ChemComm RSCPublishing

SUPPLEMENTARY INFORMATION

Hydrophobic Radicals Embedded in Neutral Surfactants for Dynamic Nuclear Polarization of Aqueous Environments at 9.4 Tesla.

Moreno Lelli,^{*a*} Aaron J. Rossini,^{*a*} Gilles Casano,^{*b*} Olivier Ouari,^{*b*} Paul Tordo,^{*b*} Anne Lesage,^{*a*} and Lyndon Emsley^{*a*}

^a Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France.
^b Aix-Marseille Universite, CNRS, ICR UMR 7273, 13397 Marseille, France.

*To whom correspondence should be addressed. E-mail: <u>Lyndon.Emsley@ens-lyon.fr</u>

This PDF file includes:

Materials and Methods Scheme S1 Table S1 References

SUPPLEMENTARY INFORMATION

Materials and Methods.

General Information. The surfactants Tween-80®, Brij® C10 (Brij-56), IGEPAL® C0-630, and sodium dodecyl sulphate (SDS) were purchased from Sigma-Aldrich. L-Alanine was purchased from ACROS Organics, α -D-Glucose was purchased from Sigma-Aldrich, Uniformly ¹³C-labelled L-proline was purchased from Cambridge Isotope Laboratories. The radical BDPA was purchased from Sigma-Aldrich, while bTbK,¹ bCTbK,² and TEKPol³ were prepared following the synthesis already reported in the literature.

DNP-NMR Methods. All DNP-enhanced NMR experiments were performed using a solid-state 400 MHz DNP-NMR spectrometer designed by Bruker-Biospin⁴. This system consists of a wide-bore 9.4 T magnet ($\omega_{\rm H}/(2\pi)$ = 400.3 MHz, $\omega_{\rm C}/(2\pi)$ = 100.7 MHz) with a Bruker Avance III spectrometer console, and is equipped with a double/triple resonance 3.2 mm low-temperature CP-MAS probe. DNP is achieved by irradiating the sample with high-power microwaves at a frequency of 263 GHz that are generated by a gyrotron and are delivered to the sample by a corrugated wave-guide (~ 5 W of power reaching the sample). The gyrotron operates continuously during the DNP-enhanced experiments (stability of better than $\pm 1\%$). Sapphire rotors (with ZrO_2 caps) were used for optimal microwave penetration. Spinning frequencies were regulated to 8.0 kHz ± 2 Hz. The sample temperatures were ≈ 105 K. The chemical shifts are referenced to TMS at 0 ppm. ¹H 1D direct excitation experiments were acquired with a rotor synchronized spin echo in order to suppress the background signals. The pulse sequence was: $\pi/2 - \tau - \pi - \tau$ – acquisition, $\pi/2$ and π hard pulses were calibrated at 2.5 µs and 5.0 μ s (100 kHz), respectively. The τ echo-delays were set to 1 rotor period. Experiments were acquired over a spectral window of 200 kHz, with an acquisition time of 5.12 ms, and a recycle delay of 3.0 s. Standard crosspolarization (CP) was used for the acquisition of 1D ¹³C spectra, the recycle delay between scans was 2.0 s in all experiments. The ¹H $\pi/2$ pulse length was 2.5 µs

SUPPLEMENTARY INFORMATION

($v_1 = 100$ kHz). A linear amplitude ramp (from 100% to 50% of the nominal RF field strength) was used for the ¹H channel, with a 2.0 ms contact time (τ_{CP}), and a nominal RF-field amplitude (v_1) of 88.4 kHz for ¹H and 58.1 kHz for ¹³C. SPINAL-64⁵ proton decoupling was applied during the acquisition of the ¹³C signal with $v_1 = 100$ kHz. The 1D fid ¹³C acquisition time was 25.3 ms for 1024 complex points. 1D spectra were processed using exponential window functions with a linebroadening of 200 Hz for ¹³C and 400 Hz for ¹H spectra.

Solution-NMR Methods. Liquid state NMR spectra were acquired on a 600 MHz Bruker instrument (14.1 T) equipped with a ${}^{1}\text{H}/{}^{13}\text{C}/{}^{15}\text{N}$ cryoprobe and an Avance III Bruker console. The samples were prepared in aqueous environment using H₂O/D₂O 90/10 as solvent. The temperature was stabilized to 298 K.

The ¹H 1D spectra were acquired with an excitation sculpting water suppression sequence,⁶ with selective π pulses on water of 2000 µs, non-selective π pulses of 20.4 µs and a short $\pi/2$ excitation pulse of 1.0 µs. Each spectrum was recorded accumulating 128 scans with 852 ms of acquisition time and 1.15 s of recycle delay. The spectra were processed with an exponential windows function of 0.3 Hz.

The ¹³C 1D spectra were acquired with a direct excitation double-echo experiment to suppress the probe background and to remove the baseline distortion. The sequence was $\pi/2 - \tau - \pi - 2\tau - \pi - \tau - a$ cquisition: the $\pi/2$ and π hard pulses were calibrated at 12.0 µs and 24.0 µs, respectively; the τ echo-delays were optimized to 50 µs each. Waltz-16 ¹H-decoupling at 3.12 kHz was applied during acquisition and a weaker ¹H-decoupling at ~2 kHz was kept during the recycle delay. Each experiment was acquired accumulating 128 scans with 865 ms of acquisition (64 k real points) and 2.0 s of recycle delay. The spectra were processed with an exponential windows function of 0.3 Hz.

SUPPLEMENTARY INFORMATION

Sample Preparation.

bTbK dissolved in sodium dodecyl sulphate aqueous solutions. A solution of 100 mM sodium dodecyl sulphate (SDS) and 50 mM α -D-Glucose solution was prepared in H₂O/D₂O 90/10. The dissolution of bTbK was performed by directly stirring a weighted amount of bTbK powder with the previously prepared 100 mM SDS solution until complete dissolution.

bTbK dissolved in glycerol/water/SDS solution. A solution of 400 mM sodium dodecyl sulphate (SDS) and 50 mM L-alanine was prepared by dissolving the weighted powder in a d_8 -Glycerol:D₂O:H₂O 60:30:10 mixture. bTbK was than dissolved by directly stirring the radical powder in the above prepared glycerol/water/SDS solution by gently heating the mixture at 40-50 °C.

Radicals dissolved in glycerol/water/surfactant solution. The used radical (bTbK, bCTbK, TEKPol, or BDPA) was first dissolved in the pure surfactant (Tween-80®, Brij® 56, IGEPAL® CO-630) by stirring the radical powder in the melted amphiphile gently heated at around 40-50 °C. Radical solution with a concentration of ~50 mM can thus be obtained in such a way. Then this solution was diluted up to the desired radical concentration by addition of the d_8 -Glycerol:D₂O:H₂O 60:30:10 mixture. Uniformly ¹³C-labelled L-proline was added to the solution in order to have a final concentration of 12 mM in proline to monitor the ¹³C enhancement in CP experiments. For the case of Tween-80 and a radical concentration of 12 mM, a final surfactant concentration of ~190 mM was used.

RSCPublishing

SUPPLEMENTARY INFORMATION

bTbK

bCTbK

Scheme S1. Molecular structures of the radicals.

SUPPLEMENTARY INFORMATION

Table S1. DNP Enhancements observed for several water-insoluble radicals solubilized in different surfactant solutions. The ¹H (ϵ_{H}) and the ¹³C ($\epsilon_{C_{C}CP}$) enhancements are measured comparing experiment with and without microwave irradiation in direct excitation and ¹H-¹³C CP experiments, respectively (the conditions are reported in the Materials and Methods section).

Radical	Amphiphile	Conc. (mM)	ε _H	€C_CP
bTbK	SDS	10	17	17
bTbK	Tween-80	12	42	44
bCTbK	Tween-80	12	22	24
BDPA	Tween-80	14	4.8	-
TEKPol	Tween-80	7.5	58	59
TEKPol	Brij-56	10	8.9	10
TEKPol	IGEPAL CO-630	10	15	16

SUPPLEMENTARY INFORMATION

References

- 1. Y. Matsuki, T. Maly, O. Ouari, H. Karoui, F. Le Moigne, E. Rizzato, S. Lyubenova, J. Herzfeld, T. Prisner, P. Tordo, and R. G. Griffin, *Angew. Chem. Int. Ed.*, 2009, **48**, 4996–5000.
- A. Zagdoun, G. Casano, O. Ouari, G. Lapadula, A. J. Rossini, M. Lelli, M. Baffert, D. Gajan, L. Veyre, W. E. Maas, M. Rosay, R. T. Weber, C. Thieuleux, C. Copéret, A. Lesage, P. Tordo, and L. Emsley, *J. Am. Chem. Soc.*, 2012, **134**, 2284–2291.
- 3. A. Zagdoun, G. Casano, O. Ouari, M. Schwarzwälder, A. J. Rossini, F. Aussenac, M. Yulikov, G. Jeschke, C. Copéret, A. Lesage, P. Tordo, and L. Emsley, *J. Am. Chem. Soc.*, 2013, **135**, 12790–12797.
- 4. M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P. M. Borchard, S. R. Cauffman, K. L. Felch, R. T. Weber, R. J. Temkin, R. G. Griffin, and W. E. Maas, *Phys. Chem. Chem. Phys.*, 2010, **12**, 5850–5860.
- 5. B. M. Fung, A. K. Khitrin, and K. Ermolaev, *J. Magn. Reson.*, 2000, **142**, 97–101.
- 6. T. L. Hwang and A. J. Shaka, J. Magn. Reson., A, 1995, **112**, 275–279.