane (3 mL) was added dropwise and the solution was left stirring for 15 min . The mixture was then added dropwise to a solution of bromomaleimide 5 ($400 \mathrm{mg}, 2.10 \mathrm{mmol}$) in dry dioxane (1 mL). The mixture was stirred at room temperature for 30 min and then concentrated in vacuo. Water (10 mL) was added and the crude product was extracted with ethyl acetate (3×30 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The organic solvent was evaporated in vacuo to give a beige solid. Purification by flash chromatography (petroleum ether : ethyl acetate, gradient elution from $90: 10$ to 80 : 20) afforded the title compound 6 as a white solid ($320.9 \mathrm{mg}, 1.58 \mathrm{mmol}$) in 75% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-7.43(2 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{s})$, $3.05(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.1$ (C), 165.8 (C), 159.6 (C), 153.9 (C), $130.4(2 \times \mathrm{CH}), 126.9(\mathrm{CH})$, $119.9(2 \times \mathrm{CH}), 99.4(\mathrm{CH}), 23.7\left(\mathrm{CH}_{3}\right)$; IR 1714 (s), 1637 (m), 1313 (m), 1220 (w); MS (El+) m/z, (relative intensity): 203 ([M] $\left.{ }^{+}, 100\right), 94$ (21). Exact mass calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{3}\right]^{+}$: 203.0577. Measured: $203.0580(E I+) ;$ m.p.: $63^{\circ} \mathrm{C}$.

Methyl 4-(1-methyl-pyrrole-2,5-dione-3-yloxy)benzoate (7)

To a solution of methyl 4-hydroxybenzoate ($170 \mathrm{mg}, 1.10 \mathrm{mmol}$) in dry dioxane (1 mL) a mixture of potassium tert-butoxide ($132 \mathrm{mg}, 1.16 \mathrm{mmol}$) in dry dioxane (4 mL) and 18-crown-6 ether (306 mg ,
1.16 mmol) was added dropwise and the resulting solution was stirred for 15 min at room temperature. The mixture was added dropwise to a solution of bromomaleimide 5 (200 mg, 1.05 mmol) in dry dioxane (1 mL) and stirred at room temperature for 19 h . After this time, the solvent was evaporated in vacuo, washed with 1 M aq. NaOH , extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was evaporated in vacuo. Purification by flash chromatography (petroleum ether : ethyl acetate, gradient elution from $90: 10$ to $70: 30$) afforded title compound 7 as yellow solid ($196 \mathrm{mg}, 0.75 \mathrm{mmol}$) in 72% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.15-8.13 (2H, m), 7.27-7.25 (2H, m), $5.37(1 \mathrm{H}, \mathrm{s}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.06(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 169.7 (C), 165.9 (C), 165.4 (C), 158.5 (C), 157.2 (C), 132.2 ($2 \times \mathrm{CH}$), 128.9 (C), 119.9 $(2 \times \mathrm{CH}), 100.3(\mathrm{CH}), 52.6\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right)$; IR 1731 (s), 1713 (s), $1638(\mathrm{~m}), 1600(\mathrm{~m}), 1440(\mathrm{~m}), 1285$ (m), 1105 (m); MS (EI+) m/z, (relative intensity): 261 ([M] ${ }^{+}, 100$), 86 (20). Exact mass calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{5}\right]^{+}: 261.0632$. Measured: 261.0636 (EI+); m.p.: $149^{\circ} \mathrm{C}$.

1-Methyl-3-(4-nitrophenoxy)-pyrrole-2,5-dione (8)

To a solution of 4-nitrophenol ($155 \mathrm{mg}, 1.10 \mathrm{mmol}$) in dry dioxane (1 mL) a mixture of potassium tert-butoxide ($132 \mathrm{mg}, 1.16 \mathrm{mmol}$) in dry dioxane (4 mL) and 18-crown ether ($306 \mathrm{mg}, 1.16 \mathrm{mmol}$) was added dropwise and the solution was stirred for 15 min . The resulting mixture was then added dropwise to a solution of bromomaleimide $5(200 \mathrm{mg}, 1.05 \mathrm{mmol})$ in dry dioxane (1 mL) and the stirring continued for another 20 h . After this time, the solvent was evaporated in vacuo. The resulting crude was redissolved in ethyl acetate (10 mL), washed with 1 M aq. $\mathrm{NaOH}(5 \mathrm{~mL})$, extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography (petroleum ether : ethyl acetate, gradient elution from $90: 10$ to $70: 30$) afforded the title compound 8 as a white solid ($114 \mathrm{mg}, 0.46 \mathrm{mmol}$) in 44% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.37-8.35 (2H, m), 7.39-7.37 (2H, m), $5.49(1 \mathrm{H}, \mathrm{s}), 3.07(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 169.1$ (C), $165.0(\mathrm{C}), 158.2(\mathrm{C}), 157.6(\mathrm{C}), 145.9(\mathrm{C}), 126.4(2 \times \mathrm{CH}), 120.7(2 \times \mathrm{CH}), 101.5(\mathrm{CH})$, $23.9\left(\mathrm{CH}_{3}\right)$; IR 1713 (s), 1635 (m), 1588 (m), 1522 (m), 1350 (m), 1231 (w); MS (EI+) m/z, (relative intensity): 248 ([M] $\left.{ }^{+}, 100\right), 150$ (16). Exact mass calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}$: 248.0428. Measured: 248.0435 (EI+); m.p.: $123-124{ }^{\circ} \mathrm{C}$.

tert-Butyl 4-hydroxybenzoate ${ }^{4}$ (26)

To a solution of 4-hydroxybenzoic acid ($2.50 \mathrm{~g}, 18.1 \mathrm{mmol}$), DMAP ($0.08 \mathrm{~g}, 0.07 \mathrm{mmol}$) and tertbutanol (50 ml) in dry tetrahydrofuran (75 ml), a solution of DCC ($3.82 \mathrm{~g}, 18.5 \mathrm{mmol}$) in dry tetrahydrofuran (25 ml) was added dropwise at room temperature for 30 min . The reaction mixture was stirred at room temperature for a further 22 h . The white solid was filtered and the filtrate was concentrated in vacuo. The crude filtate was dissolved in diethyl ether (40 mL) and washed with 0.3 M aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and then concentrated in vacuo. Purification by flash chromatography (petroleum ether : ethyl acetate, $90: 10$) afforded the title compound 26 as a white solid ($1.10 \mathrm{~g}, 5.67 \mathrm{mmol}$) in 31% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.90(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{s}), 1.58(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.7(\mathrm{C}), 159.4(\mathrm{C}), 131.8(2 \times \mathrm{CH}), 124.8(\mathrm{C}), 115.1(2 \times \mathrm{CH}), 81.8(\mathrm{C}), 28.4\left(3 \times \mathrm{CH}_{3}\right)$; IR 3338 (br), 1674 (s), 1607 (s), 1368 (s), 1154 (s); IR 3338 (br), 1673 (s), 1607 (s), 1368 (s), 1154 (s); MS $(\mathrm{Cl}+) \mathrm{m} / \mathrm{z}$, (relative intensity): $195\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Exact mass calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}\right]^{+}+\mathrm{H}: 195.1016$. Measured: $195.1013(\mathrm{Cl}+) ;$ m.p.: $119{ }^{\circ} \mathrm{C}$ (lit. m.p. ${ }^{4}$: 118-120 ${ }^{\circ} \mathrm{C}$).
tert-Butyl 4-(1-methyl-pyrrole-2,5-dione-3-yloxy)benzoate (27)

A solution of protected phenol $26(300 \mathrm{mg}, 1.55 \mathrm{mmol})$ in dry dioxane (1.5 mL) was added dropwise to a solution of potassium tert-butoxide ($173 \mathrm{mg}, 1.55 \mathrm{~mol}$) in dry dioxane (4.5 mL) and stirred at room temperature for 15 min . The mixture was added dropwise to a solution of bromomaleimide 5 ($255 \mathrm{mg}, 1.29 \mathrm{mmol}$) in dry dioxane (1 mL) and the resulting solution was stirred at room temperature for 24 h . After this time, the solvent was concentrated in vacuo and the resulting crude dissolved in ethyl acetate (20 mL), washed with 1 M aq. $\mathrm{NaOH}(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was evaporated in vacuo. Purification by flash chromatography (dichloromethane : diethyl ether, 95 : 5) afforded the title compound 27 as a white solid ($260 \mathrm{mg}, 0.86 \mathrm{mmol}$) in 55% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.05-8.04 (2H, m), 7.21-7.19 (2H, d), $5.32(1 \mathrm{H}, \mathrm{s}), 3.01(3 \mathrm{H}, \mathrm{s}) 1.56(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.7$ (C), 169.7 (C), 164.5 (C), 158.6 (C), 156.8 (C), 131.9 ($2 \times \mathrm{CH}$), 130.7 (C), 119.7 ($2 \times$ $\mathrm{CH}), 100.1(\mathrm{CH}), 81.8(\mathrm{C}), 28.2\left(3 \times \mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right) ; \mathrm{IR} 1712(\mathrm{~s}), 1638(\mathrm{~m}), 1291(\mathrm{~m}) ; \mathrm{MS}(\mathrm{Cl}+) \mathrm{m} / \mathrm{z}$, (relative intensity): $304\left([\mathrm{M}+\mathrm{H}]^{+}, 30\right), 248(100)$. Exact mass calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}\right]^{+}+\mathrm{H}: 304.1179$. Measured: $304.1174(\mathrm{Cl}+) ;$ m.p.: $139^{\circ} \mathrm{C}$.

4-(1-Methyl-pyrrole-2,5-dione-3-yloxy)benzoic acid (28)

A solution of aryloxymaleimide $27(250 \mathrm{mg}, 0.82 \mathrm{mmol})$ and thioanisole ($1.76 \mathrm{~mL}, 15 \mathrm{mmol}$) in dichloromethane (2 mL) was cooled to $0^{\circ} \mathrm{C}$ and added dropwise over 10 min to TFA ($2 \mathrm{~mL}, 26.3$ mmol). The reaction mixture was stirred at room temperature for 4 h and then toluene (4 mL) was added to aid evaporation of TFA. Purification by flash chromatography (dichloromethane : methanol, gradient elution from $95: 5$ to $80: 20$) afforded the title compound 28 as white solid ($122.9 \mathrm{mg}, 0.50$ mmol) in 61\% yield.
$\delta_{\mathrm{H}}(600 \mathrm{MHz}, \mathrm{MeOD}) 8.15(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{s}), 2.99(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(150$ MHz, MeOD) 171.4 (C), 168.7 (C), 166.9 (C), 159.9 (C), 158.8 (C), 133.2 ($2 \times$ CH), 130.6 (C), 120.7 ($2 \times$ CH), 101.5 (CH), 23.6 (CH_{3}); IR 1726 (s), 1678 (m), 1643 (m), 1603 (m), 1294 (m); MS (CI+) m/z, (relative intensity): $248\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Exact mass calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{5}\right]^{+}+\mathrm{H}: 248.0554$. Measured: $248.0550(\mathrm{Cl}+) ;$ m.p.: $237^{\circ} \mathrm{C}$.

2-(2-(2-Methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate ${ }^{5}$ (29)

Triethylene glycol monomethyl ether ($2.92 \mathrm{~mL}, 18.3 \mathrm{mmol}$) and triethylamine ($3.80 \mathrm{~mL}, 27.4 \mathrm{mmol}$) were dissolved in dry dichloromethane (15 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of tosyl chloride ($3.48 \mathrm{~g}, 18.3 \mathrm{mmol}$) in dry dichloromethane (5 mL) was then added dropwise. The mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$ and then allowed to warm to room temperature for 14 h . After that, diethyl ether was added (20 mL) and the resulting precipitate was filtered. The filtrate was
concentrated in vacuo. Purification by flash column chromatography (diethyl ether) afforded 29 as a colourless oil ($4.57 \mathrm{~g}, 14.3 \mathrm{mmol}$) in 79% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.16(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 3.69$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 3.61-3.59(6 \mathrm{H}, \mathrm{m}), 3.54-3.52(2 \mathrm{H}, \mathrm{m}), 3.37(3 \mathrm{H}, \mathrm{s}), 2.45(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 144.9 (C), $133.1(\mathrm{C}), 129.9(2 \times \mathrm{CH}), 128.1(2 \times \mathrm{CH}), 72.0\left(\mathrm{CH}_{2}\right), 70.9\left(\mathrm{CH}_{2}\right), 70.7\left(\mathrm{CH}_{2}\right), 70.6\left(\mathrm{CH}_{2}\right), 69.3$ $\left(\mathrm{CH}_{2}\right), 68.8\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right) ;$ IR $2881(\mathrm{br}), 1355(\mathrm{~m}), 1189(\mathrm{~m}), 1170(\mathrm{~s}), 1099(\mathrm{~m}) ; \mathrm{MS}$ (Cl+) m/z, (relative intensity): 319 ([M+H] ${ }^{+}, 80$), 199 (65), 147 (65), 103 (100). Exact mass calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}\right]^{+}+\mathrm{H}: 319.1210$. Measured: $319.1210(\mathrm{Cl}+$).

1-Azido-2-(2-(2-methoxyethoxy)ethoxy)ethane ${ }^{5}$ (30)

To a solution tosylated PEG 29 (1.90 g , 5.98 mol) in dimethylformamide (40 mL) was added sodium azide ($0.96 \mathrm{~g}, 14.9 \mathrm{mmol}$). The reaction mixture was stirred for 20 h at $60^{\circ} \mathrm{C}$ and then for 3 h at 120 ${ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to cool to room temperature and then diethyl ether (50 mL) was added. The organic phase was washed with sat. aq. LiCl ($5 \times 20 \mathrm{~mL}$), brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo to afford the title compound $\mathbf{3 0}$ as a brown oil ($887 \mathrm{mg}, 4.69 \mathrm{mmol}$) in 78% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.68-3.65(8 \mathrm{H}, \mathrm{m}), 3.55(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}), 3.40-3.38(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $72.0\left(\mathrm{CH}_{2}\right), 70.81\left(\mathrm{CH}_{2}\right), 70.74\left(\mathrm{CH}_{2}\right), 70.74\left(\mathrm{CH}_{2}\right), 70.2\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{3}\right), 50.8\left(\mathrm{CH}_{2}\right)$; IR $2874(\mathrm{br}), 2098$ (s), 1288 (br), 1104 (s); MS (Cl+) m/z, (relative intensity): 190 ([M+H] ${ }^{+}, 20$), 162 (65), 103 (100).

2-(2-(2-Methoxyethoxy)ethoxy)ethanamine ${ }^{5}$ (31)

The PEG azide $\mathbf{3 0}(880 \mathrm{mg}, 4.65 \mathrm{mmol})$ was dissolved in diethyl ether (50 mL) and the solution cooled at $0^{\circ} \mathrm{C}$. Triphenylphosphine ($1.46 \mathrm{~g}, 5.58 \mathrm{mmol}$) was added and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and another 1 h at room temperature. The reaction was quenched with water (20 mL) and the mixture stirred vigorously for 4 h . Toluene (15 mL) was added and the mixture was stirred overnight. The layers were separated and the aq. layer was extracted once with toluene. In vacuo concentration of the aq. layer afforded the title compound $\mathbf{3 1}$ as a brown oil ($506 \mathrm{mg}, 3.10 \mathrm{mmol}$) in 67% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.63-3.60(6 \mathrm{H}, \mathrm{m}), 3.53-3.52(2 \mathrm{H}, \mathrm{m}), 3.49(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}), 3.35(3 \mathrm{H}, \mathrm{s}), 2.85$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 73.0\left(\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 70.7\left(\mathrm{CH}_{2}\right), 70.6\left(\mathrm{CH}_{2}\right), 70.3\left(\mathrm{CH}_{2}\right), 59.1$
$\left(\mathrm{CH}_{3}\right), 41.7\left(\mathrm{CH}_{2}\right)$; IR 3379 (br), 2876 (br), 1570 (br), 1462 (br), 1304 (s), 1097 (s); MS (Cl+) m/z, (relative intensity): $164\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 88(25)$. Exact mass calcd. for $\left[\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{NO}_{3}\right]^{+}+\mathrm{H}: 164.1287$. Measured: 164.1289 (Cl+).

N-(2-(2-(2-Methoxyethoxy)ethoxy)ethyl)-4-(1-methyl-pyrrole-2,5-dione-3-yloxy)benzamide (16)

To a solution of aryloxymaleimide $28(50.0 \mathrm{mg}, 0.20 \mathrm{mmol})$, HOBt ($2.93 \mathrm{mg}, 0.02 \mathrm{mmol}$) and HBTU $(75.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry dimethylformamide (14 mL), DIPEA ($34 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was added dropwise and the resulting reaction mixture was stirred at room temperature for 20 min . Then a solution of PEG amine $31(32.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry dimethylformamide (2 mL) was added dropwise and the stirring was continued for a further 4 h . After this time, the solvent was evaporated in vacuo and the resulting crude dissolved in dichloromethane (25 mL), washed with sat. aq. $\mathrm{LiCl}(2 \times 20 \mathrm{~mL}), 15 \%$ aq. citric acid $(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$ and brine (10 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and then the solvent evaporated in vacuo. Purification by flash chromatography (ethyl acetate : methanol, gradient elution from $100: 0$ to $80: 20$) afforded the title compound 16 as a yellow oil ($52.6 \mathrm{mg}, 0.13 \mathrm{mmol}$) in 67% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.94-7.92 $(2 \mathrm{H}, \mathrm{m}), 7.25-7.22(2 \mathrm{H}, \mathrm{m}), 5.33(1 \mathrm{H}, \mathrm{s}), 3.66-3.62(10 \mathrm{H}, \mathrm{m}), 3.53-3.51$ $(2 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s}), 3.04(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.7$ (C), 166.4 (C), 165.5 (C), 158.8 (C), 155.9 $(\mathrm{C}), 133.2(\mathrm{C}), 129.8(\mathrm{CH}), 119.9(2 \times \mathrm{CH}), 100.1(2 \times \mathrm{CH}), 71.8\left(\mathrm{CH}_{2}\right), 70.5\left(\mathrm{CH}_{2}\right), 70.4\left(\mathrm{CH}_{2}\right), 70.2\left(\mathrm{CH}_{2}\right)$, $70.0\left(\mathrm{CH}_{2}\right)$, $59.1\left(\mathrm{CH}_{3}\right), 40.0\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}\right)$; IR $1716(\mathrm{~s}), 1639(\mathrm{~m}), 1311(\mathrm{w})$; $\mathrm{MS}(\mathrm{Cl}+$) m / z, (relative intensity): 393 ([M+H] ${ }^{+}, 82$), 273 (100). Exact mass calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+}+\mathrm{H}: 393.1656$. Measured: 393.1661 (CI+).
(3r, 4r)-3,4-Dibromopyrrolidine-2,5-dione ${ }^{3}$ (32)

To maleimide ($2.00 \mathrm{~g}, 20.0 \mathrm{mmol}$) in chloroform (15 mL) bromine ($1.16 \mathrm{~mL}, 20.0 \mathrm{mmol}$) in chloroform (15 mL) was added dropwise. The reaction mixture was refluxed for 3 h , then allowed to cool down to room temperature over 1 h . The solid yellow precipitate was filtered and washed with
cold chloroform ($2 \times 35 \mathrm{~mL}$) to afford the title compound 32 as white crystals ($3.85 \mathrm{~g}, 14.9 \mathrm{mmol}$) in 75\% yield.
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.73(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.8(2 \times \mathrm{C}), 42.8(2 \times \mathrm{CH}) ; \mathrm{IR}$ 2945 (w), 1789 (m), 1708 (s), 1373 (s), 1170 (s); MS (ES+) m/z (relative intensity): 259 ([$\left.{ }^{81,81} \mathrm{M}+\mathrm{H}\right]^{+}$, 28), $257\left(\left[{ }^{79,81} \mathrm{M}+\mathrm{H}\right]^{+}, 29\right), 255\left([79,79 \mathrm{M}+\mathrm{H}]^{+}, 30\right)$; m.p.: $89-92^{\circ} \mathrm{C}$.

The stereochemistry of compound 32 was investigated. Based on molecular modelling (PC Model v 8.5) the calculated ${ }^{3} \mathrm{~J}_{\mathrm{HH}}$ for the anti isomer (corresponding to a torsional angle of 119°) is 2.2 Hz , exactly the same value that was measured when analysing the ${ }^{13} \mathrm{C}$ satellites in the ${ }^{1} \mathrm{H}$ spectrum. This demonstrates that the 2,3-dibromosuccinimide was obtained as the anti isomer.

3-Bromo-pyrrole-2,5-dione (33)

Dibromosuccinimide 32 ($965 \mathrm{mg}, 3.75 \mathrm{mmol}$) and sodium acetate trihydrate ($1.54 \mathrm{~g}, 11.27 \mathrm{mmol}$) were dissolved in acetic acid (23 mL). The reaction mixture was refluxed for 1.5 h , then allowed to cool down to room temperature and stirred for a further 3 h before the solvent was evaporated in vacuo. The crude mixture was dissolved in ethyl acetate (50 mL) and washed with saturated aq. sodium bicarbonate solution $(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (petroleum ether : ethyl acetate, gradient elution from $80: 20$ to $60: 40$) afforded the title compound 33 as white crystals (568 mg , 3.22 mmol) in 86\% yield.
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.49 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.0(\mathrm{C}), 164.9(\mathrm{C})$, 132.9 (C), 132.3 (C); IR 3236 (m), 1782 (m), 1763 (m), 1716 (s$), 1577$ (m), 871 (m), 718 (m); MS (El+) m / z (relative intensity): 177 ($\left.{ }^{81}[\mathrm{M}]^{+}, 95\right), 175\left({ }^{79}[\mathrm{M}]^{+}, 95\right), 134$ (97), 132 (98), 106 (70), 104(70). Exact mass calcd. for $\left[\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NO}_{2}{ }^{79} \mathrm{Br}\right]^{+}: 174.9263$. Measured: 174.9265 (El+); m.p.: $149{ }^{\circ} \mathrm{C}$ (lit. m.p. ${ }^{3}: 149-$ $151^{\circ} \mathrm{C}$).

3-Phenoxy-pyrrole-2,5-dione (34)

To molten phenol ($3.23 \mathrm{~g}, 34.3 \mathrm{mmol}$), potassium tert-butoxide ($307 \mathrm{mg}, 2.74 \mathrm{mmol}$) in dry dioxane $(2 \mathrm{~mL})$ was added dropwise and the solution was left stirring for 10 min at $40^{\circ} \mathrm{C}$. Then a solution of bromomaleimide 33 ($400 \mathrm{mg}, 2.28 \mathrm{mmol}$) in dry dioxane (2 mL) was added dropwise and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 30 min . After this time, the solvent was evaporated in vacuo. Purification by flash chromatography (petroleum ether : ethyl acetate, gradient elution from $90: 10$ to $70: 30$) afforded the title compound 34 as a white solid ($328 \mathrm{mg}, 1.73 \mathrm{mmol}$) in 76% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.43-7.40(2 \mathrm{H}, \mathrm{m}), 7.29-7.26(1 \mathrm{H}, \mathrm{m}), 7.17-7.15(2 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}$, s); $\delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.4$ (C), 166.1 (C), 159.6 (C), 153.9 (C), $130.5(2 \times \mathrm{CH}), 127.0(\mathrm{CH}), 119.9(2 \times$ CH), 100.5 (CH); IR 3264 (br), 1732 (s), 1708 (s), 1627 (s), 1584 (s), 1488 (s), 1288 (s), 1215 (s); MS (El+) m / z, (relative intensity): $189\left([M]^{+}, 85\right), 94(100), 84$ (95). Exact mass calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{3}\right]^{+}$: 189.0426. Measured: 189.0418 (EI+); m.p.: $85^{\circ} \mathrm{C}$.

Methyl (3-phenoxy-pyrrole-2,5-dione)carboxylate (35)

To a solution of aryloxymaleimide $34(360 \mathrm{mg}, 1.41 \mathrm{mmol})$ in dichloromethane $(6 \mathrm{~mL})$ were added a solution of methyl chloroformate ($1.09 \mathrm{~mL}, 14.1 \mathrm{mmol}$) in dichloromethane (1 mL) and a solution of N-methylmorpholine ($186 \mu \mathrm{~L}, 1.69 \mathrm{mmol}$) in dichloromethane (1 mL). The reaction mixture was stirred at room temperature for 30 min . After this time, the solution was washed with water (3×5 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the title compound 35 as a pale pink solid ($329 \mathrm{mg}, 1.33 \mathrm{mmol}$) in 95\% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.46-7.43 (2H, m), 7.33-7.30 (1H, m), 7.17-7.15 (2H, m), $5.42(1 \mathrm{H}, \mathrm{s}), 3.98(3 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.6(\mathrm{C}), 161.0(\mathrm{C}), 159.3(\mathrm{C}), 153.6(\mathrm{C}), 148.0(\mathrm{C}), 130.6(2 \times \mathrm{CH}), 127.4(\mathrm{CH})$, $119.8(2 \times \mathrm{CH}), 101.6(\mathrm{CH}), 54.4\left(\mathrm{CH}_{3}\right)$; IR 1769 (s), 1720 (s), 1641 (m), 1304 (s), 1259 (s), 1104 (m), $1075(\mathrm{~m})$; MS (Cl+) m / z, (relative intensity): $248\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 216$ (75). Exact mass calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{5}\right]^{+}+\mathrm{H}: 248.0559$. Measured: 248.0554 (Cl+); m.p.: 70-72 ${ }^{\circ} \mathrm{C}$.

3-Phenoxy-1-(prop-2-ynyl)-pyrrole-2,5-dione (36)

A solution of propargylamine ($4.90 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$) in dichloromethane (0.2 mL) was added to a solution of aryloxymaleimide $35(19.8 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dichloromethane (1 mL) and left to stir at room temperature for 1.5 h . After this time, the solvent was evaporated in vacuo. Purification by flash chromatography (ethyl acetate : ether petroleum, $70: 30$) afforded 36 as a transparent oil ($5.00 \mathrm{mg}, 0.02 \mathrm{mmol}$) in 27% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47-7.44(2 \mathrm{H}, \mathrm{m}), 7.34-7.31(1 \mathrm{H}, \mathrm{m}), 7.20-7.18(2 \mathrm{H}, \mathrm{m}), 5.33(1 \mathrm{H}, \mathrm{s}), 4.32(2 \mathrm{H}, \mathrm{s})$, $2.24(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.5$ (C), 164.4 (C), 159.8 (C), 153.8 (C), 130.5 (CH), 127.1 (CH), 119.9 (CH), 99.8 (CH), 71.8 (CH), 26.9 (CH_{2}); IR 1715 (s), 1631 (s), 1585 (m), 1310 (s), 1220 (m); MS $(\mathrm{Cl}+) \mathrm{m} / \mathrm{z}$, (relative intensity): $228\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Exact mass calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{3}\right]^{+}+\mathrm{H}: 228.0661$. Measured: $228.0657(\mathrm{Cl}+) ;$ m.p.: $55^{\circ} \mathrm{C}$.

1-(2-(2-(2-Methoxyethoxy)ethoxy)ethyl)-3-phenoxy-pyrrole-2,5-dione (17)

A solution of amine $31(32.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ was added to a solution of aryloxymaleimide 35 ($21.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) in dichloromethane (0.5 mL) and the resulting mixture was left to stir at room temperature for 15 h . After this time, the solvent was evaporated in vacuo. Purification by flash chromatography (dichloromethane : methanol, gradient elution from 97:3 to 95 : 5) afforded the title compound 17 as a transparent oil ($7.60 \mathrm{mg}, 0.02 \mathrm{mmol}$) in 28% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-7.43(2 \mathrm{H}, \mathrm{m}), 7.32-7.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 7.20-7.18(2 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 5.27$ $(1 \mathrm{H}, \mathrm{s}), 3.76-3.74(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}), 3.68-3.63(8 \mathrm{H}, \mathrm{m}), 3.55-3.54(2 \mathrm{H}, \mathrm{m}), 3.37(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 169.9(\mathrm{C}), 165.6(\mathrm{C}), 159.5(\mathrm{C}), 153.9(\mathrm{C}), 130.4(2 \times \mathrm{CH}), 126.9(\mathrm{CH}), 119.9(2 \times \mathrm{CH}), 99.4(\mathrm{CH})$, $72.0\left(\mathrm{CH}_{2}\right), 70.7\left(2 \times \mathrm{CH}_{2}\right), 70.1\left(\mathrm{CH}_{2}\right), 68.1\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{3}\right), 37.1\left(\mathrm{CH}_{2}\right) ;$ IR 2917 (br), 1715 (s), 1633 (s), 1312 (m); MS (Cl+) m/z, (relative intensity): 336 ($[\mathrm{M}+\mathrm{H}]^{+}, 98$), 216 (100). Exact mass calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6}\right]^{+}+\mathrm{H}: 336.1447$. Measured: 336.1445 (CI+).

2-Azidoethanol ${ }^{7}$ (37)

To a round-bottom flask containing sodium azide ($2.42 \mathrm{~g}, 37.2 \mathrm{mmol}$) and tetrabutylammonium bromide ($3.99 \mathrm{~g}, 12.4 \mathrm{mmol}$) was added 2 -chloroethanol ($1.00 \mathrm{~g}, 124 \mathrm{mmol}$) and the resulting mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 18 h . Purification by flash chromatography (petroleum ether : ethyl
acetate, gradient elution from $70: 30$ to $50: 50$) afforded the title compound 37 as a transparent oil ($482 \mathrm{mg}, 5.47 \mathrm{mmol}$) in 45% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.78(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 3.45(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 61.6\left(\mathrm{CH}_{2}\right)$, $53.6\left(\mathrm{CH}_{2}\right)$; IR 3350 (br), 2937 (br), 2094 (s), 1288 (m); MS (Cl+) m/z, (relative intensity): 116 ([M+K] ${ }^{+}$, 53), $88\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Exact mass calcd. for $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}\right]^{+}+\mathrm{H}: 88.0511$. Measured: $88.0513(\mathrm{Cl}+)$.

N-(9-(2-((2-Azidoethoxy)carbonyl)phenyl)-6-(diethylamino)-3H-xanthen-3-ylidene)- N ethylethanaminium chloride (38)

A round bottom flask containing dichloromethane $(1.5 \mathrm{~mL})$ was wrapped in aluminium foil and rhodamine $B(100 \mathrm{mg}, 0.21 \mathrm{mmol}), \mathrm{EDC} \cdot \mathrm{HCl}(44.1 \mathrm{mg}, 0.23 \mathrm{mmol})$, azide $37(20 \mathrm{mg}, 0.23 \mathrm{mmol})$ and DMAP ($5.30 \mathrm{mg}, 0.04 \mathrm{mmol}$) were added. The resulting reaction mixture was stirred at room temperature for 4 h . After this time, dichloromethane (5 mL) was added and the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aq. layer was extracted with dichloromethane ($4 \times 5 \mathrm{~mL}$) and all organic layers were combined, washed with $0.1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography (chloroform : methanol, $98: 2$) afforded the title compound 38 as a purple solid ($115 \mathrm{mg}, 0.21 \mathrm{mmol}$) in 100% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.24(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{d}$, $J=10.2 \mathrm{~Hz}), 7.01(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.86-6.84(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.11(2 \mathrm{H}, \mathrm{t}, J$ $=4.8 \mathrm{~Hz}), 3.59-3.56(8 \mathrm{H}, \mathrm{m}), 3.32(2 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 1.25(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.8(\mathrm{C})$, $158.4(\mathrm{C}), 157.8(2 \times \mathrm{C}), 155.6(2 \times \mathrm{C}), 133.7(\mathrm{C}), 133.5(\mathrm{CH}), 131.6(\mathrm{CH}), 131.3(2 \times \mathrm{CH}), 130.6(\mathrm{CH})$, $130.4(\mathrm{CH}), 129.4(\mathrm{C}), 114.4(2 \times \mathrm{CH}), 113.5(2 \times \mathrm{C}), 96.3(2 \times \mathrm{CH}), 63.9\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{CH}_{2}\right), 46.2(4 \times$ CH_{2}), 12.7 ($4 \times \mathrm{CH}_{3}$); IR 3384 (bs), 2971 (w), 2928 (w), 2102 (w), 1721 (m), 1586 (s), 1482 (m), 1413 (m), 1413 (s), 1338 (s), 1180 (s); Exact mass calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{3}\right]^{+}: 512.2656$. Measured: 512.2656 (NSI+).

N-(6-(Diethylamino)-9-(2-((2-(4-((2,5-dioxo-3-phenoxy-pyrrole-2,5-dione-1-yl)methyl)-1H-1,2,3-triazol-1-yl)ethoxy)carbonyl)phenyl)-3H-xanthen-3-ylidene)-N-ethylethanaminium (18)

To a mixture of copper iodide ($0.19 \mathrm{mg}, 0.001 \mathrm{mmol}$), N, N-diisopropylethylamine (DIPEA) ($9.58 \mu \mathrm{~L}$, $0.001 \mathrm{mmol})$ and acetic acid ($9.00 \mu \mathrm{~L}, 0.001 \mathrm{mmol}$) in dichloromethane (1 mL) was added a mixture of azide 38 ($15.5 \mathrm{mg}, 0.03 \mathrm{mmol}$) and alkyne $36(7.06 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dichloromethane (0.5 mL). The resulting reaction mixture was stirred at room temperature for 4 h . After this time the solvent was removed in vacuo. The crude was purified by flash chromatography (chloroform : methanol, gradient elution $98: 2$ to $90: 10$) to afford the title compound 18 as a purple solid ($13.3 \mathrm{mg}, 0.02$ mmol) in 62% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.21-8.20(1 \mathrm{H}, \mathrm{m}), 7.89(1 \mathrm{H}, \mathrm{s}), 7.77(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.44(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz})$, $7.31(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.28-7.27(1 \mathrm{H}, \mathrm{m}) 7.15(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.07(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{dd}$, $J=9.4$ and 2.2 Hz$), 6.79(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{s}), 4.83(2 \mathrm{H}, \mathrm{s}), 4.65(2 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}), 4.49(2 \mathrm{H}$, $\mathrm{t}, J=5.2 \mathrm{~Hz}), 3.67-3.59(8 \mathrm{H}, \mathrm{m}), 1.32(12 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ; \delta_{\mathrm{H}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.2(\mathrm{C}), 165.1(\mathrm{C})$, 164.5 (C), 159.6 (C), 158.7 (C), 157.8 ($2 \times$ C), $155.7(2 \times C), 153.9$ (C), 142.7 (C), 133.8 (C), 133.4 (CH), $131.8(\mathrm{CH}), 131.5(\mathrm{CH}), 130.9(\mathrm{CH}), 130.5(2 \times \mathrm{CH}), 130.3(\mathrm{CH}), 129.3(\mathrm{C}), 127.0(\mathrm{CH}), 123.9$ (CH), $119.9(2 \times \mathrm{CH}), 114.6(2 \times \mathrm{CH}), 113.6(2 \times \mathrm{C}), 99.7(\mathrm{CH}), 96.4(2 \times \mathrm{CH}), 63.6\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 46.3(4 \times$ $\left.\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 12.8\left(4 \times \mathrm{CH}_{3}\right)$; IR $2970(\mathrm{w}), 1721$ (s), 1588 (s), 1411 (m), 1342 (m), 1268 (s), 1247 (s); MS (ES+) m/z, (relative intensity): $739\left([\mathrm{M}]^{+}, 100\right), 711$ (50). Exact mass calcd. for $\left[\mathrm{C}_{43} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{6}\right]^{+}: 739.3239$. Measured: 739.3221 (NSI+).

3-Bromo-1-phenyl-pyrrole-2,5-dione (39)

To a solution of N-phenyl maleimide ($400 \mathrm{mg}, 2.31 \mathrm{mmol}$) in (3 mL) was added dropwise a solution of bromine ($237 \mu \mathrm{~L}, 4.62 \mathrm{mmol}$) in chloroform (1 mL) at room temperature. The reaction mixture was refluxed for 2 h and then allowed to cool to room temperature. The reaction mixture was diluted with chloroform $(10 \mathrm{~mL})$, washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$, water (5 mL) and brine (5 mL). The crude product was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent evaporated in vacuo to afford 636 mg of crude dibromosuccinimide as a yellow solid. Then, a part of the dibromosuccinimide ($400 \mathrm{mg}, 1.32$ mmol) was dissolved in acetic acid (8 mL) and sodium acetate ($325 \mathrm{mg}, 3.96 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 2 h and then the solvent was evaporated in vacuo. The crude residue was diluted with ethyl acetate $(30 \mathrm{~mL})$ and washed with water $(20 \mathrm{~mL})$, brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography (petroleum ether : ethyl acetate, gradient elution from $90: 10$ to $80: 20$) afforded the title compound 39 as a white solid (179.5 mg, 0.71mmol) in 54\% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.41-7.38(1 \mathrm{H}, \mathrm{m}), 7.34(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 167.5 (C), 164.3 (C), 132.0 (CH), 131.9 (C), 131.1 (C), 129.4 (CH), 128.5 (CH), 126.2 (CH); IR 1711 (s), 1592 (m), 1504 (m), 1396 (s), 1148 (m); MS (El+) m/z, (relative intensity): 253 ($\left.{ }^{81} \mathrm{M}\right]^{+}, 100$), 251 ($\left.{ }^{79} \mathrm{M}\right]^{+}, 96$), 86 (55), 84 (90). Exact mass calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrNO}_{2}\right]^{+}: 250.9582$. Measured: 250.9582 (EI+); m.p.: $153^{\circ} \mathrm{C}$.

3-Phenoxy-1-phenyl-pyrrole-2,5-dione (40)

To a solution of phenol ($22.3 \mathrm{mg}, 0.24 \mathrm{mmol}$) in dry dioxane (0.5 mL) potassium tert-butoxide (26.9 $\mathrm{mg}, 0.24 \mathrm{mmol})$ in dry dioxane (2.5 mL) was added dropwise. The solution was left stirring for 15 min and then added dropwise to a solution of bromomaleimide 39 ($50.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) in dry dioxane $(1 \mathrm{~mL})$. The mixture was stirred at room temperature for 2.5 h and then concentrated in vacuo. Purification by flash chromatography (petroleum ether : diethyl ether, gradient elution from $90: 10$ to 80 : 20) afforded the title compound 40 as a transparent oil ($18.8 \mathrm{mg}, 0.07 \mathrm{mmol}$) in 46% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.61-7.51 (4H, m), 7.42-7.35 (4H, m), 7.28-7.26 (2H, m), $5.46(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 168.9 (C), 164.5 (C), 159.4 (C), 153.9 (C), 131.1 (C), 130.5 (2 CH), 129.3 (2 CH), 128.1 (2 CH), 127.1 (2 CH), 126.2 (2 CH), 120.0 (CH), 99.5 (CH); IR 1715 (s), 1634 (m), 1401 (m), 1201 (m); MS (ES +) m / z, (relative intensity): $266\left([\mathrm{M}+\mathrm{H}]^{+}, 42\right), 180$ (100). Exact mass calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{3}\right]^{+}+\mathrm{H}$: 266.0817. Measured: 266.0827 (ES+); m.p.: 198-201 ${ }^{\circ} \mathrm{C}$.

3-Bromo-1-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthene]-5-yl)-pyrrole-2,5-dione

 (41)

To a solution of fluoresceinamine isomer $1(104.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ in acetic acid (10 mL) was added monobromomaleic anhydride ($28.7 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and the resulting reaction mixture was stirred for 6 h at room temperature, then refluxed for 3 h . After this time the reaction mixture was allowed to cool to room temperature and the orange precipitate was filtered and dried in vacuo to afford the title compound 41 as an orange solid ($96.8 \mathrm{mg}, 0.19 \mathrm{mmol}$) in 64% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 7.99(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.9 Hz$), 7.73(1 \mathrm{H}, \mathrm{s}), 7.43(1 \mathrm{H}$, dd, $J=8.1 \mathrm{~Hz}), 6.69(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.62-6.57(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}\right) 167.9(\mathrm{C}), 167.6(\mathrm{C})$, 164.5 (C), 159.6 (C), 151.8 (C), 151.5 (C), 133.7 (CH), 133.0 (C), 132.9 (CH), 131.2 (C), 129.1 (C), 126.7 (C), 124.8 (CH), 122.3 (CH), 112.8 (CH), 109.1 (C), 102.3 (CH), 83.4 (C); IR 3063 (br), 1724 (s), 1579 (s), 1536 (s), 1369 (s), 1208 (s); MS (ES+) m/z (relative intensity): MS (ES-) m / z (relative intensity): 506 ([$\left.\left.{ }^{81} \mathrm{M}-\mathrm{H}^{+}\right]^{-}, 100\right), 504\left(\left[{ }^{79} \mathrm{M}-\mathrm{H}^{+}\right]^{-}, 100\right)$. Exact mass calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{12}{ }^{79} \mathrm{BrNO}_{7}\right]^{+}$: 505.9875. Measured: 505.9897 (ES+).

3,4-dibromo-1-Phenyl-pyrrole-2,5-dione ${ }^{8}$ (42)

To a solution of dibromomaleic anhydride ($300 \mathrm{mg}, 1.17 \mathrm{mmol}$) in acetic acid (3.5 mL) was added aniline ($118 \mu \mathrm{~L}, 1.29 \mathrm{mmol}$). The reaction mixture was refluxed for 3 h , stirred at room temperature for 15 h and then concentrated in vacuo. Purification by flash chromatography (petroleum ether : ethyl acetate, gradient elution from $90: 10$ to $80: 20$) afforded 42 as a yellow solid ($91.5 \mathrm{mg}, 0.28$ mmol) in 24 \% yield.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.50-7.47 $(2 \mathrm{H}, \mathrm{m}), 7.43-7.40(1 \mathrm{H}, \mathrm{m}), 7.34-7.33(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 163.0 (C), 131.0 (C), 130.0 (C), 129.5 (CH), 128.8 (CH), 126.2 (CH); IR 1727 (s), 1717 (s), 1369 (w),

1229 (w); MS (Cl+) m/z, (relative intensity): 334 ([$\left.{ }^{81,81} \mathrm{M}+\mathrm{H}\right]^{+}, 45$), 332 ($\left.{ }^{81,79} \mathrm{M}+\mathrm{H}\right]^{+}, 100$), 330 $\left(\left[{ }^{79,79} \mathrm{M}+\mathrm{H}\right]^{+}, 45\right)$. Exact mass calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{5}{ }^{79} \mathrm{BrNO}_{2}\right]^{+}+\mathrm{H}: 329.9765$. Measured: 329.8749 (CI+); m.p.: $169{ }^{\circ} \mathrm{C}$.

V. NMR Spectra

3-Bromo-1-methyl-pyrrole-2,5-dione (5)

1-Methyl-3-phenoxy-pyrrole-2,5-dione (6)

Methyl 4-(1-methyl-pyrrole-2,5-dione-3-yloxy)benzoate (7)

1-Methyl-3-(4-nitrophenoxy)-pyrrole-2,5-dione (8)

tert-Butyl 4-hydroxybenzoate (26)

tert-Butyl 4-(1-methyl-pyrrole-2,5-dione-3-yloxy)benzoate (27)

4-(1-Methyl-pyrrole-2,5-dione-3-yloxy)benzoic acid (28)

2-(2-(2-Methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (29)

1-Azido-2-(2-(2-methoxyethoxy)ethoxy)ethane (30)

2-(2-(2-Methoxyethoxy)ethoxy)ethanamine (31)

(3r, 4r)-3,4-Dibromopyrrolidine-2,5-dione (32)

3-Bromo-pyrrole-2,5-dione (33)

3-Phenoxy-pyrrole-2,5-dione (34)

Methyl (3-phenoxy-pyrrole-2,5-dione)carboxylate (35)

3-Phenoxy-1-(prop-2-ynyl)-pyrrole-2,5-dione (36)

2-azidoethanol (37)

N -(9-(2-((2-Azidoethoxy)carbonyl)phenyl)-6-(diethylamino)-3H-xanthen-3-ylidene)- N ethylethanaminium chloride (38)

N-(6-(diethylamino)-9-(2-((2-(4-((2,5-dioxo-3-phenoxy-2,5-dihydro-1H-pyrrol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)ethoxy)carbonyl)phenyl)-3H-xanthen-3-ylidene)-N-ethylethanaminium (18)

3-bromo-1-phenyl-pyrrole-2,5-dione (39)

3-Phenoxy-1-phenyl-pyrrole-2,5-dione (40)

(41)

3,4-Dibromo-1-phenyl-pyrrole-2,5-dione (42)

VI. Protein modification

VI. 1 Modification of Grb2 (L111C) SH2

Reaction profile experiments of substituted maleimides 5-8 with Grb2 (L111C) SH2

To a solution of Grb2 (L111C) SH2 $9(100 \mu \mathrm{~L}, 70 \mu \mathrm{M}, 100 \mathrm{mM}$ sodium phosphate buffer, 150 mM $\mathrm{NaCl}, \mathrm{pH} 8.0$) at $0^{\circ} \mathrm{C}$ was added the relevant substituted maleimide 5-8(1 equiv., $5 \mu \mathrm{~L}$ from a 1.41 mM stock solution in dimethylformamide). The mixture was maintained on ice. Aliquots were taken at various time points and immediately analysed by LC-MS. The reaction progress was estimated based on the ratio of the MS peak heights corresponding to the native protein 9 and the protein conjugate 10.

Modification of Grb2 (L111C) SH2 with excess of aryloxymaleimide 6

To a solution of Grb2 (L111C) SH2 $9(100 \mu \mathrm{~L}, 70 \mu \mathrm{M}, 100 \mathrm{mM}$ sodium phosphate buffer, 150 mM $\mathrm{NaCl}, \mathrm{pH} 8.0$) at $0^{\circ} \mathrm{C}$ was added aryloxymaleimide 6 (10 equiv., $5 \mu \mathrm{~L}$ from a 14.1 mM stock solution in dimethylformamide). The mixture was maintained on ice. After 10 min , an aliquot was taken and immediately analysed by LC-MS to show quantitative conversion to protein conjugate 10.

VI. 2 Modification of somatostatin

Reduction of somatostatin

A solution of somatostatin $11^{*}(200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate buffer, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5\% dimethylformamide) was reduced with TCEP (1.5 eq., 20 mM stock solution in the same buffer) for 1 h at room temperature. After this time, an aliquot ($30 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate buffer, pH 6.4) was taken and 2,3-dibromomaleimide ($3 \mu \mathrm{~L}, 10$ eq., from a 20 mM stock solution in DMF) was added. The reaction mixture was left to stand at room temperature for 1 min . Completion of the reduction was then checked by LC-MS, based on the disappearance of the MS peak corresponding to the native peptide 11 and appearance of the peak corresponding to the peptide conjugate 43.
*Reactions were performed starting from $50-700 \mu \mathrm{~L}$ somatostatin solution.

Comparison between aryloxymaleimide 6 and bromomaleimide 5

A solution of somatostatin $11(200 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5% dimethylformamide) was reduced with TCEP ($3 \mu \mathrm{~L}$, 1.5 eq., from a 20 mM stock solution in the same buffer) for 1 h at room temperature. Completion of the reduction step was checked as described above. The reduced somatostatin solution was divided in two equal volumes and then treated with bromomaleimide 5 (1.5 eq., from a 20 mM stock solution in DMF) or aryloxymaleimide 6 (1.5 eq., from a 20 mM stock solution in DMF). The two reaction mixtures were left to stand at room temperature for 1 h and then analysed by LC-MS, based on the heights of the MS peaks corresponding to the peptide adducts. In the case of the reaction involving bromomaleimide 5, a mixture of peptide conjugates 14 and 15 was obtained while in the case of the reaction involving aryloxymaleimide 6, peptide conjugate 14 was obtained as a single product.

Stepwise bridging of somatostatin with aryloxymaleimides 6, 17 and 40

14: $\mathrm{R}=\mathrm{CH}_{3}$
44: $\mathrm{R}=\mathrm{O}$
45: $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$

A solution of somatostatin 11* (200 $\mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5% dimethylformamide) was reduced with TCEP (1.5 equiv., 20 mM stock solution in the same buffer) for 1 h at room temperature. The completion of the reduction step was checked as described above. The reduced somatostatin solution was then treated with aryloxymaleimides 6 or 17 or 40 (1.5 equiv., from a stock solution of 20 mM in dimethylformamide) and the reaction left to stand at room temperature for 1 h . After this time an aliquot was taken and analysed by LC-MS to show full conversion to the corresponding peptide conjugate: 14 in the case of 6,44 in the case of 17 and 45 in the case of 40.
*Reactions were performed starting from $50,100,300$ and $700 \mu \mathrm{~L}$ of peptide solution.

Stepwise bridging of somatostatin with aryloxymaleimide 18

A solution of somatostatin $11(100 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5% dimethylformamide) was reduced with TCEP (1.2 equiv., $1.2 \mu \mathrm{~L}$ from a stock solution of 20 mM in the same buffer) and then aryloxymaleimide 18 (1.7 equiv., $1.7 \mu \mathrm{~L}$ from a 20 mM stock solution in dimethylformamide) was added. The reaction mixture was left at room temperature for 30 min and then another portion of TCEP (0.6 equiv., $0.6 \mu \mathrm{~L}$ from a 20 mM stock solution in the same buffer) was added. Quantitative conversion to the peptide conjugate 46 after another 30 min of incubation at room temperature was confirmed by LC-MS.

General procedure for the in situ bridging of somatostatin with aryloxymaleimides 6 and 17

A solution of somatostatin 11* ($200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5% dimethylformamide) was mixed with the relevant aryloxymaleimides 6 or 17 (1.5 equiv., from a 20 mM stock solution in dimethylformamide). To the resulting mixture was added TCEP (1.5 equiv., from a 20 mM stock solution in the same buffer) and the reaction mixture was left to stand at room temperature for 2 h . After this time an aliquot was taken and analysed by LC-MS to show quantitative conversion to the corresponding peptide conjugates: 14 in the case of 6 and 44 in the case of 17.
*Reactions were performed starting from 50, 100 and $300 \mu \mathrm{~L}$ of somatostatin solution.

Organic solvent free procedure for the in situ bridging of somatostatin with aryloxymaleimide 16

A solution of somatostatin $11(100 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, pH 6.4$)$ was mixed with aryloxymaleimide 16 (1.5 equiv., $3 \mu \mathrm{~L}$ from a 10 mM stock solution in the same buffer). To the resulting mixture was added TCEP ($1.5 \mathrm{eq}, 1.5 \mu \mathrm{~L}$ from a 20 mM stock solution in the same buffer) and the reaction mixture was left to stand at room temperature. After 4 h , an aliquot was taken and analysed by LC-MS to show quantitative conversion to the corresponding peptide conjugate 14.

Reaction of succinimide bridged somatostatin conjugate 14 with maleimide

Succinimide bridged somatostatin conjugate $14(100 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, pH 6.4 , 40\% acetonitrile, 2.5% dimethylformamide), prepared as described above, was treated with maleimide (1. equiv., $1 \mu \mathrm{~L}$ from a 20 mM stock solution in dimethylformamide) and the reaction mixture was left to stand at room temperature. After 5 min an aliquot was taken and analysed by LCMS to show that no reaction had occurred.

Stepwise bridging of somatostatin with N-methyl 2,3-dibromomaleimide

A solution of somatostatin $11(200 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate buffer, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5% dimethylformamide) was reduced with TCEP (1.5 equiv., 20 mM stock solution in the same buffer) for 1 h at room temperature. To confirm the completion of the reduction, a somatostatin solution aliquot ($20 \mu \mathrm{~L}$) was taken and mixed with 2,3-dibromomaleimide (10 equiv., 2 $\mu \mathrm{L}$ from a 20 mM stock solution in dimethylformamide). Quantitative insertion of the maleimide into the reduced disulfide bond to give the bridged adduct 43 was confirmed by LC-MS. The reduced somatostatin solution was then treated with the relevant N-methyl 2,3-dibromomaleimide (2 equiv., from a stock solution of 20 mM in dimethylformamide) and the reaction left to stand at room temperature. After 1 h an aliquot was taken and analysed by LC-MS to show quantitative conversion to peptide conjugate 47.

Stability of somatostatin conjugates 14 and 47 under cytoplasm mimicking conditions

Somatostatin conjugates 14 and 47 , prepared as described above, were dialysed into 20 mM HEPES buffer ($100 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA, pH 7.4). The concentration of the peptide conjugates was adjusted to $100 \mu \mathrm{M}$ and the resulting reaction mixtures were incubated at $37^{\circ} \mathrm{C}$ for 21 h in the presence of 1 mM reduced glutathione (from a 20 mM stock solution in the same buffer). Aliquots from the two reaction mixtures were taken at regular intervals and analysed by LC-MS (SI Fig. 1).

After 21 h , there was 0\% maleimide bridged somatostatin 47 and 27% succinimide bridged somatostatin 14.

Stepwise bridging of somatostatin with N-phenyl 2,3-dibromomaleimide 42

A solution of somatostatin ($200 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5% dimethylformamide) was reduced with TCEP (1.5 equiv., 20 mM stock solution in the same buffer) for 1 h at room temperature. To confirm the completion of the reduction, a somatostatin solution aliquot was taken and mixed with 2,3-dibromomaleimide (10 equiv., 20 mM stock solution in dimethylformamide). Quantitative insertion of the maleimide into the reduced disulfide bond to give the bridged adduct 43 was confirmed by LC-MS. The reduced somatostatin solution was then treated with N-phenyl 2,3-dibromomaleimides (2 equiv., $2 \mu \mathrm{~L}$ from a stock solution of 20 mM in dimethylformamide) and the reaction left to stand at room temperature. After 1 h , an aliquot was taken and analysed by LC-MS to show quantitative conversion to peptide conjugate 48.

Hydrolytic stability of somatostatin conjugates 45 and 48

Somatostatin conjugates 45 and $48(200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5\% dimethylformamide), prepared as described above, were dialysed (Slide-A-Lyzer MINI Dialysis Devices, 2 K MWCO) into pH 8 buffer (50 mM sodium phosphate) for 12 h at $0^{\circ} \mathrm{C}$. The concentration of the peptide conjugates was adjusted to $100 \mu \mathrm{M}$ and the resulting reaction mixtures were incubated at $37{ }^{\circ} \mathrm{C}$ for 1 h . Aliquots were taken from the reaction mixtures immediately after dialysis and after 1 h of heating and were analysed by LC-MS to reveal the corresponding peptide adducts. The extent of the hydrolysis was estimated based on the ratio of the MS peak heights corresponding to the hydrolysed protein conjugate and the starting peptide conjugate (SI Fig. 2).

Thiol stability of hydrolysed somatostatin conjugate 49

49

Somatostatin conjugate 45 ($200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, $\mathrm{pH} 6.4,40 \%$ acetonitrile, 2.5% dimethylformamide), prepared as described above, was dialysed (Slide-A-Lyzer MINI Dialysis Devices, 2 K MWCO) into pH 8 buffer (50 mM sodium phosphate) for 12 h at $0^{\circ} \mathrm{C}$. The concentration of the peptide conjugate was adjusted to $100 \mu \mathrm{M}$ and the resulting solution was incubated at $37{ }^{\circ} \mathrm{C}$. After 16 h , an aliquot was taken and analysed by LC-MS to show complete hydrolysis to peptide conjugate 49. The resulting reaction mixture was treated with 2-mercaptoethanol (100 equiv., $10 \mu \mathrm{~L}$ from a 100 mM stock solution in the pH 8 buffer and then incubated at $37^{\circ} \mathrm{C}$. After 21 h , an aliquot was taken and analysed by LC-MS to show that no reaction has occurred.

General procedure for the dual labelling of somatostatin

Succinimide bridged somatostatin conjugates 14,44 and $46(200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, pH $6.4,40 \%$ acetonitrile, 2.5% dimethylformamide), prepared as described above, were treated with various amounts of the relevant bromomaleimide (SI Table 1) from 20 mM stock solution in dimethylformamide and heated at $37^{\circ} \mathrm{C}$. After 2 h an aliquot was taken and analysed by LC-MS to show quantitative conversion to the corresponding dual labelled conjugates.
*Reactions were performed starting from 100 and $250 \mu \mathrm{~L}$ of succinimide bridged somatostatin solution.

Starting material	Bromomaleimide (equiv.)	Product
14	$32(1.5)$	22
44	$41(4)$	23
46	$41(4)$	24
44	$5(1.5)$	25

SI Table 1. Amounts of reagents used for the dual labelling of somatostatin

50

Succinimide bridged somatostatin conjugate $14(100 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, pH 6.4 , 40\% acetonitrile, 2.5% dimethylformamide), prepared as described above, was treated with maleimide (5 equiv., $5 \mu \mathrm{~L}$ from a 20 mM stock solution in dimethylformamide) and the resulting reaction mixture was left to stand at room temperature. After 12 h an aliquot was taken and analysed by LC-MS to show quantitative conversion to dual labelled conjugate 50.

Thiol cleavage of dual labelled somatostatin conjugate 22

Dual labelled somatostatin conjugate $22(100 \mu \mathrm{~L}, 200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, pH 6.4, 40\% acetonitrile, 2.5% dimethylformamide), prepared as described above, was treated with 2mercaptoethanol (100 eq, $10 \mu \mathrm{~L}$ from a 200 mM stock solution in dimethylformamide) and the reaction mixture incubated at $37{ }^{\circ} \mathrm{C}$. After 3 h an aliquot was taken and analysed by LC-MS to show quantitative conversion to reduced somatostatin 12.

Digest of dual labelled somatostatin conjugate 25

A solution of dual labelled somatostatin conjugate $25(200 \mu \mathrm{M}, 50 \mathrm{mM}$ sodium phosphate, pH 6.4 , 40% acetonitrile, 2.5% dimethylformamide), prepared as described above, was dialysed (Slide-ALyzer MINI Dialysis Devices, 2K MWCO), 5000x dilution into pH 8.1 buffer (100 mM ammonium acetate, 1 mM calcium chloride). The concentration of the peptide conjugate was adjusted to 100 $\mu \mathrm{M}$ and to the resulting reaction mixture was added trypsin (0.1 equiv., from a 1 mM stock solution in the same buffer). The reaction mixture was incubated at $37^{\circ} \mathrm{C}$ for 15 h and then the reaction mixture was analysed by LC-MS (SI Fig. 3, 4). Both F_{1} and F_{3} PEG adducts can be observed, indicating a mixture of the two possible regioisomers, together with the corresponding hydrolysed conjugates. This was sufficient evidence to support the lack of regioselectivity of the retro-Michael addition. Methylated F_{1} and F_{2} adducts were not observed but this is assumed to be correlated to the poor flying ability of these fragments.

VI. 3 Modification of anti-CEA ds-scFv shMFE

In situ bridging of ds-scFv with aryloxymaleimide 6

To a solution of anti-CEA ds-scFv 19* (70 $\mu \mathrm{M}$, PBS pH 7.4) was added the aryloxymaleimide 6 (5 equiv., from a 70 mM stock solution in dimethylformamide) followed by benzeneselenol (25 equiv. from a 35 mM stock solution in dimethylformamide). The reaction mixture was left to stand at room temperature. After 30 min an aliquot was taken and analysed by LC-MS to show quantitative conversion to protein adduct 21.
*Reactions were performed starting from $100 \mu \mathrm{~L}$ and $200 \mu \mathrm{~L}$ of protein solution.

In situ bridging of ds-scFv with pegylated aryloxymaleimide 17

To a solution of anti-CEA ds-scFv 19 ($70 \mu \mathrm{M}$, in PBS, pH 7.4) was added the aryloxymaleimide 17 (15 equiv., from a 70 mM stock solution in dimethylformamide) followed by benzeneselenol (50 equiv., from a 35 mM stock solution in dimethylformamide). The reaction mixture was left to stand at room temperature. After 30 min an aliquot was taken and analysed by LC-MS to show quantitative conversion to protein adduct 20.
*Reactions were performed starting from $100 \mu \mathrm{~L}$ and $200 \mu \mathrm{~L}$ of protein solution.

Thiol stability of succinimide bridged ds-scFv conjugate $\mathbf{2 1}$

Unpurified ds-scFv conjugate 21 ($100 \mu \mathrm{~L}, 70 \mu \mathrm{M}$ in PBS, pH 7.4), prepared as described above, was treated with 2-mercaptoethanol (100 equiv., $10 \mu \mathrm{~L}$ from a 70 mM stock solution in dimethylformamide). The same experiment was repeated using reduced glutathione (100 eq, $10 \mu \mathrm{~L}$ from a 70 mM stock solution in PBS, pH 7.4). The reaction mixtures were left to stand at room temperature. After 48 h , an aliquot was taken and analysed by LC-MS to show no degradation of the protein conjugate 21.

VII. LC-MS traces of protein conjugates

Unreacted Grb2 (L111C) SH2 9 (calculated mass: 14171; observed mass: 14169)

Grb2 (L111C) SH2 thiomaleimide adduct 10 (expected mass: 14278; observed mass: 14276)

Unreacted somatostatin 11 (calculated mass: 1637; observed mass: 1637)

Reduced somatostatin 12 (calculated mass: 1639; observed mass: 1640)

Maleimide bridged somatostatin 43 (expected mass: 1732; observed mass: 1732)

Mixture of bis-labelled somatostatin 15 and succinimide bridged somatostatin 14

N-methyl succinimide bridged somatostatin 14 (expected mass: 1748; observed mass: 1749)

N-PEG succinimide bridged somatostatin 44 (expected mass: 1880; observed mass: 1882)

N-phenyl succinimide bridged somatostatin 45 (expected mass: 1810; observed mass: 1812)

Rhodamine succinimide bridged somatostatin 46 (expected mass: 2283; observed mass: 2284)

N-methyl maleimide bridged somatostatin 47 (expected mass: 1746; observed mass: 1747)

N-phenyl maleimide bridged somatostatin 48 (expected mass: 1808; observed mass: 1810)

Hydrolysed N-phenyl succinimide bridged somatostatin 49 (expected mass: 1830; observed mass: 1830)

Hydrogen-methyl dual labelled somatostatin conjugate 22 (expected mass: 1845; observed mass: 1845)

Fluoresceine-PEG dual labelled somatostatin conjugate 23 (expected mass: 2305; observed mass: 2307)

Rhodamine-Fluorescein dual labelled somatostatin conjugate 24 (expected mass: 2709; observed mass: 2710)

PEG-methyl dual labelled somatostatin conjugate 25 (expected mass: 1989; observed mass: 1991)

Dual labelled somatostatin conjugate with a cleavable and non-cleavable tag 50 (expected mass: 1845; observed mass: 1847)

Unreacted anti-CEA ds-scFv 19 (observed mass: 26748)

N-methyl succinimide bridged anti-CEA ds-scFv 21 (expected mass: 26859; observed mass: 26856)

N-PEG succinimide bridged anti-CEA ds-scFv 20 (expected mass: 26991; observed mass: 26983)

VIII. References

(1) Schumacher, F. F.; Sanchania, V. A.; Tolner, B.; Wright, Z. V. F.; Ryan, C. P.; Smith, M. E. B.; Ward, J. M.; Caddick, S.; Kay, C. W. M.; Aeppli, G.; Chester, K. A.; Baker, J. R. Sci. Rep., 2013, 3, 1525.
(2) Smith, M. E. B.; Schumacher, F. F.; Ryan, C. P.; Tedaldi, L. M.; Papaioannou, D.; Waksman, G.; Caddick, S.; Baker, J. R. J. Am. Chem. Soc., 2010, 132, 1960-5.
(3) Tedaldi, L. M.; Smith, M. E. B.; Nathani, R. I.; Baker, J. R. Chem. Commun. 2009, 6583-6585.
(4) Iqbal, P.; Critchley, K.; Bowen, J.; Attwood, D.; Tunnicliffe, D.; Evans, S. D.; Preece, J. A. J. Mater. Chem. 2007, 17, 5097-5110.
(5) Clerc, J.; Schellenberg, B.; Groll, M.; Bachmann, A. S.; Huber, R.; Dudler, R.; Kaiser, M. European J. Org. Chem. 2010, 2010, 3991-4003.
(6) Sahoo, K.; Mhaske, S. B.; Argade, N. P. Synthesis, 2003, 346-349.
(7) Norberg, O.; Deng, L.; Aastrup, T.; Yan, M.; Ramstrom, O.; Analytical Chemistry 2011, 10001007.
(8) Dubernet, M.; Caubert, V.; Guillard, J.; Viaud-Massuard, M.-C. Tetrahedron 2005, 61, 45854593.

