Development of a Redox-Free Mitsunobu Reaction Exploiting

Phosphine Oxides as Phosphorus(V) Reagent Precursors

Xiaoping Tang, Charlotte Chapman, Matthew Whiting and Ross M. Denton* School of Chemistry University of Nottingham, University Park, Nottingham NG7 2RD

Corresponding author. Tel.: +44-115-951-4194; fax: 44-115-951-3564; e-mail:

ross.denton@nottingham.ac.uk

Table of Contents

General remarks	S2
Synthesis of dioxyphosphorane and characterization	S2
General procedures for Mitsunobu reaction	S2
Characterization of products	S3
HPLC analyses	S30

1.0 General remarks

Glassware was dried in an oven overnight before use. Thin layer chromatography was carried out on Polgram SIL G/UV254 silica-aluminium plates and plates were visualised using ultra-violet light (254 nm) and KMnO₄ solution. For flash column chromatography Fluorochem silica gel 60, 35- 70 μ was used. NMR data was collected at either 270, or 400 MHz. Data was manipulated directly from the spectrometer or via a networked PC with appropriate software. All samples were analysed in CDCl₃ unless otherwise stated. Multiplicities for coupled signals designated using the following abbreviations: s=singlet, d=doublet, t=triplet, q=quartet, quin=quintet, sex=sextet, br=broad signal, ap=apparent and are given in Hz. ¹³C multiplicities were assigned using a DEPT sequence. Where appropriate, COSY, HMQC and HMBC experiments were performed to aid assignment. High-resolution mass spectrometric data are quoted to four decimal places (0.1 mDa) with error limits for acceptance of +/-5.0 ppm (defined as calcd./found mass 10-6). Mass spectra were acquired on a VG micromass 70E, VG autospec or micromass LCTOF. Infrared spectra were recorded on a Pelkin-Elmer 1600 FTIR instrument as dilute chloroform solutions or via analysis of neat samples using an ATR accessory. All solvents and reagents were used as supplied. Triphenylphosphine oxide, polymer-supported, 1.2-1.8 mmol/g on polystyrene was purchased from Alfa Aesar. Known compounds were characterized by comparison with reported literature data.

2.0 Synthesis of Dioxyphosphoranes

General Procedure

To a dry nitrogen flushed Schlenk flask was added triphenylphosphine oxide (835 mg, 3.00 mmol) followed by chloroform (5 mL). Oxalyl chloride (0.25 mL, 3.00 mmol) was then added over 1 minute to the resulting solution and vigorous elution of gas was observed. To a separate dry nitrogen flushed

Schlenk flask was added 2,2,2-trifluoroethanol (0.65 mL, 9.00 mmol) followed by anhydrous Et₂O (20 mL). To the resulting cooled (0 °C) solution was added *n*BuLi (5.60 mL, 9 mmol of a 1.6 M solution in hexane) dropwise over 1 minute. The resulting alkoxide solution was transferred via cannula to the above described, cooled (-78 °C), solution of chlorotriphenylphosphonium chloride. The reaction mixture was warmed to room temperature and stirred for a further 2 hours. After which the resulting dioxyphosphorane solution was transferred to a final Schlenk flask via filter cannula. The solution was then concentrated in vacuo and the dioxyphosphorane re-dissolved in anhydrous EtOAc to give a stock solution which was used for the coupling reactions.

The concentration of the stock solution was determined via ¹⁹F NMR as follows. A 0.5 mL aliquot of the stock solution was added to a solution of α , α , α -trifluorotoluene (25 µL, 0.2 mmol) in CDCl₃ (0.2 mL). The concentration was calculated based on the relative size of the ¹⁹F integrals.

2.1 Characterization of dioxyphosphoranes

Dioxyphosphoranes are unstable with respect to hydrolysis to afford the corresponding phosphine oxide. Therefore, they are characterised via multinuclear NMR in solution. Yields were determined via 19F NMR using α, α, α -trifluorotoluene as an internal standard.

Dioxyphosphorane 3a¹

The product was obtained as a solution in 93% yield. ¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.02 - 8.21 (6 H, m, ArH), 7.46 - 7.63 (9 H, m, ArH), 2.92 (4 H, qd, *J*=2.0 and 4.3, 4 H). ¹³**C NMR** (100 MHz, CDCl₃) δ ppm 134.8 (d, *J*=174 Hz, C_q), 132.7 (d, *J*=9.9 Hz, C_{Ar}), 130.6 (d, *J*=3.8 Hz, C_{Ar}), 128.5 (d, *J*=15.3 Hz,

¹. Kubota, S. Miyashita, T. Kitaxume and N. Ishikawa, J. Org. Chem. 1980, 45, 50

C_{Ar}), 60.4 (dq, *J*=6.0 and 34.2 Hz CH₂). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -74.3 (t, *J*=9.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ ppm -58.2.

Acquisition Time (sec)	0.6521	Comment	Slot No. 25 Sample ID XP 7515solution. SupervisorID rolent: Lab Phone No. 13540. UserID x: tan							
Date	07 Mar 2012 16:17:04	Date Stamp	07 Mar 2012 16:17:04							
File Name	C: Documents and Setting	is Denton My Documents V	@@Personal foldersW.TANI	GV@NMRWMR (Denton)\5	i01-600w_tan.XPT515solutio	n/4/pdata/1/1r				
Frequency (MHz)	100.63	Nucleus	130	Number of Transients	128	Origin	dpx400			
Original Points Count	16384	Owner	nmruser	Points Count	32768	Pulse Sequence	zgpg30			
Receiver Gain	11585.20	SW(cyclical)(Hz)	25125.63	Solvent	CHLO RO FORM-d	Spectrum Offset (Hz)	11063.7773			
Spectrum Type	STANDABD	Sweep Width (Hz)	25124.86	Temperature (decree C	7 23 500					

x_tan XPT515solution_004001r

Dioxyphosphorane 3b²

¹H NMR (400 MHz, CDCl₃) δ ppm 7.93 - 8.12 (6 H, m, ArH), 7.34 - 7.46 (9 H, m, ArH), 2.16 (4 H, d, J = 4.1 Hz, 4 H, CH₂), 0.65 (s, 18 H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ ppm 138.5 (d, J=176 Hz, C_q), 132.7 (d, J=9.5 Hz, C_{Ar}), 129.0 (d, J=2.9 Hz, C_{Ar}), 127.4 (d, J=15.3 Hz, C_{Ar}), 71.2 (d, J=8.8 Hz, CH₂), 32.7 (d, J=5.1 Hz, C_q), 27.1 (s, CH₃). ³¹P NMR (162 MHz, CDCl₃) δ ppm -58.1.

² J.W. Kelly and S.A. Evans J. Org. Chem. 1980, 51, 5492.

Acquisition Time (sec)	0.6832	Comment	UserIDix tan SampleIDX	PT490CDCI3 Supervisor	ID rdent Lab Phone No. 00	00 Slot Number 47	
Date	01 Feb 2012 14:21:52	Date Stamp	01 Feb 2012 14:21:52				
File Name	C:/Documents and Setting	s'Denton'My DocumentsK	⊇@ Personal folders₩.TAN0	GV@NMRWMR (Denton) 4	01-500w_tan.XPT490CDCI3	N3/pdata/11/1r	
Frequency (MHz)	100.61	Nucleus	13C	Number of Transients	128	Origin	av400
Original Points Count	16384	Owner	nmruser	Points Count	32768	Pulse Sequence	z gpg30
Receiver Gain	20642.50	SW(cydical) (Hz)	23980.81	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11065.9756
Spectrum Type	STANDARD	Sweep Width(Hz)	23980.08	Temperature (degree C	7 25.160		

x_tan XPT490CDCl3_003001r

Dioxyphosphorane 3c

¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.76 (1 H, d, *J*=4.8 Hz, ArH), 8.13 - 8.30 (4 H, m, ArH), 7.62 - 7.77 (2 H, 2 H, ArH), 7.40 - 7.51 (6 H, m, ArH), 7.16 - 7.25 (1 H, m, ArH), 2.22 (4 H, d, *J*=4.4 Hz, CH₂), 0.64 (18 H, s, CH₃). ¹³**C NMR** (100 MHz, CDCl₃) δ ppm 161.6 (d, *J*=219 Hz, C_q), 148.5 (d, *J*=25 Hz, C_{Ar}), 137.6 (d, *J*=177 Hz, C_q), 134.6 (d, *J*=13.0 Hz, C_{Ar}), 133.9 (d, *J*=9.9 Hz, C_{Ar}), 129.4 (d, *J*=3.1 Hz, C_{Ar}), 127.4 (d, *J*=15.3 Hz, C_{Ar}), 123.6 (d, *J*=26 Hz, C_{Ar}), 122.4 (d, *J*=3.8 Hz, C_{Ar}), 71.7 (d, *J*=8.4 Hz, CH₂), 32.6 (d, *J*=5.4 Hz, C_q), 27.0 (s, CH₃). ³¹**P NMR** (162 MHz, CDCl₃) δ ppm -59.5.

Acarisition Time (sec)	0.6521	Comment	Slat No. 47, Sizence ID vot826, SupervisorID relet Lab Phone No. 000, UserID r. den							
Date	02 Aug 2013 14:58:24	Date Stamo	02 Aug 2013 14:58:24							
File Name	C: Documents and Settin	ngs Denton My Documents	@@Personal foldersW.TA	NG @NMR WMR (Dentor)\801-\v_tanXPT826\3\pda	ta∀Vir				
Frequency (MHz)	100.63	Nudeus	13C	Number of Transients	128	Origin	dpx 400			
Original Points Count	16384	0 wner	nmruser	Points Count	32768	Pulse Sequence	zgpg30			
Receiver Gain	5160.60	SW[cyclical] (Hz)	25125.63	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11069.3428			
Spectrum Type	STANDARD	Sweep Width (Hz)	25124.86	Temperature (degree C	/ 25.500					

Acquisition Time (sec)	0.6521	Comment	Slot No. 47 Sample ID xp	ot826 SupervisorID rolent	Lab Phone No. 000 UserIE) rolen	
Date	02 Aug 2013 14:58:24	Date Stamp	02 Aug 2013 14:58:24				
File Name	C:/Documents and Settin	gs'Denton'My Documents'	@@Personal foldersW.TA	NGV@NMRWMR (Denton)\801-\w_tanXPT826\3\pda	ta'l Vir	
Frequency (MHz)	100.63	Nudeus	130	Number of Transients	128	Origin	dpx 400
Original Points Count	16384	Owner	nmruser	Points Count	32768	Pulse Sequence	ząpą30
Receiver Gain	5160.60	SW[cyclical](Hz)	25125.63	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11069.3428
Spectrum Type	STANDARD	Sweep Width (Hz)	25124.86	Temperature (degree C)	/ 25.500		

x_tan XPT826_003001r

144 142 140 Chemical Shift (ppm) 154 152

Acquisition Time (sec)	0.4489	Comment	Slot No. 47 Sample ID xpt826 SupervisorID rdent Lab Phone No. 000 UserID r den							
Date	02 Aug 2013 14:49:52	Date Stamp	02 Aug 2013 14:49:52							
File Name	C:/Documents and Settin	gs®entonMyDocuments	@@Personal foldersW.T.	ANG @NMR WMR (Dento	n)\801-\w_tanXPT826\1\pd	ata∜√Ir				
Frequency (MHz)	162.00	Nucleus	31P	Number of Transients	128	Origin	dpx 400			
Original Points Count	32768	Owner	nmruser	Points Count	32768	Pulse Sequence	zq30			
Receiver Gain	6502.00	SW[cyclical] (Hz)	72992.70	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	0.0054			
Spectrum Type	STANDARD	Sweep Width (Hz)	72990.48	Temperature (degree C)	/ 25.200					
x tan XPT826, 001001r					8					

General procedure for Mitsunobu reaction

To a phosphorane **3a** in EtOAc was added the appropriate acid (2.0 equiv.) and alcohol (1.0 equiv.) at 78 °C. The reaction mixture was then heated at 70 °C for 18 hours. The cooled reaction mixture was quenched with H_2O and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo* to give crude products which were purified by flash column chromatography on normal phase silica gel.

(*R*)-Octan-2-yl benzoate $6a^3$

(S)-2-Octanol (0.16 mL, 1.0 mmol) and benzoic acid (244 mg, 2.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as colourless oil after purification (172 mg, 73% yield).

Large scale reaction. (*S*)-2-Octanol (2.38 mL, 15.0 mmol) and benzoic acid (3.66 mg, 30.0 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as colourless oil after purification (1.95 g, 73% yield). Triphenylphosphine oxide (3.59 g , 86%) was also recovered (and was used again for a subsequent phosphorane synthesis).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.04 - 8.11 (2 H, m, ArH), 7.54 - 7.61 (1, H, m, ArH), 7.43 - 7.51 (2 H, m, ArH), 5.19 (1 H, sept., J = 6.3 Hz, CH), 1.73 - 1.82 (m, 1 CH₂), 1.59 - 1.68 (1 H, m, 1 H, CH₂), 1.46 - 1.28 (11, m, CH₃ and 4xCH₂), 0.91 (3 H, t, J = 6.8 Hz, CH₃); ¹³C **NMR** (100 MHz, CDCl₃) δ ppm 166.2, 132.7, 131.0, 130.0, 128.3, 71.8, 36.1, 31.7, 29.2, 25.4, 22.6, 20.1, 14.1.

³ J. D. Moore, R. J. Byrne, P. Vedantham, D. L. Flynn and P. R. Hanson, Org. Lett., 2003, 5, 4241-4244.

Acquisition Time (sec)	0.6521	Comment	Slot No. 14 Sample ID XF	PT536A SupervisorID riden	t Lab Phone No. 13540 Us	erID x tan	
Date	16 Apr 2012 20:03:28	Date Stamp	16 Apr 2012 20:03:28				
File Name	C:/Documents and Setting	js®Denton™y Documents%	@@Personal foldersW.TA1	NGV@NMRWMR (Denton)'	501-600w_tan.XPT536A\2\	pdata\1Vir	
Frequency (MHz)	100.63	Nucleus	130	Number of Transients	2048	Origin	dpx 400
Original Points Count	16384	Owner	nmruser	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	7298.20	SW[cyclical](Hz)	25125.63	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11069.3428
Spectrum Type	STANDARD	Sweep Width (Hz)	25124.86	Temperature (degree C	7 25.000		

x_tan XPT536A_002001r

77.3382 77.0181 76.6981

(*R*)-octan-2-yl 4-nitrobenzoate $6b^4$

(S)-2-Octanol (0.16 mL, 1.0 mmol) and 4-nitrobenzoic acid (334 mg, 2.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as yellow oil after purification (195 mg, 70% yield).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.29 - 8.33 (2 H, m, ArH), 8.21 - 8.25 (2 H, m, ArH), 5.21 (1 H, sept., *J* = 6.1 Hz, CH), 1.74 - 1.83 (1 H, m, C<u>H</u>₂), 1.62 - 1.70 (1 H, m, C<u>H</u>₂), 1.39 (d, *J* = 6.1 Hz, 3 H), 1.30 - 1.46 (2 H, m, 8 H), 0.90 (3 H, t, *J* = 6.6 Hz, CH₃); ¹³C **NMR** (100 MHz, CDCl₃) δ ppm 164.3, 150.4, 136.3, 130.6, 123.5, 73.2, 36.0, 31.7, 29.1, 25.4, 22.6, 20.0, 14.1.

⁴ A. Chighine, S. Crosignani, M.-C. Arnal, M. Bradley and B. Linclau, J. Org. Chem., 2009, 74, 4753-5762.

(*R*)-1-phenylethyl benzoate $6d^5$

(S)-1-Phenylethanol (0.12 mL, 1.0 mmol) and benzoic acid (244 mg, 2.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as colourless oil after purification (178 mg, 79% yield).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.10 - 8.14 (2 H, m, H_{Ar}), 7.57 - 7.61 (1 H, m, H_{Ar}), 7.45 - 7.51 (4 H, m, H_{Ar}), 7.39 - 7.43 (2 H, m, H_{Ar}), 7.31 - 7.36 (1 H, m, H_{Ar}), 6.17 (1 H, q, J = 6.7 Hz, CH), 1.72 (3 H, t, J = 6.7 Hz, CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm 165.8, 141.8, 132.9, 130.6, 129.7, 128.6, 128.4, 127.9, 126.1, 72.9, 22.4.

⁵ S. T. Heller, T. Fu and R. Sarpong, Org. Lett., 2012, 14, 1970-1973.

(*R*)-1-phenylethyl 4-nitrobenzoate $6c^6$

(S)-1-Phenylethanol (61 μ L, 0.50 mmol) and 4-nitrobenzoic acid (167 mg, 1.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as yellow oil after purification (121 mg, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 - 8.33 (2 H, m, ArH), 8.24 - 8.27 (2 H, m, ArH), 7.46 - 7.49 (2 H, m, ArH), 7.39 - 7.44 (2 H, m, ArH), 7.34 - 7.38 (1 H, m, ArH), 6.19 (1 H, q, *J* = 6.7 Hz, CH), 1.74 (3 H, d, J = 6.7 Hz, CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm 164.0, 150.6, 141.0, 136.0, 130.8, 128.7, 128.3, 126.2, 123.6, 74.3, 22.3.

⁶ T. Y. S. But and P. H. Toy, J. Am. Chem. Soc., 2006, **128**, 9636-9637.

2,3-dihydro-1H-inden-1-yl benzoate 6f7

2,3-dihydro-1H-inden-1-ol (67 mg, 0.50 mmol) and benzoic acid (122 mg, 1.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as white solid after purification (86 mg, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 - 8.10 (2 H, m, ArH), 7.51 - 7.60 (2 H, m, ArH), 7.43 - 7.47 (2 H, m, ArH), 7.33 - 7.36 (2 H, m, ArH), 7.25 - 7.30 (1 H, m, ArH), 6.49 (dd, *J* =7.0 and 4.1 Hz, 1 H), 3.18 - 3.26 (m, 1 H), 2.99 (m, 1 H), 2.63 - 2.72 (m, 1 H), 2.23 - 2.32 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.6, 144.4, 141.1, 132.9, 130.5, 129.7, 129.0, 128.3, 126.8, 125.7, 124.8, 79.0, 32.5, 30.3. **HRMS** (ESI)

⁷ T. Ohshima, T. Iwasaki, Y. Maegawa, A. Yoshiyama and K. Mashima, J. Am. Chem. Soc., 2008, 130, 2944-2945.

(m/z): [M+Na]⁺ calcd for C₁₆H₁₄NaO₂ 261.0886; found 261.0888 **IR** ν_{max}(ATR): 2918, 2850, 1702(C=O), 1461, 1251, 1100, 761, 708. **m.p**.: 48-51 °C

tert-Butyl 3-(benzoyloxy)pyrrolidine-1-carboxylate 6e8

tert-Butyl 3-hydroxypyrrolidine-1-carboxylate (94 mg, 0.50 mmol) and benzoic acid (122 mg, 1.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained white solid after purification (110 mg, 76% yield).

⁸ Astrazeneca AB Patent: WO2004/5295 A1, 2004

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (2 H, m, ArH), 7.60 (1 H, m, ArH), 7.47 (2 H, m, ArH), 5.55 (1 H, m, CH), 3.63-3.75 (2 H, br. m, CH₂), 3.43 - 3.62 (2 H, br. m, CH₂), 2.15-2.25 (2 H, br. m, CH₂), 1.49 (9 H, s, 3xCH₃); ¹³**C NMR** (100 MHz, CDCl₃) (mixture of rotamers) δ ppm 166.1, 154.5, 133.2, 130.1, 129.7, 128.4, 79.6, 74.4, 73.7, 52.0, 51.5, 44.2, 43.8, 31.8, 30.9, 29.7, 28.5. **HRMS** (ESI) (m/z): [M+H]⁺ calcd for C₁₆H₂₂NO₄ 292.1543; found 292.1538. **IR** ν_{max} (CHCl₃): 2982, 1689(CO), 1414, 1274, 1168, 1116, 909. **m.p.**:84-86 °C.

Date 1930 d 2013 104:60 Date Samp 030 d 2013 104:60 Here	Acquisition Time (sec)	3,9846	Comment	Slot No. 18 Sample ID X	PT581A2_SupervisorID_rd	ent Lab Phone No. 13540	HserID x tan	
Effe Nome C: Viocanesti and Setting: Derivative Document: VI: DNI VSMM: VIXMI: VSMM: V	Date	09 Oct 2013 10:46:40	Date Stamp	09 0 ct 2013 10:46:40				
Frequency (MHz) 400.00 Mackut 1H Mathew of Transents 16 Origin Origin Operating Posts Count 200 Dismid/Posts Count 2558 Owner mouse Posts Count 2558 Posts Scoresce 200 Social 231 Dismid/Posts Count Stress Count Stress Scoresce 200 Social 16.2 Posts Count 255.8 Posts Scoresce 200 Social 2471281 Social field Smeap Midb/Hz) 8223.55 Temposalize (dorse C) 25.00 Social field 2471281 Spectral field Smeap Midb/Hz) 8223.55 Temposalize (dorse C) 25.00 Social field 2471281	File Name	C: Documents and Setti	ngs Denton My Documer	nts\@@Personal folders\K.TA	ANG @NMR WMR (Denton)\501-600\x_tan.XPT581A	2\1\pdata\1\1r	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Frequency (MHz)	400.20	Nucleus	1H	Number of Transients	16	Órigin	dpx 400
$\begin{array}{c ccccc} \hline Beccirc Gain & 1420 \\ \hline Spectram (View) & Statu O Lead (View) & S23388 \\ \hline Spectram (View) & Statu O Lead (View) & S23388 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & S23358 \\ \hline Spectram (View) & Statu O Lead (View) & Statu O$	Original Points Count	32768	Owner	nmruser	Points Count	65536	Pulse Sequence	zq30
Spectrum Type STANDARD Smeep Wdth/(Hz) 822356 Temperature (J 25.00) x jan XPT59142_00001r $f = \int_{0}^{0} \int_{0}^{0$	Receiver Gain	143.70	SW[cyclical](Hz)	8223.68	Solvent	CHLO RO FORM-d	Spectrum Offset (Hz)	2471.2361
	Spectrum Type	STANDARD	Sweep Width (Hz)	8223.56	Temperature (degree C) 25.000		
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	×_tan XPT581A2_001001	r	<u>, 3776 (</u>) (112)			, 2300		
	8 0574 - 6 0574	7 1157 5820 7 1466 7 1157 5820 7 1466 7 1157 5920		600 -2,5208 -5,5208	2.08	2.06	2.07 9.2	
		·····			45 40			

 $(1S^*, 2S^*, 5R^*)$ -2-isopropyl-5-methylcyclohexyl benzoate **6j**⁹

 $(1R^*, 2S^*, 5R^*)$ -2-isopropyl-5-methylcyclohexan-1-ol (156 mg, 1.00 mmol) and benzoic acid (244 mg, 2.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as colourless oil after purification (71 mg, 27% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 - 8.10 (2 H, m, 2 H, ArH), 7.56 - 7.61 (1 H, m, 1 H, ArH), 7.45 - 7.50 (2 H, m, ArH), 5.49 (1 H, br. d, *J* = 2.1 Hz, CH), 2.09 - 2.15 (1 H, m, CH), 1.82 - 1.90 (2 H, m), 1.69 - 1.79 (1 H, m), 1.55 - 1.61 (2 H, m), 1.13 - 1.21 (2 H, m), 1.00 - 1.08 (1 H, m), 0.94 (3 H, d, *J* = 6.8 Hz,

⁹ J. A. Dodge, J. I. Trujillo and M. J. Presnell, J. Org. Chem., 1994, 59, 234-236.

CH₃), 0.93 (3 H, d, J=6.8 Hz, CH₃), 0.90 (3, H, d, J=6.5 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.9, 132.7, 131.1, 129.5, 128.4, 71.8, 47.1, 39.3, 34.9, 29.4, 26.8, 25.4, 22.2, 21.0, 20.8.

(1S,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-nitrobenzoate⁷

 $(1R^*, 2S^*, 5R^*)$ -2-isopropyl-5-methylcyclohexan-1-ol (156 mg, 1.00 mmol) and 4-nitrobenzoic acid (334 mg, 2.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as a yellow solid after purification (91 mg, 30% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.31 - 8.34 (2 H, m, ArH), 8.22 - 8.25 (2 H, m, ArH), 5.54 (1 H, br. d, J = 1.3 Hz, CH), 2.10 - 2.16 (m, 1 H), 1.85 - 1.94 (m, 2 H), 1.72 (m, 1 H), 1.49 - 1.57 (m, 2 H), 1.14 - 1.25 (m, 2 H), 0.99 - 1.10 (m, 1 H), 0.96 (d, J=6.6 Hz, 3 H), 0.90 - 0.94 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.0, 136.4, 130.6, 123.6, 73.2, 47.0, 39.1, 34.8, 29.5, 26.9, 25.4, 22.1, 20.9, 20.8. m.p.: 90-92 °C.

Acquisition Time (sec)	0.6521	Comment	Slot No. 51 Sample ID XP	PT638A SupervisorID rolen	t Lab Phone No. 13540 Us	erID x tan	
Date	30 Oct 2012 23:40:48	Date Stamp	30 Oct 2012 23:40:48				
File Name	C:/Documents and Setting	js®Denton™y Documents\	@@Personal foldersW.TAN	IGV@NMRWMR (Denton) ^v	601-700w_tan.XPT6394\2\	pdata/1Vir	
Frequency (MHz)	100.63	Nucleus	13C	Number of Transients	2048	Origin	dpx400
Original Points Count	16384	O winer	nmruser	Points Count	32768	Pulse Sequence	zapq30
Receiver Gain	20642.50	SW[cyclical] (Hz)	25125.63	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11069.3428
Spectrum Type	STANDARD	Sweep Width (Hz)	25124.86	Temperature (degree C	7 25.000		

x_tan XPT639A_002001r

Decyl benzoate 6g¹⁰

1-Decanol (0.10 mg, 0.50 mmol) and benzoic acid (122 mg, 1.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as colourless oil after purification (55 mg, 42% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 - 8.09 (2 H, m, ArH), 7.56 - 7.60 (1 H, m, ArH), 7.44 - 7.49 (2 H, m, ArH), 4.35 (2 H, t, *J* = 6.7 Hz, CH₂), 1.80 (2 H, quint., *J* = 6.7 Hz, CH₂), 1.44 - 1.51 (2 H, m, CH₂), 1.23 - 1.42 (12 H, m, 6xCH₂), 0.91 (3 H, t, *J* = 6.7 Hz, CH₃); ¹³C **NMR** (100 MHz, CDCl₃) δ ppm 166.7, 132.8, 130.6, 129.6, 128.3, 65.2, 31.9, 29.7, 29.6, 29.3 (2C), 28.8, 26.1, 22.7, 14.1.

¹⁰ M. Tamura, S. M. A. H. Siddiki and K. Shimizu, Green Chem., 2013, 15, 1641-1646.

Decyl 4-nitrobenzoate 6h¹¹

1-Decanol (0.19 mg, 1.0 mmol) and 4-nitrobenzoic acid (334 mg, 2.00 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as colourless oil after purification (220 mg, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (2 H, d, *J* = 9.0 Hz, ArH), 8.23 (2 H, d, *J* = 9.0 Hz, ArH), 4.40 (2 H, t, *J* = 6.8 Hz, CH₂), 1.82 (2 H, quint., *J* = 6.8 Hz, CH₂), 1.44 - 1.51 (2 H, m, CH₂), 1.28 - 1.42 (12 H, m, 6x CH₂), 0.90 (3 H, t, *J* = 6.8 Hz, CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm 164.8, 150.5, 135.9, 130.7, 123.5, 66.1, 31.9, 29.5, 29.3, 29.3, 28.61, 26.0, 22.7, 14.1.

¹¹ Z. Wu, R. J. Ono, Z. Chen and C. W. Bielawski, J. Am. Chem. Soc., 2010, 132, 14000-14001.

Acquisition Time (sec)	0.6521	Comment	Slot No. 11 Sample ID XPT638AA. SupervisorID rdent Lab Phone No. 13540 UserID x tan						
Date	01 Nov 2012 05:20:00	Date Stamp	01 Nov 2012 05:20:00						
File Name	C: Documents and Setting	is Denton My Documents V	@@Personal foldersW.TAN	IGV@NMRWMR (Denton)∛	601-700w_tan.XPT638AA\2	∕pdata/1Vr			
Frequency (MHz)	100.63	Nucleus	13C	Number of Transients	2048	Origin	dpx400		
Original Points Count	16384	Owner	nmruser	Points Count	32768	Pulse Sequence	z gpg30		
Receiver Gain	16384.00	SW[cyclical] (Hz)	25125.63	Solvent	CHLO RO FORM-d	Spectrum Offset (Hz)	11069.3428		
Spectrum Type	STANDARD	Sweep Width (Hz)	25124.86	Temperature (degree C	7 25.000				

x_tan XPT638AA_002001r

(*R*)-Octan-2-yl acetate $6i^{12}$

(*S*)-2-Octanol (0.16 mL, 1.0 mmol) and acetic acid (0.11 ml, 2.0 mmol) were combined with phosphorane **3a** according to the general procedure. The product was obtained as colourless oil after purification (86 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 4.91 (1 H, sept., *J* = 6.3 Hz, CH), 2.04 (3 H, s, CH₃), 1.55 - 1.64 (1 H, m, C<u>H₂</u>), 1.44 - 1.52 (1 H, m, C<u>H₂</u>), 1.26 - 1.36 (8 H, m, 4xCH₂), 1.21 (3 H, d, *J* = 6.3 Hz, CH₃), 0.89 (3 H, t, *J* = 6.7 Hz, CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm 170.8, 71.1, 35.9, 31.7, 29.1, 25.4, 22.6, 21.4, 20.0, 14.1.

¹² M. Paivio, D. Mavrynsky, R. Leino and L. T. Kanerva, Eur. J. Org. Chem., 2011, 1452-1457.

2.2 Stereochemical analyses

The samples were diluted to 1mg/mL.

The column used was a Chiralpak AD-RH 4.6x250mm, 5µm, the eluent was water/acetonitrile in a 40:60 ratio. The run was isocratic at 1mL/min over 25 minutes.

Signals 4 Meos. 8 Height Midth Symmatr. Arna Asca, 8 1 13.184 33.175 0.783 0.513 5.077e3 152.000

Prepared according to general procedure for Mitsunobu couplings using from (S)-2-octanolbenzoic and phosphorane **3a**.

 $[\alpha]^{23}_{D} - 37.4$ (c 1.73 CHCl₃) literature comparison: $[\alpha]^{23}_{D} - 33.6$ (c 0.14 CH₂Cl₂).¹³

Racemic 6b

(*R*)-6b

¹³ T.M. Konrad, P. Schmitz, W. Leitner and G. Franciò Chem. Eur. J. 2013, 19, 13299-13303.

Prepared according to general procedure for Mitsunobu couplings using from (S)-2-octanol, 4-nitrobenzoic and phosphorane **3a**.

 $[\alpha]^{23}_{D} - 34.2$ (c 2.21 CHCl₃)

Prepared according to general procedure for Mitsunobu couplings using from (S)-1-phenylethanol, 4-nitrobenzoic and phosphorane **3a**.

 $[\alpha]^{23}{}_{D} - 50.5$ (c 1.29, CHCl₃) literature comparison: $[\alpha]^{23}{}_{D} - 51.4$ (c 1.00 CH₂Cl₂).¹⁴

¹⁴ T. Yuen, S. But and P. Toy, J. Am. Chem. Soc. 2006, 128, 9636.