Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting information for:

Acid-free regioselective aminocarbonylation of alkenes

Huizhen Liu*, Ning Yan and Paul J. Dyson

Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,

Switzerland

CONTENTS

- 1 General experimental details
- **2** Catalytic procedures
- **3** Optimized reaction conditions
- 4 Procedure for the preparation of 5
- **5** Product characterization
- **6** Mechanistic studies
- 7 NMR spectra

1 General experimental details

PdCl₂, Pd(OAc)₂ RhCl₃, Pd(acac)₂ were purchased from Aldrich. Pd₂(dba)₃, Co₂(CO)₈ was purchased from Acros. Pd(Ph₃P)₄ was purchased from Stem. CoCl₂ was purchased from VWR. RuCl₃ Ru₃(CO)₁₂, Re₂(CO)₁₀ were purchased from abcr. Xantphos, triphos, PPh₃, Dppe, Dppf, Nixantphos, (±)-Binapo, (R)-Phanephos, DMSO-d₆ were purchased from Aldrich. Tri(o-anisyl)phosphine was purchased from Alfa Aesar and 1,2-bis(diphenylphosphino)benzene was purchased from Acros. All other solvents and reagents were purchased from Alfa Aesar. All chemicals were used as received without further purification. Purification of the products was conducted with technical grade solvents and silica gel. GC was performed on an Agilent 7890 equipped with a HP-5 column. NMR spectra were recorded at 293 K on a Bruker DMX 400 instrument with TMS as internal standard in methanol-d₄. High resolution mass spectrometry was recorded on a Micromass Q-TOF Ultima API (ESI).

2 Catalytic procedures

A mixture of $PdCl_2$ (8.8 mg, 0.05 mmol), ligand (0.06 mmol), olefin (11 mmol), aniline (1.0 mmol) and THF (10 ml) was added to a teflon tube that was placed in an autoclave. The autoclave was sealed and purged with carbon monxide to remove the air and then charged with CO (50 atm). The reaction mixture

was stirred at a required temperature for 2 h. After cooling the CO was released and the reaction mixture was purified by flash column chromatography on silica gel to afford the desired product. The yield of the product was determined by weighing the quality of isolated product or by GC analysis.

3 Optimized reaction conditions

A mixture of catalyst precursor, ligand, aniline, styrene and 10 ml THF was added into a teflon tube which was placed in an autoclave. Then the autoclave was purged and charged with CO at the designed pressure. The reaction mixture was stirred at the designed temperature for 2 h, and then CO was carefully released. The yield was determined by GC analysis relative to the oxidant with n-dodecane as internal standard.

Table S1 The effect of reaction temperature

Entry	T (°C)	Yield (%)	B/L
1	70	6	>99:<1
2	100	83	>99:<1
3	125	95	>99:<1
4	140	96	>99:<1

Reaction conditions: styrene (11 mmol), aniline (1 mmol), $PdCl_2$ (5 mol% based on aniline), $P(2-OMePh)_3$ (240 mol % based on the pre-catalyst), CO (50 atm), t: 2 h, THF 10 ml, Yields were determined by GC analysis relative to the aniline with n-decane as an internal standard.

Entry	CO (atm)	Yield (%)	B/L
1	60	92	>99:<1
2	50	95	>99:<1
3	40	89	>99:<1
4	30	86	>99:<1
5	20	78	>99:<1

Table S2 The effect of CO pressure

Reaction conditions: styrene (11 mmol), aniline (1 mmol), $PdCl_2$ (5 mol% based on aniline), P(2-OMePh)₃ (240 mol % based on the pre-catalyst), T: 125 °C, t: 2 h, THF 10 ml, Yields were determined by GC analysis relative to the aniline with n-decane as an internal standard.

Table S3 The effect of the amount of ligand

Entry	Pd:ligand	Yield (%)	B/L
1	1:1	79	>99:<1
2	1:2	95	>99:<1
3	1:3	95	>99:<1

Reaction conditions: styrene (11 mmol), aniline (1 mmol), $PdCl_2$ (5 mol% based on aniline), $P(2-OMePh)_3$ CO (50 atm), T: 125 °C, t: 2 h, THF 10 ml, Yields were determined by GC analysis relative to the aniline with n-decane as an internal standard.

Entry	styrene:aniline (mmol)	Yield (%)	B/L
1	10:1	95	>99:<1
2	1:1	69	>99:<1
3 ^a	1:10	10	>99:<1
			-

Reaction conditions: PdCl₂ (0.05 mmol), P(2-OMePh)₃ (0.12 mmol), CO (50 atm), T: 125 °C, t: 2 h, THF 10 ml, ^aYield was based on styrene, Yields were determined by GC analysis relative to the aniline with n-decane as an internal standard.

3 The effect of N-H bond dissociation energy

Entry	Substrate	N-H BDE [16] (Kcal/mol)	Yield (%)
1	NH ₂	87.2	86
2	NH ₂	88.7	80
3	NP NH2	91.8	57
4	NH ₂	92.3	53
5	NH ₂	96.7	4
6	NH ₂	100	0
7	NHa	100	0

Reaction conditions: styrene (11 mmol), amine (1 mmol), PdCl₂ (5 mol% based on the amine). ^a P(2-OMePh)₃ (0.12 mmol), CO (20 atm), THF 10 ml, T: 125 °C, t: 2 h. Yields correspond to isolated yields.

4 Procedure for the preparation of 5

A mixture of $PdCl_2$ (8.8 mg, 0.05 mmol), (2-OMePh)₃P (0.06 mmol), cyclohexene (12 mmol), 4methoxyaniline (10 mmol) in THF (20 ml) was added to a teflon tube that was placed in an autoclave. The autoclave was sealed and purged with CO to remove the air and then charged with CO to 50 atm. The reaction mixture was stirred at 125°C for 24 h. After cooling the CO was released and the reaction mixture was purified by flash column chromatography on silica gel to afford the desired product **compound 4** (yield= 60%).

Trifluoromethanesulfonic anhydride (90 μ L, 0.54 mmol, 1.1 equiv) was added via syringe over 1 min to a stirred mixture of **compound 4** (115 mg, 0.493 mmol, 1 equiv) and 2-chloropyridine (56 μ L, 0.59 mmol, 1.2 equiv) in dichloromethane (1.6 mL) at –78 °C. After 5 min, the reaction mixture was placed in an ice-water bath and warmed to 0 °C, the nitrile cyclohexanecarbonitrile (59 mg, 0.54 mmol, 1.1 equiv) was

added via syringe, and the resulting solution was allowed to warm to ambient temperature for 5 minutes and the reaction vessel was placed into a autoclave and heated to 140 °C. After 24h, the autoclave allowed to cool to ambient temperature before aqueous sodium hydroxide solution (1 mL, 1M) was introduced to neutralize the trifluoromethanesulfonate salts. Dichloromethane (5 mL) was added to dilute the mixture and the layers were separated. The organic layer was washed with brine (2 mL), was dried over anhydrous sodium sulfate, and filtered. The volatiles were removed under reduced pressure and the residue was purified by flash column chromatography (eluent: 5% EtOAc in hexanes) on neutralized silica gel to give the quinazoline product as a white solid, and the yield is 52%.

Scheme S1 Transformation of amide to useful compound

The Product NMR: ¹H NMR (400 MHz, CDCl3) δ : 7.86 (d, 1H, J = 9.7 Hz), 7.43 (dd, 1H, J = 9.5, 3.0 Hz,), 7.30 (d, 1H, J = 3.0 Hz,), 3.95 (s, 3H), 3.44 (tt, 1H, J = 11.7, 3.5 Hz,), 2.93 (tt, 1H, J = 11.9, 3.7 Hz,), 2.08–1.70 (m, 14 H), 1.58–1.32 (m, 6H).

¹³C NMR (101 MHz, CDCl3) δ: 172.93, 168.37, 157.35, 146.71, 130.53, 125.21, 122.21, 102.23, 55.86, 47.90, 41.53, 32.30, 32.04, 26.73, 26.54, 26.43, 26.32. HRMS (ESI): calcd for C21H29N2O [M+H]⁺: 325.2280, found: 325.2274.

5 Product characterization

N, *2-diphenylpropanamide* ¹H NMR (400 MHz, DMSO-d₆) δ 10.04 (s, 1H), 7.63 – 7.54 (m, 2H), 7.47 – 7.15 (m, 7H), 7.02 (tt, J = 7.3, 1.2 Hz, 1H), 3.83 (q, J = 7.0 Hz, 1H), 1.42 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 172.64, 142.35, 139.68, 129.12, 128.83, 127.71, 127.14, 123.62, 119.59, 46.40, 19.1; HRMS (ESI): calculated for C₁₅H₁₅NO [M+H]⁺ 226.1233, found 226.1232

N,3-diphenylpropanamide ¹H NMR (400 MHz, DMSO-d₆) δ 9.89 (s, 0H), 7.61 – 7.53 (m, 1H), 7.34 – 7.14 (m, 3H), 7.02 (tt, J = 7.5, 1.2 Hz, 0H), 2.92 (t, J = 8.6, 6.8 Hz, 1H), 2.63 (t, J = 8.5, 7.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO-d₆) δ 170.80, 141.65, 139.68, 129.11, 128.73, 126.39, 123.46, 119.51, 38.41, 31.28; HRMS (ESI): calculated for C₁₅H₁₅NO [M+H]⁺ 226.1233, found 226.1232

2-phenyl-N-(p-tolyl)propanamide $(3a_1b_1)^{-1}$ H NMR (400 MHz, DMSO-d₆) δ 9.96 (s, 1H), 7.53 – 7.43 (m, 2H), 7.41 – 7.37 (m, 2H), 7.33 (dd, J = 8.5, 6.8 Hz, 2H), 7.28 – 7.19 (m, 1H), 7.14 – 7.02 (m, 2H), 3.81 (q, J = 7.0 Hz, 1H), 2.23 (s, 3H), 1.41 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 172.38, 142.44, 137.17, 132.49, 129.48, 128.80, 127.70, 127.11, 119.62, 46.35, 20.87, 19.14. HRMS (ESI): calculated for C₁₆H₁₇NO [M+H]⁺ 240.1388, found 240.1385

2-phenyl-N-(*m*-tolyl)propanamide $(3a_2b_2)^{-1}$ H NMR (400 MHz, DMSO-d₆) δ 9.97 (s, 1H), 7.49 – 7.12 (m, 8H), 6.84 (d, J = 7.5 Hz, 1H), 3.83 (q, J = 7.0 Hz, 1H), 1.41 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 172.54, 142.39, 139.61, 138.29, 128.94, 128.81, 127.70, 127.12, 124.30, 120.16, 116.79, 46.38, 21.61, 19.09. HRMS (ESI): calculated for C₁₆H₁₇NO [M+H]⁺ 240.1388, found 240.1385

N-(4-methoxyphenyl)-2-phenylpropanamide ($3a_3b_3$) ¹H NMR (400 MHz, DMSO-d₆) δ 9.91 (s, 1H), 7.55 – 7.46 (m, 2H), 7.42 – 7.19 (m, 5H), 6.93 – 6.80 (m, 2H), 3.78 (q, J = 7.0 Hz, 1H), 3.70 (s, 3H), 1.41 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 172.12, 155.58, 132.83, 128.79, 127.69, 127.09, 121.11, 114.24, 55.60, 46.28, 19.14. HRMS (ESI): calculated for C₁₆H₁₇NO₂ [M+H]⁺ 256.1338, found 256.1339

N-(3-methoxyphenyl)-2-phenylpropanamide ($3a_4b_4$) ¹H NMR (400 MHz, DMSO-d6) δ 10.42 (s, 1H), 8.11 (s, 1H), 7.80 (dt, J = 6.8, 2.5 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.43 – 7.30 (m, 4H), 7.30 – 7.19 (m, 1H), 3.84 (q, J = 7.0 Hz, 1H), 1.43 (d, J = 7.0 Hz, 3H). 13C NMR (101 MHz, methanol- d_4) δ 170.72, 156.59, 135.54, 131.35, 128.69, 128.17, 126.51, 121.73, 113.53, 54.44, 43.14; HRMS (ESI): calculated for C₁₆H₁₇NO₂ [M+H]⁺ 256.1338, found 256.1339

N-mesityl-2-phenylpropanamide ($3a_5b_5$) ¹H NMR (400 MHz, DMSO-d₆) δ 9.23 (s, 1H), 7.46 – 7.38 (m, 2H), 7.38 – 7.31 (m, 2H), 7.30 – 7.20 (m, 1H), 6.83 (s, 2H), 3.86 (q, J = 7.0 Hz, 1H), 3.69 (s, 1H), 2.20 (s, 3H), 1.44 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 172.39, 142.57, 135.71, 135.39, 132.81, 128.67, 127.74, 127.04, 45.70, 20.93, 18.87, 18.20; HRMS (ESI): calculated for C₁₈H₂₁NO [M+H]⁺ 268.1701, found 268.1706

N-methyl-N,2-diphenylpropanamide ($3a_6b_6$) ¹H NMR (400 MHz, DMSO-d₆) δ 7.40 (p, J = 6.3 Hz, 3H), 7.28 – 7.08 (m, 5H), 6.96 (d, J = 7.2 Hz, 2H), 3.71 – 3.55 (m, 1H), 3.14 (s, 3H), 1.27 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 173.18, 144.04, 142.19, 130.01, 128.69, 128.19, 128.08, 127.66, 126.94, 42.38, 37.62, 20.17. HRMS (ESI): calculated for C₁₆H₁₇NO [M+H]⁺ 240.1388, found 240.1385

N-(2-chlorophenyl)-2-phenylpropanamide $(3a_7b_7)$ ¹H NMR (400 MHz, DMSO-d₆) δ 9.55 (s, 1H), 7.66 (dd, J = 8.1, 1.6 Hz, 1H), 7.49 – 7.12 (m, 8H), 4.03 (q, J = 7.0 Hz, 1H), 1.44 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 173.00, 142.07, 135.26, 129.88, 128.84, 127.87, 127.81, 127.20, 127.12, 126.78, 126.63, 45.66, 19.01; HRMS (ESI): calculated for C₁₅H₁₄ClNO [M+H]⁺260.0842, found 260.0831

N-(4-fluorophenyl)-2-phenylpropanamide ($3a_8b_8$) ¹H NMR (400 MHz, DMSO-d₆) δ 10.12 (s, 1H), 7.66 – 7.54 (m, 2H), 7.43 – 7.04 (m, 7H), 3.81 (q, J = 7.0 Hz, 1H), 1.42 (d, J = 6.8, 1.4 Hz, 3H). 13C NMR (101 MHz, DMSO-d₆) δ 172.55, 159.56, 157.18, 136.04, 136.09, 127.70, 127.16, 121.38, 121.30, 115.78, 115.56, 46.37, 19.10; HRMS (ESI): calculated for C₁₅H₁₄FNO [M+H]⁺ 244.1138, found 244.1133

N-(3-fluorophenyl)-2-phenylpropanamide (*3a*₉*b*₉) ¹H NMR (400 MHz, DMSO-d₆) δ 10.28 (s, 1H), 7.62 (dt, J = 11.1, 1.9 Hz, 1H), 7.42 – 7.19 (m, 7H), 6.92 – 6.80 (m, 1H), 3.83 (q, J = 7.0 Hz, 1H), 1.42 (d, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO-d₆) δ 173.05, 163.75, 161.36, 142.05, 141.44, 141.33, 130.81, 130.72, 128.88, 127.71, 127.24, 115.33, 115.31, 110.19, 109.98, 106.50, 106.23, 46.51, 19.08; HRMS (ESI): calculated for C₁₅H₁₄FNO [M+H]⁺ 244.1138, found 244.1131

N-(4-cyanophenyl)-2-phenylpropanamid ($3a_{10}b_{10}$) ¹H NMR (400 MHz, DMSO-d₆) δ 10.49 (s, 1H), 7.82 – 7.70 (m, 4H), 7.44 – 7.30 (m, 4H), 7.29 – 7.20 (m, 1H), 3.86 (q, J = 7.0 Hz, 1H), 1.43 (d, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO-d₆) δ 173.49, 143.84, 141.81, 133.70, 128.95, 127.72, 127.33, 119.65, 119.48, 105.40, 104.99, 46.63, 19.08. HRMS (ESI): calculated for C₁₆H₁₄N₂O [M+H]⁺ 250.1184, found 250.1193

N-(3-cyanophenyl)-2-phenylacetamide ($3a_{11}b_{11}$) ¹H NMR (400 MHz, DMSO- d_6):) δ 10.48 (s, 1H), 7.80 – 7.71 (m, 4H), 7.39 – 7.27 (m, 4H), 7.25 – 7.23 (m, 1H), 3.89-3.84 (q, J = 7.0 Hz, 1H), 1.44-1.42 (d, J =

6.9 Hz, 3H).¹³C NMR (101 MHz, methanol- d_4): δ = 173.49, 143.85, 141.81, 133.69, 128.94, 127.73, 127.32, 119.64, 119.48, 105.40, 46.63, 19.08; HRMS (ESI): calculated for C₁₆H₁₄N₂O [M+H]⁺ 250.1184, found 250.1193

N-(4-nitrophenyl)-2-phenylpropanamide ($3a_{12}b_{12}$) ¹H NMR (400 MHz, DMSO-d₆) δ 10.66 (s, 1H), 8.28 – 8.15 (m, 2H), 7.92 – 7.79 (m, 2H), 7.44 – 7.20 (m, 5H), 3.89 (q, J = 7.0 Hz, 1H), 1.44 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 172.60, 143.57, 143.50, 140.12, 129.44, 128.01, 127.67, 125.00, 118.92, 48.38, 18.45. HRMS (ESI): calculated for C₁₅H₁₂N₂O [M+H]⁺ 237.103, found 237.1028

N-(3-nitrophenyl)-2-phenylpropanamide ($3a_{13}b_{13}$) ¹H NMR (400 MHz, DMSO-d₆) δ 10.55 (s, 1H), 8.64 (s, 1H), 7.95 – 7.85 (m, 2H), 7.59 (t, J = 8.2 Hz, 1H), 7.44 – 7.20 (m, 5H), 3.86 (q, J = 7.0 Hz, 1H), 1.45 (d, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO-d₆) δ 173.45, 148.38, 141.84, 140.74, 130.63, 129.10, 127.74, 127.34, 125.54, 118.20, 113.70, 46.62, 19.21; HRMS (ESI): calculated for C₁₅H₁₄N₂O₃ [M+H]⁺ 271.1083, found 271.1093

N-(*3*,*5*-*bis*(*trifluoromethyl*)*phenyl*)-*2*-*phenylpropanamide* (*3a*₁₄*b*₁₄) ¹H NMR (400 MHz, DMSO-d₆) δ 10.72 (s, 1H), 8.29 (s, 2H), 7.75 (s, 1H), 7.44 – 7.20 (m, 5H), 3.85 (q, J = 7.0 Hz, 1H), 1.45 (d, J = 7.0 Hz, 3H). ¹³C (101 MHz, DMSO-d₆) δ 173.82, 141.55, 141.44, 131.36, 129.00, 127.77, 127.43, 125.01, 122.32, 119.23, 116.51, 46.80, 19.02; HRMS (ESI): calculated for C₁₇H₁₃F₆NO [M+H]⁺ 362.0980, found 362.0974

N-([1,1'-biphenyl]-2-yl)-2-phenylpropanamide ($3a_{15}b_{15}$) ¹H NMR (400 MHz, DMSO-d₆) δ 9.25 (s, 1H), 7.23 (m, 14 H), 3.71 (m, 1H), 1.33 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 172.89, 141.95, 138.99, 136.70, 135.11, 130.64, 129.14, 128.76, 128.70, 128.08, 127.83, 127.53, 127.23, 127.05, 126.34, 45.68, 40.23, 18.84. HRMS (ESI): calculated for C₂₁H₁₉NO [M+H]⁺ 301.1467, found 301.1465

2-methyl-N-phenylhexanamide ($3a_{16}b_{16}$) ¹H NMR (400 MHz, DMSO-d₆) δ 9.82 (s, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.34 – 7.20 (d, 2H), 7.02 (t, J = 7.4 Hz, 1H), 1.69 – 1.49 (m, 1H), 1.44 – 1.12 (m, 6H), 1.08 (d, J = 6.8 Hz, 3H), 0.86 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 175.24, 139.81, 129.07, 123.42, 119.62, 41.03, 33.99, 29.64, 22.64, 18.39, 14.38; HRMS (ESI): calculated for C₁₃H₁₉NO [M+H]⁺ 206.1545, found 206.1535

N-Phenylcyclohexanecarboxamide $(3a_{17}b_{17})$ ¹H NMR (400 MHz, methanol-d₄): δ = 7.59-7.50 (d, 2H), 7.30 (t, J= 8.0Hz 2H), 7.08 (t, J= 7.4Hz, 1H), 2.46-2.30 (m, 1H), 1.93-1.82 (m, 5H), 1.64-1.16 (m, 5H); ¹³C NMR (101 MHz, methanol-d₄): δ = 176.27,138.62, 128.30, 123.61, 119.92, 45.76, 29.30, 25.55, 25.40; HRMS (ESI): calculated for C₁₃H₁₇NO [M+H]⁺ 204.1390, found 204.1388

2-methyl-N,3-diphenylpropanamide phenylpropanamide ($3a_{18}b_{18}$) ¹H NMR (400 MHz, DMSO-d6) δ 9.82 (s, 1H), 7.62 - 7.51 (m, 2 H), 7.32 - 7.13 (m, 7H), 7.01 (m, 1H), 2.97 (dd, J = 13.2, 7.7 Hz, 1H), 2.78 (h, J = 6.9 Hz, 1H), 2.61 (dd, J = 13.2 Hz, 6.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO-d₆) δ 174.46, 140.42, 139.69, 129.30, 129.06, 128.62, 126.46, 123.48, 119.66, 42.90, 42.89, 18.14. HRMS (ESI): calculated for C₁₆H₁₇NO [M+H]⁺ 240.1388, found 240.1385

3-cyano-2-methyl-N-phenylpropanamide ($3a_{19}b_{19}$) ¹H NMR (400 MHz, DMSO- d_6) δ 10.07 (s, 1H), 7.60 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 2.85 (s, 1H), 2.81 – 2.61 (m, 2H), 1.24 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.17, 139.37, 129.19, 123.87, 119.90, 119.71, 37.58, 20.84, 17.99. HRMS (ESI): calculated for C₁₁H₁₂N₂O [M+H]⁺ 189.2338, found 189.2341

1,3-diphenylurea ¹H NMR (400 MHz, DMSO-d₆): δ = 8.67 (s, NH, 2H), 7.46-7.44 (d, J= 8.4Hz, 4H), 7.30-7.26 (t, J= 7.7Hz, 4H), 6.99-6.95 (t, J= 7.0Hz, 2H); ¹³C NMR (101 MHz, DMSO-d₆): δ = 154.19, 139.08, 128.45, 122.44, 119.01; HRMS (ESI): calculated for C₁₃H₁₂N₂O [M+H]⁺ 223.0983, found 223.0987

6 Mechanistic studies

ESI-MS/MS spectra were recorded on BrukerMicroTOF-QII mass equipped with a standard ESI ion source. The basic ESI conditions were: vacuum, 3.7×10-7 mbar; Capillary voltage, 4500 V; Dry Heater temperature, 180oC. Data acquisition and analysis were done with the Bruker Daltonicsmicro TOF control (version3.0) software package.

Following a standard catalytic run for 0.5 h, THF was removed by vacuum and then the reaction mixture was diluted with methanol and analyzed by ESI-MS. The peaks at 811.0, 845.08 and 938.75 were observed that corresponds to the species $[L_2PdH]^+$ (MS: 811.0), $[L_2PdCl]^+$ (MS: 845.08) , $[L_2PdClNH_2Ph]^+$ (MS: 938.75) (L= tris(2-methoxyphenyl)phosphine)

7 NMR spectra

¹H NMR of N,2-diphenylpropanamide

¹³C NMR of N,2-diphenylpropanamide

¹H NMR of N, 3-diphenylpropanamide

¹³C NMR of N, 3-diphenylpropanamide

¹H NMR of 2-phenyl-N-(p-tolyl)propanamide (3a₁b₁)

¹³C NMR of 2-phenyl-N-(p-tolyl)propanamide (3a₁b₁)

¹H NMR of 2-phenyl-N-(m-tolyl)propanamide (3a₂b₂)

¹³C NMR of 2-phenyl-N-(m-tolyl)propanamide (3a₂b₂)

¹H NMR of N-(4-methoxyphenyl)-2-phenylpropanamide (3a₃b₃)

¹³C NMR of 2-phenyl-N-(m-tolyl)acetamide (3a₃b₃)

¹H NMR of N-(3-methoxyphenyl)-2-phenylpropanamide (3a₄b₄)

¹³C NMR of N-(3-methoxyphenyl)-2-phenylpropanamide (3a₄b₄)

¹H NMR of N-mesityl-2-phenylpropanamide (3a₅b₅)

¹³C NMR of N-mesityl-2-phenylpropanamide (3a₅b₅)

¹H NMR of N-methyl-N,2-diphenylpropanamide (3a₆b₆)

¹³C NMR of N-methyl-N,2-diphenylpropanamide (3a₆b₆)

¹H NMR of N-(2-chlorophenyl)-2-phenylpropanamide (3a₇b₇)

¹³C NMR of N-(2-chlorophenyl)-2-phenylpropanamide (3a₇b₇)

¹H NMR of N-(4-fluorophenyl)-2-phenylpropanamide (3a₈b₈)

¹³C NMR of N-(4-fluorophenyl)-2-phenylpropanamide (3a₈b₈)

¹H NMR of N-(3-fluorophenyl)-2-phenylpropanamide (3a₉b₉)

¹³C NMR of N-(3-fluorophenyl)-2-phenylpropanamide (3a₉b₉)

^{1}H NMR of N-(4-cyanophenyl)-2-phenylpropanamide (3a₁₀b₁₀)

¹³C NMR of N-(4-cyanophenyl)-2-phenylpropanamide (3a₁₀b₁₀)

¹H NMR of N-(3-cyanophenyl)-2-phenylacetamide (3a₁₁b₁₁)

¹³C NMR of N-(3-cyanophenyl)-2-phenylacetamide (3a₁₁b₁₁)

¹H NMR of N-(4-nitrophenyl)-2-phenylpropanamide (3a₁₂b₁₂)

^{13}C NMR of N-(4-nitrophenyl)-2-phenylpropanamide $(3a_{12}b_{12})$

1 H NMR of N-(3-nitrophenyl)-2-phenylpropanamide (3 $a_{13}b_{13}$)

¹³C NMR of N-(3-nitrophenyl)-2-phenylpropanamide (3a₁₃b₁₃)

$^{1}H\ NMR\ of\ N-(3,5-bis(trifluoromethyl)phenyl)-2-phenylpropanamide\ (3a_{14}b_{14})$

¹³C NMR of N-(3,5-bis(trifluoromethyl)phenyl)-2-phenylpropanamide (3a₁₄b₁₄)

¹H NMR of N-([1,1'-biphenyl]-2-yl)-2-phenylpropanamide (3a₁₅b₁₅)

¹³C NMR of N-([1,1'-biphenyl]-2-yl)-2-phenylpropanamide (3a₁₅b₁₅)

¹H NMR of 2-methyl-N-phenylhexanamide (3a₁₆b₁₆)

¹³C NMR of 2-methyl-N-phenylhexanamide (3a₁₆b₁₆)

¹H NMR of N-phenylcyclohexanecarboxamide (3a₁₇b₁₇)

^{13}C NMR of N-phenylcyclohexanecarboxamide $(3a_{17}b_{17})$

¹H NMR of 3-cyano-2-methyl-N-phenylpropanamide (3a₁₉b₁₉)

¹³C NMR of 3-cyano-2-methyl-N-phenylpropanamide (3a₁₉b₁₉)

¹H NMR of 1, 3-diphenylurea

¹³C NMR of 1, 3-diphenylurea

