## Chiral Magnesium(II)-Catalyzed Asymmetric Ring-Opening of *meso*-Aziridines with Primary Alcohols.

Jun Li, Yuting Liao, Yulong Zhang, Xiaohua Liu, Lili Lin and Xiaoming Feng\*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China. Fax: + 86 28 85418249; e-mail: xmfeng@scu.edu.cn

## **Supporting information**

### **Contents:**

| 1.        | General remarks                                                                   | <b>S</b> 1 |
|-----------|-----------------------------------------------------------------------------------|------------|
| 2.        | Determination of the absolute configuration of <b>3b</b> by X-ray crystallography | .S2        |
| 3.        | General procedures for chiral <i>N</i> , <i>N</i> '-dioxide preparation           | S2         |
| 4.        | Preparation of the racemic <b>3a-3v</b>                                           | S2         |
| 5.        | General procedures for the catalytic asymmetric reaction                          | S2         |
| 6.        | Extra optimization of the reaction conditions                                     | S2         |
| 7.        | HRMS analysis                                                                     | 57         |
| 8.        | Characterization of the new products and copy of HPLC                             | .S8        |
| 9.        | References                                                                        | 23         |
| 10.       | Experimental procedure for the scale-up reaction and transformations of           | f the      |
|           | productS                                                                          | \$23       |
| 11.<br>12 | Copy of <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra                        | S25        |
| 14.       | copy of the spectrum off_con_                                                     | ,50        |

#### 1. General remarks

Commercial reagents were used as received with the following exceptions. CH<sub>2</sub>Cl<sub>2</sub> was dried over powdered CaH<sub>2</sub> and distilled under nitrogen just before use. CH<sub>3</sub>CCl<sub>3</sub>, CH<sub>2</sub>ClCH<sub>2</sub>Cl, CHCl<sub>3</sub>, CHCl<sub>2</sub>CHCl<sub>2</sub>, Et<sub>2</sub>O, PhCH<sub>3</sub> and PhCl were directly distilled before use. Enantiomeric excesses (*ee*) were determined by HPLC analysis using the corresponding commercial chiral column as stated in the experimental procedures at 23 °C with UV detector at 254 nm. Optical rotations were reported as follows:  $[\alpha]^{20}_{D}$  (c g/100 mL, in solvent). <sup>1</sup>H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl<sub>3</sub>,  $\delta = 7.26$ ). Spectra were reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. <sup>13</sup>C NMR spectra were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are

reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl<sub>3</sub>,  $\delta$  = 77.0). HRMS was recorded on a commercial apparatus (ESI Source).

#### 2. Determination of the absolute configuration of 3b by X-ray crystallography

The absolute configuration of the optically active product **3b** was determined by X-ray chromatography analysis.



Single crystal of **3b** [ $C_{14}H_{18}CINO_2$ ] was obtained by recrystallization in petroleum ether/CH<sub>2</sub>Cl<sub>2</sub>. The absolute configuration of **3b** is (1*R*, 2*R*). CCDC 991793 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centere via www.ccdc.cam.ac.uk/data\_request/cif.

#### 3. General procedures for chiral *N*,*N*'-dioxide preparation

The N,N'-dioxide ligands **L1–L8** were synthesized by the same procedure in the literature<sup>1</sup>.

#### 4. Preparation of the racemic 3a-3v

A reaction tube was charged with aziridine **1** (0.1 mmol), alcohol (0.2 mL). Then,  $CH_2Cl_2$  (0.2 mL) and  $BF_3$  Et<sub>2</sub>O (10 mol %) was added. After stirring at 35 °C for 4 h, the pure racemic product **3** was obtained directly by silica gel chromatography (Eluent: petroleum ether/AcOEt 4:1 to pure AcOEt).

#### 5. General procedures for the catalytic asymmetric reaction

General procedure for the catalytic asymmetric reaction: A dry reaction tube was charged with L3-Mg(OTf)<sub>2</sub> (1:1, 10–30 mol% catalyst loading) and 1 (0.1 mmol) under N<sub>2</sub> atmosphere. Then, *p*-xylene (0.5 or 0.4 or 0.2 mL) was added and the mixture was stirred at 35 °C for 20 minutes. Finally, alcohol (0.5 – 2.5 mmol) was added under stirring at the indicated temperature (35 °C, 50 °C). The reaction mixture was stirred at the indicated temperature for 1–5 days. The residue was purified by flash chromatography (Eluent: petroleum ether/AcOEt 4:1, pure AcOEt) on silica gel to afford the products. The enantiomeric excess (*ee*) was determined by high-performance liquid chromatography (HPLC) with Chiralcel OD-H, Chiralcel IC, Chiralcel IA, Chiralcel AS-H, Chiralcel Lux 5u Cellulose-2 or Chiralcel IE.

#### 6. Extra optimization of the reaction conditions

#### (1) Screen of other Lewis acids

| N N                | + MeOH (1:1, 10 mol%)<br>20 h, 35 °C PG =            | OMe<br>PG + N COOMe<br>2-picolinoyl | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$ |
|--------------------|------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1a                 | 2a :                                                 | 3a 4a                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Entry <sup>a</sup> | Metal                                                | $\operatorname{Yield}^{b}(\%)$      | $\operatorname{Ee}^{c}(\%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                  | Cu(OTf) <sub>2</sub>                                 | 30                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                  | Mg(OTf) <sub>2</sub>                                 | 24                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                  | Sn(OTf) <sub>2</sub>                                 | 90                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                  | Ni(ClO <sub>4</sub> ) <sub>2</sub> 6H <sub>2</sub> O | 25                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                  | Gd(OTf) <sub>3</sub>                                 | 27                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6                  | $Zn(NTf_2)_2$                                        | <5                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                  | Ni(OTf) <sub>2</sub>                                 | 60                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8                  | $Mg(ClO_4)_2$                                        | 34                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9                  | Ca(OTf) <sub>2</sub>                                 | 27                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                 | Ba(OTf)                                              | 9                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

<sup>*a*</sup> Unless otherwise noted, all reactions were performed with L1–Metal (1:1, 10 mol%), 1a (0.1 mmol, PG = 2-picolinoyl), in MeOH (0.2 mL) under N<sub>2</sub> at 35 °C for 20 h. <sup>*b*</sup> Isolated yield of 3a, 1a was completely consumed. <sup>*c*</sup> Determined by HPLC analysis (Chiralcel OD-H).

#### (2) Surry the amount of methanol

| N +                | MeOH<br>x equiv. | L1-Mg(OTf) <sub>2</sub><br>(1:1, 10 mol%)<br>CH <sub>2</sub> Cl <sub>2</sub> , 20 h, 35 °C | OMe<br>M<br>PG = 2-picolinoy | COOMe            | $ \begin{array}{ c c } \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$ | S |
|--------------------|------------------|--------------------------------------------------------------------------------------------|------------------------------|------------------|----------------------------------------------------------------------------------------------|---|
| 1a                 | 2a               |                                                                                            | 3a                           | 4a               | <b>L</b> 1. Al – 2,0-/-Pl <sub>2</sub> C <sub>6</sub> $\square_3$                            |   |
| Entry <sup>a</sup> |                  | x equiv.                                                                                   | Yield <sup>l</sup>           | <sup>b</sup> (%) | $\operatorname{Ee}^{c}(\%)$                                                                  |   |
| 1                  |                  | 1.0                                                                                        | 6                            |                  | 68                                                                                           |   |
| 2                  |                  | 2.0                                                                                        | 38                           | 3                | 68                                                                                           |   |
| 3                  |                  | 3.0                                                                                        | 63                           | 3                | 68                                                                                           |   |
| 4                  |                  | 4.0                                                                                        | 76                           | 5                | 68                                                                                           |   |
| $5^d$              |                  | 5.0                                                                                        | 78                           | 3                | 68                                                                                           |   |

<sup>*a*</sup> Unless otherwise noted, all reactions were performed with L1–Mg(OTf)<sub>2</sub> (1:1, 10 mol%),1a (0.1 mmol), MeOH (x equiv.) in CH<sub>2</sub>Cl<sub>2</sub> (0.2 mL) under N<sub>2</sub> at 35 °C for 20 h. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis (Chiralcel OD-H). <sup>*d*</sup> 1a was completely consumed.

#### (3) Screen of N,N'-dioxide ligands





**L1**: Ar = 2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, n = 1 **L2**: Ar = 2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, n = 2 **L4**: Ar = 2,6-Et<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, n = 2 **L5**: Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, n = 2 **L6**: Ar = Ph, n = 2 **L7**: Ar = 2,4,6-*i*-Pr<sub>3</sub>C<sub>6</sub>H<sub>2</sub>, n = 2



**L3**: Ar = 2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> **L8**: Ar = 2,4,6-*i*-Pr<sub>3</sub>C<sub>6</sub>H<sub>2</sub>

| Entry <sup>a</sup> | Ligand | $\operatorname{Yield}^{b}(\%)$ | $\operatorname{Ee}^{c}(\%)$ |
|--------------------|--------|--------------------------------|-----------------------------|
| 1                  | L1     | 78                             | 68                          |
| 2                  | L2     | 64                             | 56                          |
| 3                  | L3     | 88                             | 78                          |
| 4                  | L4     | 44                             | 35                          |
| 5                  | L5     | 28                             | 23                          |
| 6                  | L6     | 21                             | -10                         |
| 7                  | L7     | 65                             | 28                          |
| 8                  | L8     | 56                             | 56                          |

<sup>*a*</sup> Unless otherwise noted, all reactions were performed with  $L-Mg(OTf)_2$  (1:1, 10 mol%), **1a** (0.1 mmol), MeOH (0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.2 mL) under N<sub>2</sub> at 35 °C for 20 h. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis (Chiralcel OD-H).

#### (4) Screen of solvent effects

| O N N              | L3-Mg(OT<br>+ MeOH                   | $f_{0}^{(r)}$<br>, 35 °C $Me$<br>$M_{N}^{(r)}$ PG<br>H<br>PG = 2-picoline |                                                                               |
|--------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1a                 | 2a                                   | 3a                                                                        | <b>L3</b> : Ar = 2,6- <i>i</i> -Pr <sub>2</sub> C <sub>6</sub> H <sub>3</sub> |
| Entry <sup>a</sup> | Solvent                              | $\operatorname{Yield}^{b}(\%)$                                            | $\operatorname{Ee}^{c}(\%)$                                                   |
| 1                  | CH <sub>2</sub> Cl <sub>2</sub>      | 88                                                                        | 78                                                                            |
| 2                  | Cl <sub>3</sub> CCH <sub>3</sub>     | 82                                                                        | 72                                                                            |
| 3                  | CH <sub>2</sub> ClCH <sub>2</sub> Cl | 83                                                                        | 79                                                                            |
| 4                  | CHCl <sub>3</sub>                    | 66                                                                        | 76                                                                            |
| 5                  | PhCl                                 | 99                                                                        | 77                                                                            |
| 6                  | CHCl <sub>2</sub> CHCl <sub>2</sub>  | 75                                                                        | 69                                                                            |
| 7                  | CHCl <sub>2</sub> CHCl               | 90                                                                        | 77                                                                            |
| 8                  | EtOAc                                | 91                                                                        | 73                                                                            |

| 9                        | THF                | 99 | 78 |
|--------------------------|--------------------|----|----|
| 10                       | Et <sub>2</sub> O  | 99 | 81 |
| 11                       | <sup>t</sup> BuOMe | 99 | 78 |
| 12                       | PhOMe              | 98 | 72 |
| 13                       | 2-Me-THF           | 91 | 71 |
| 14                       | 1,4-dioxane        | 20 | 72 |
| 15                       | ó                  | 93 | 80 |
| 16                       | Toluene            | 99 | 79 |
| 17                       | PhCF <sub>3</sub>  | 99 | 78 |
| 18                       | PhF                | 96 | 70 |
| 19                       | mesitylene         | 99 | 77 |
| $20^d$                   | Et <sub>2</sub> O  | 99 | 90 |
| 21 <sup><i>d</i></sup>   | benzene            | 78 | 81 |
| $22^d$                   | o-xylene           | 92 | 90 |
| $23^d$                   | <i>m</i> -xylene   | 89 | 92 |
| $24^d$                   | <i>p</i> -xylene   | 96 | 92 |
| 25 <sup><i>d,e</i></sup> | <i>p</i> -xylene   | 88 | 94 |

<sup>*a*</sup> Unless otherwise noted, all reactions were performed with L3–Mg(OTf)<sub>2</sub> (1:1, 10 mol%), 1a (0.1 mmol), MeOH (0.5 mmol) in solvent (0.2 mL) under N<sub>2</sub> at 35  $^{\circ}$ C for 20 h. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis (Chiralcel OD-H). <sup>*d*</sup> In solvent (0.5 mL) for 21 hours. <sup>*e*</sup> H<sub>2</sub>O (0.1 mmol) was added.

#### (5) Screen of the reaction temperature

| O<br>N<br>N        | L3-M<br>+ MeOH   | /g(OTf) <sub>2</sub><br>10 mol%)<br>►<br>xylene | OMe<br>M<br>PG = 2-picolinoyl |                                                                               |
|--------------------|------------------|-------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|
| 1a                 | 2a               |                                                 | 3a                            | <b>L3</b> : Ar = 2,6- <i>i</i> -Pr <sub>2</sub> C <sub>6</sub> H <sub>3</sub> |
| Entry <sup>a</sup> | Temperature (°C) | Time (h)                                        | Yield <sup>b</sup> (%         | ) $\operatorname{Ee}^{c}(\%)$                                                 |
| 1                  | 50               | 8.5                                             | 92                            | 91                                                                            |
| 2                  | 35               | 21                                              | 96                            | 92                                                                            |
| 3                  | 20               | 26                                              | 93                            | 82                                                                            |

<sup>*a*</sup> Unless otherwise noted, all reactions were performed with L3–Mg(OTf)<sub>2</sub> (1:1, 10 mol%), 1a (0.1 mmol), MeOH (0.5 mmol) in *p*-xylene (0.5 mL) under N<sub>2</sub> at the indicated temperature for the indicated time. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Determined by HPLC analysis (Chiralcel OD-H).

#### (6) Screen of the protecting groups



**Fig. 1** Unless otherwise noted, all reactions were performed with L3–Mg(OTf)<sub>2</sub> (1:1, 10 mol%), 1 (0.1 mmol), MeOH (0.5 mmol) in *p*-xylene (0.5 mL) under N<sub>2</sub> at 35 °C for the indicated time.

#### (7) Substrate scope of the other unsuccessful alcohols<sup>*a*</sup>



Fig. 2<sup>a</sup> Unless otherwise noted, all reactions were performed with L3-Mg(OTf)<sub>2</sub> (1:1, 10 mol%), 1a (0.1 mmol),

alcohol (0.5 mmol) in *p*-xylene or  $Et_2O$  (0.5 mL) under N<sub>2</sub> at 35 °C for the indicated time. <sup>*b*</sup> At 50 °C. <sup>*c*</sup> No amino ether product was obtained but phenyl picolinate (14% yield) was obtained.

## 7. HRMS analysis



#### a) The mixture of L3 and Mg(OTf)<sub>2</sub> (1:1)

**b**) The mixture of L3, Mg(OTf)<sub>2</sub> and 1a (1:1:1)



## 8. Characterization of the new substrates and products

#### 7-azabicyclo[4.1.0]heptan-7-yl(5-chloropyridin-2-yl)methanone (1d)



White solid, mp 75 – 76 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.64 (d, *J* = 2.3 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.79 (dd, *J* = 8.4, 2.4 Hz, 1H), 2.92 – 2.82 (m, 2H), 2.25 – 2.12 (m, 2H), 1.97 – 1.84 (m, 2H), 1.60 – 1.47 (m, 2H), 1.42 – 1.29 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 176.6, 149.1, 148.3, 136.4, 135.1, 124.8, 37.5, 23.7, 20.1.

#### 7-azabicyclo[4.1.0]heptan-7-yl(6-methylpyridin-2-yl)methanone (1e)



White solid, mp 43 – 44 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.89 (d, *J* = 7.7 Hz, 1H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.29 (d, *J* = 7.1 Hz, 1H), 2.88 – 2.79 (m, 2H), 2.62 (s, 3H), 2.28 – 2.16 (m, 2H), 1.97 – 1.86 (m, 2H), 1.61 – 1.47 (m, 2H), 1.40 – 1.30 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 178.1, 158.2,

150.3, 136.9, 126.0, 121.1, 37.3, 24.6, 23.8, 20.1.

#### $\label{eq:constraint} \textbf{7-azabicyclo} [4.1.0] heptan-\textbf{7-yl} (is oquinolin-1-yl) methan one (1h)$



White solid, mp 59 – 60 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.82 (d, *J* = 8.6 Hz, 1H), 8.58 (d, *J* = 5.6 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 5.6 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.68 – 7.63 (m, 1H), 3.05 – 2.95 (m, 2H), 2.11 – 2.00 (m, 2H), 1.92 – 1.80 (m, 2H), 1.61 – 1.49 (m, 2H), 1.38 – 1.25 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 178.5, 152.6, 141.6, 136.8, 130.4, 128.3, 127.0,

126.9, 126.3, 123.1, 37.4, 23.7, 20.0.

#### 7-azabicyclo[4.1.0]heptan-7-yl(quinolin-2-yl)methanone (1i)



White solid, mp 74 – 75 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.27 (d, *J* = 8.5 Hz, 1H), 8.19 (t, *J* = 7.9 Hz, 2H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.81 – 7.73 (m, 1H), 7.66 – 7.60 (m, 1H), 3.02 – 2.86 (m, 2H), 2.42 – 2.29 (m, 2H), 2.04 – 1.91 (m, 2H), 1.67 – 1.54 (m, 2H), 1.46 – 1.33 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 177.8, 150.7, 147.4, 136.8, 130.8, 129.9, 129.2,

128.2, 127.6, 120.3, 37.5, 23.9, 20.2.

### 7-azabicyclo[4.1.0]hept-3-en-7-yl(pyridin-2-yl)methanone (1n)



White solid, mp 60 – 61 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (d, J = 4.3 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.80 (t, J = 7.7 Hz, 1H), 7.42 (dd, J = 7.3, 4.9 Hz, 1H), 5.53 (s, 2H), 3.02 (s, 2H), 2.83 (d, J = 18.1 Hz, 2H), 2.48 (d, J = 18.2 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 177.1, 151.0, 149.2, 136.7, 126.3, 123.8,

122.4, 36.4, 24.0.

#### ((cis)-2,3-dipropylaziridin-1-yl)(pyridin-2-yl)methanone (1s)



Colorless oil, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.70 (d, *J* = 3.8 Hz, 1H), 8.08 (d, *J* = 7.7 Hz, 1H), 7.87 – 7.70 (m, 1H), 7.53 – 7.35 (m, 1H), 2.65 (s, 2H), 1.87 (s, 2H), 1.67 – 1.45 (m, 6H), 1.11 – 0.88 (m, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 178.2, 151.0, 149.1, 136.7, 126.3, 123.9, 42.5, 29.8, 20.6, 14.0.

#### *N*-((1*R*,2*R*)-2-methoxycyclohexyl)picolinamide (3a)



21h, yield 22.5 mg, 96%; white solid, mp 94 – 95 °C; HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 7.68 min,  $t_r$  (minor) = 9.58 min, ee = 92%.  $[\alpha]_{D}^{20} = -35.6$  (c = 0.45, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.55 (d, *J* = 3.4 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 8.09 (d, *J* = 4.3 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.49 – 7.35 (m, 1H), 4.06 – 3.92 (m, 1H), 3.38 (d, *J* = 0.7 Hz, 3H), 3.29 – 3.16 (m, 1H), 2.20 (d, *J* = 11.5 Hz, 1H), 2.11 (d, *J* = 9.7 Hz, 1H), 1.84 – 1.74 (m, 1H), 1.72 – 1.65 (m, 1H), 1.47 – 1.28 (m, 4H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 164.0, 150.2, 148.0, 137.3, 126.0, 122.2, 81.1, 56.1, 52.1, 30.9, 29.2, 23.9, 23.5.

HRMS (ESI-TOF) calcd for  $C_{13}H_{18}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 257.1266, Found 257.1260.



| Peak | Retention Time | Area     | % Area | Height |
|------|----------------|----------|--------|--------|
| 1    | 7.675          | 12714712 | 95.81  | 658450 |
| 2    | 9.575          | 556091   | 4.19   | 25119  |

4-chloro-*N*-((1*R*,2*R*)-2-methoxycyclohexyl)picolinamide (3b)



24h, yield 26.3 mg, 98%; white solid, mp 68 – 69 °C; HPLC (Chiralcel AS-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm)  $t_r$  (major) = 7.41 min,  $t_r$  (minor) = 9.49 min, ee = 79%.  $[\alpha]^{20}{}_{\rm D}$  = -29.3 (c =0.80, in CH<sub>2</sub>Cl<sub>2</sub>, 96 % ee). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.45 (d, J = 5.2 Hz, 1H), 8.21 (d, J = 1.8 Hz, 1H), 8.01 (d, J = 6.9 Hz, 1H), 7.50 – 7.36 (m, 1H), 4.07 – 3.86 (m, 1H), 3.37 (s, 3H), 3.27 – 3.12 (m, 1H), 2.28 – 2.16 (m, 1H), 2.16 – 2.06 (m, 1H), 1.86 – 1.74 (m, 1H), 1.73 – 1.63 (m, 1H), 1.48 – 1.22 (m, 4H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 162.8, 151.7, 148.9, 145.8, 126.2, 122.9, 81.1, 56.1, 52.5, 30.9, 29.3, 24.0, 23.6.

HRMS (ESI-TOF) calcd for  $C_{13}H_{17}Cl^{34.9689}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 291.0876, Found 291.0878.



| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 7.413          | 6460704 | 89.34  | 372537 |
| 2    | 9.491          | 770623  | 10.66  | 33515  |

After single recrystallization, 96 % ee was obtained.



| Peak | Retention Time | Area   | % Area | Height |
|------|----------------|--------|--------|--------|
| 1    | 7.453          | 715047 | 97.86  | 40428  |
| 2    | 9.508          | 15603  | 2.14   | 644    |

#### trans-4-methoxy-N-(2-methoxycyclohexyl)picolinamide (3c)



48h, yield 17.7 mg, 67 %; colorless oil, HPLC (Chiralcel AS-H, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 6.02 min,  $t_r$  (minor) = 7.24 min, ee = 78%.  $[\alpha]^{20}{}_{\rm D} = -21.8$  (c = 0.35, in CH<sub>2</sub>Cl<sub>2</sub>)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.34 (d, *J* = 5.6 Hz, 1H), 8.11 (d, *J* = 7.4 Hz, 1H), 7.75 (d, *J* = 2.6 Hz, 1H), 6.91 (dd, *J* = 5.6, 2.6 Hz, 1H), 4.02 – 3.93 (m, 1H), 3.91 (s, 3H), 3.37 (s, 3H), 3.26 – 3.16 (m, 1H), 2.24 – 2.16 (m, 1H), 2.14 – 2.06 (m, 1H), 1.83 – 1.74 (m, 1H), 1.72 – 1.65 (m, 1H), 1.48 – 1.27 (m, 4H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 166.9, 163.9, 152.3, 149.1, 112.9, 107.3, 81.1, 56.2, 55.5, 52.2, 30.9, 29.2, 23.9, 23.5.

HRMS (ESI-TOF) calcd for  $C_{14}H_{20}N_2NaO_3^+$  ([M]+Na<sup>+</sup>) = 287.1372, Found 287.1375.



| Peak | Retention Time | Area    | % Area | <b>Height</b> |
|------|----------------|---------|--------|---------------|
| 1    | 6.024          | 5759461 | 88.92  | 387421        |
| 2    | 7.236          | 717984  | 11.08  | 36437         |

trans-5-chloro-N-(2-methoxycyclohexyl)picolinamide (3d)

Cl



24h, yield 24.4 mg, 91%; colorless oil, HPLC (Chiralcel AS-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 7.56 min,  $t_r$  (minor) = 9.27 min, ee = 77%. [ $\alpha$ ]<sup>20</sup><sub>D</sub> = -24.4 (c = 0.49, in CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.49 (d, J = 2.0 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 6.7 Hz, 1H), 7.81 (dd, J = 8.4, 2.1 Hz, 1H), 4.06 – 3.86 (m, 1H), 3.37 (s, 3H), 3.26 – 3.15 (m, 1H), 2.29 – 2.17 (m, 1H), 2.17 – 2.09 (m,

1H), 1.87 – 1.76 (m, 1H), 1.74 – 1.63 (m, 1H), 1.48 – 1.26 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.1, 148.4, 147.0, 137.0, 134.8, 123.3, 81.1, 56.1, 52.4, 31.0, 29.2, 24.0, 23.6.

HRMS (ESI-TOF) calcd for  $C_{13}H_{17}Cl^{34.9689}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 291.0876, Found 291.0878.



| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 7.661          | 4795028 | 50.07  | 283345 |
| 2    | 9.257          | 4780796 | 49.93  | 224318 |



| Peak | Retention Time | Area     | % Area | Height  |
|------|----------------|----------|--------|---------|
| 1    | 7.560          | 31311272 | 88.41  | 1709321 |
| 2    | 9.270          | 4104090  | 11.59  | 192223  |

trans-N-(2-methoxycyclohexyl)isoquinoline-1-carboxamide (3h)



24h, yield 26.3 mg, 93%; colorless oil, HPLC (Chiralcel AS-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 7.48 min,  $t_r$  (minor) = 8.89 min, ee = 59%.  $[\alpha]^{20}_{D} = -17.5$  (c = 0.53, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.63 (d, *J* = 8.4 Hz, 1H), 8.46 (d, *J* = 5.5 Hz, 1H), 8.27 (d, *J* = 7.2 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 5.5 Hz, 1H), 7.74 - 7.61 (m, 2H), 4.12 - 3.97 (m, 1H), 3.40 (s, 3H), 3.31 - 3.21 (m, 1H), 2.35 - 2.20 (m, 1H), 2.18 - 2.09 (m, 1H), 1.86 - 1.76 (m, 1H), 1.76 - 1.67 (m, 1H),

1.52 – 1.29 (m, 4H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 165.8, 148.6, 140.2, 137.4, 130.4, 128.5, 128.1, 127.1, 126.7, 124.2, 81.2, 56.2, 52.2, 30.9, 29.3, 24.1, 23.6.

HRMS (ESI-TOF) calcd for  $C_{17}H_{20}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 307.1422, Found 307.1425.



trans-N-(2-methoxycyclohexyl)quinoline-2-carboxamide (3i)



48h, yield 27.7 mg, 98%; colorless oil, HPLC (Chiralcel IE, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 23.32 min,  $t_r$  (minor) = 21.70 min, ee = 49%.  $[\alpha]^{20}_{D} = -17.5$  (*c* =0.53, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.43 – 8.25 (m, 3H), 8.13 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.82 – 7.72 (m, 1H), 7.67 – 7.57 (m, 1H),

 $\begin{array}{l} 4.15-3.97\ (m,\ 1H),\ 3.40\ (s,\ 3H),\ 3.37-3.27\ (m,\ 1H),\ 2.33-2.20\ (m,\ 1H),\ 2.19-2.10\ (m,\ 1H),\ 1.87-1.77\ (m,\ 1H),\ 1.77-1.67\ (m,\ 1H),\ 1.52-1.31\ (m,\ 4H).\ ^{13}C\ NMR\ (101\ MHz,\ CDCl_3)\ \delta=164.2,\ 150.1,\ 146.4,\ 137.4,\ 130.0,\ 129.8,\ 129.3,\ 127.8,\ 119.0,\ 81.2,\ 56.2,\ 52.4,\ 31.0,\ 29.4,\ 24.1,\ 23.7.\\ \\ \begin{array}{l} \text{HRMS\ (ESI-TOF)\ calcd\ for\ C_{17}H_{20}N_2NaO_2^+\ ([M]+Na^+)=307.1422,\ Found\ 307.1428. \end{array}$ 



| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 21.703         | 1552034 | 25.47  | 48769  |
| 2    | 23.317         | 4541749 | 74.53  | 121818 |

#### N-((1R,2R)-2-ethoxycyclohexyl)picolinamide (3j)



24h, yield 21.4 mg, 87%; yellow oil; HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 95/5, flow rate 0.8 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 10.04 min,  $t_r$  (minor) = 11.15 min, ee = 87%.  $[\alpha]^{20}{}_{\rm D} = -49.5$  (c = 0.43, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.55 (d, *J* = 4.3 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.12 (d, *J* = 5.5 Hz, 1H), 7.84 (td, *J* = 7.7, 1.2 Hz, 1H), 7.46 – 7.37 (m, 1H), 4.03 – 3.88 (m, 1H), 3.72 – 3.60 (m, 1H), 3.55 – 3.43 (m, 1H), 3.31 (td, *J* = 9.1, 1H), 3.55 – 3.43 (m, 1H), 3.51 (td, *J* = 9.1, 1H), 3.55 – 3.43 (m, 1H), 3.51 (td, *J* = 9.1, 1H), 3.55 – 3.43 (m, 1H), 3.51 (td, *J* = 9.1, 1H), 3.55 – 3.51 (td), 3.51 (t

3.9 Hz, 1H), 2.24 (d, *J* = 10.8 Hz, 1H), 2.10 – 2.00 (m, 1H), 1.84 – 1.73 (m, 1H), 1.73 – 1.62 (m, 1H), 1.50 – 1.28 (m, 4H), 1.14 (t, *J* = 7.0 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 163.9, 150.3, 148.0, 137.3, 125.9, 122.1, 79.5, 64.0, 52.5, 30.8, 30.2, 23.9, 23.7, 15.7.

HRMS (ESI-TOF) calcd for  $C_{14}H_{20}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 271.1422, Found 271.1419.



| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 10.018         | 2344362 | 49.56  | 110049 |
| 2    | 11.073         | 2386145 | 50.44  | 101430 |



| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 10.036         | 4253900 | 93.57  | 194963 |
| 2    | 11.147         | 292268  | 6.43   | 11873  |

#### *N*-((1*R*,2*R*)-2-propoxycyclohexyl)picolinamide (3k)



35h, yield 23.6 mg, 90%; colorless oil; HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 7.19 min,  $t_r$  (minor) = 8.16 min, ee = 88%.  $[\alpha]^{20}{}_{\rm D} = -47.5$  (c = 0.47, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.54 (d, *J* = 4.5 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.14 (d, *J* = 5.0 Hz, 1H), 7.88 – 7.77 (m, 1H), 7.46 – 7.34 (m, 1H), 4.01 – 3.87 (m, 1H), 3.63 – 3.51 (m, 1H), 3.40 – 3.22 (m, 2H), 2.30 – 2.16 (m, 1H), 2.13

- 2.00 (m, 1H), 1.84 - 1.73 (m, 1H), 1.72 - 1.61 (m, 1H), 1.58 - 1.49 (m, 2H), 1.46 - 1.25 (m, 4H), 0.84 (t, *J* = 7.4 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 164.0, 150.30, 147.9, 137.3, 125.9, 122.1, 79.8, 70.4, 52.5, 30.8, 30.1, 23.9, 23.7, 23.3, 10.6.

HRMS (ESI-TOF) calcd for  $C_{15}H_{22}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 285.1579, Found 285.1578.



| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 7.202          | 2622920 | 50.31  | 161505 |
| 2    | 8.155          | 2590435 | 49.69  | 140340 |



| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 7.185          | 6788363 | 93.90  | 413966 |
| 2    | 8.161          | 441291  | 6.10   | 23020  |

#### *N*-((1*R*,2*R*)-2-(allyloxy)cyclohexyl)picolinamide (3l)



16h, yield 23.2 mg, 89%; colorless oil; HPLC (Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 10.30 min,  $t_r$  (minor) = 8.91 min, ee = 92%.  $[\alpha]^{20}{}_{\rm D} = -37.3$  (c = 0.46, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.55 (d, *J* = 4.4 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.12 (d, *J* = 6.1 Hz, 1H), 7.83 (t, *J* = 7.5 Hz, 1H), 7.41 (dd, *J* = 6.5, 5.3 Hz, 1H), 5.87 (ddd, *J* = 22.2, 10.6, 5.4 Hz, 1H), 5.24 (d, *J* = 17.2 Hz, 1H), 5.10 (d, *J* 

= 10.3 Hz, 1H), 4.20 – 4.18 (m, 1H), 4.05 – 3.90 (m, 2H), 3.36 (td, J = 9.0, 3.8 Hz, 1H), 2.30 – 2.18 (m, 1H), 2.12 – 1.98 (m, 1H), 1.86 – 1.73 (m, 1H), 1.72 – 1.60 (d, J = 12.0 Hz, 1H), 1.51 – 1.27 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.9, 150.3, 147.9, 137.3, 135.4, 126.0, 122.2, 116.5, 79.0, 69.6, 52.3, 30.8, 30.0, 23.8, 23.6.

HRMS (ESI-TOF) calcd for  $C_{15}H_{20}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 283.1422, Found 283.1423.



#### trans-N-(2-methoxycyclopentyl)picolinamide (3m)





95/5, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 9.32 min,  $t_r$  (minor) = 10.69 min, ee = 91%.  $[\alpha]_D^{20}$  = -12.9 (c = 0.36, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.54 (d, *J* = 3.7 Hz, 1H), 8.20 (d, *J* = 7.7 Hz, 1H), 8.00 (s, 1H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.47 - 7.37 (m, 1H), 4.38 (s, 1H), 3.76 (s, 1H), 3.43 (s, 3H), 2.29 - 2.16 (m, 1H), 2.01 - 1.92 (m, 1H), 1.88 - 1.68 (m, 3H), 1.66 - 1.53 (m, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.8, 149.0, 148.0, 137.4, 126.1, 122.1, 87.1, 57.0, 55.3, 30.8, 30.5, 21.8.

HRMS (ESI-TOF) calcd for  $C_{12}H_{17}N_2O_2^+$  ([M]+H<sup>+</sup>) = 221.1290, Found 221.1287.



| Peak | Retention Time | Area     | % Area | Height |
|------|----------------|----------|--------|--------|
| 1    | 9.316          | 12392393 | 95.31  | 586390 |
| 2    | 10.692         | 609321   | 4.69   | 26358  |

#### *N*-((1*R*,6*R*)-6-methoxycyclohex-3-en-1-yl)picolinamide (3n)



75h, yield 20.4 mg, 88%; colorless oil; HPLC (Chiralcel IC, hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 12.13 min,  $t_r$  (minor) = 20.17 min, ee = 83%. [ $\alpha$ ]<sup>20</sup><sub>D</sub> = -77.0 (c = 0.41, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.55 (d, *J* = 4.2 Hz, 1H), 8.27 - 8.11 (m, 2H), 7.85 (t, *J* = 7.7 Hz, 1H), 7.48 - 7.37 (m, 1H), 5.78 - 5.59 (m, 2H), 4.47 - 4.34 (m, 1H), 3.63 (dd, *J* = 12.0, 5.3 Hz, 1H), 3.45 (s, 3H), 2.80 - 2.68 (m, 1H), 2.54 -

2.41 (m, 1H), 2.26 – 2.16 (m, 1H), 2.13 – 2.03 (m, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 164.2, 150.0, 148.1, 137.3, 126.1, 124.3, 124.2, 122.2, 76.1, 56.6, 46.8, 28.9, 28.3.

HRMS (ESI-TOF) calcd for  $C_{13}H_{17}N_2O_2^+$  ([M]+H<sup>+</sup>) = 233.1290, Found 233.1286.



| Peak | Retention Time | Area     | % Area | Height |
|------|----------------|----------|--------|--------|
| 1    | 12.072         | 12483600 | 49.92  | 465978 |
| 2    | 20.571         | 12522676 | 50.08  | 258336 |



| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 12.127         | 9773915 | 91.38  | 344921 |
| 2    | 20.171         | 921703  | 8.62   | 22575  |

N-((2R,3R)-3-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)picolinamide (30)



93h, yield 24.3 mg, 86%; colorless oil; HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 15.41 min,  $t_r$  (minor) = 11.13 min, ee = 76%.  $[\alpha]_D^{20} = -57.8$  (*c* =0.49, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.46 (d, *J* = 4.7 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 2H), 7.79 (td, *J* = 7.7, 1.6 Hz, 1H), 7.42 - 7.31 (m, 1H), 7.19 - 7.04 (m,

4H), 4.56 (dt, J = 13.2, 6.6 Hz, 1H), 3.81 (dd, J = 11.5, 6.1 Hz, 1H), 3.51 – 3.40 (m, 4H), 3.18 (dd, J = 17.0, 4.7 Hz, 1H), 2.92 (dd, J = 17.0, 6.0 Hz, 1H), 2.81 (dd, J = 16.8, 6.3 Hz, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 164.3, 149.8, 148.1, 137.3, 133.4, 133.3, 129.3, 129.2, 126.4, 126.3, 126.2, 122.2, 76.9, 56.6, 48.0, 32.6, 31.9.

HRMS (ESI-TOF) calcd for  $C_{17}H_{18}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 305.1266, Found 305.1263.



| Peak | Retention Time | Area     | % Area | ,Height |
|------|----------------|----------|--------|---------|
| 1    | 10.875         | 61229742 | 49.92  | 2136044 |
| 2    | 15.492         | 61428813 | 50.08  | 1205860 |



| Peak | Retention Time | Area     | % Area | Height |
|------|----------------|----------|--------|--------|
| 1    | 11.129         | 1491198  | 12.04  | 56104  |
| 2    | 15.412         | 10895701 | 87.96  | 238000 |

#### trans-Benzyl 3-methoxy-4-(picolinamido)pyrrolidine-1-carboxylate (3p)



49h, yield 26.6 mg, 75%; colorless oil; HPLC (Chiralcel AS-H, hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 12.41 min,  $t_r$  (minor) = 18.10 min, ee = 80%.  $[\alpha]^{20}_{D} = +22.4$  (c = 0.53, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.50 (d, *J* = 3.6 Hz, 1H), 8.27 - 8.08 (m, 2H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.45 - 7.38 (m, 1H), 7.38 - 7.21 (m, 5H),

5.15 (s, 2H), 4.60 (s, 1H), 3.95 (d, *J* = 11.1 Hz, 1H), 3.85 (dd, *J* = 10.9, 5.5 Hz, 1H), 3.74 – 3. 51 (m, 3H), 3.45 (d, *J* = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 164.3/164.2 (rotamer), 154.91/154.89 (rotamer), 149.1, 148.1, 137.4, 136.60/136.57 (rotamer), 128.4, 128.0, 127.9, 126.5, 122.1, 83.1/82.2 (rotamer), 66.9, 57.1, 53.1/52.2 (rotamer), 49.71/49.68 (rotamer), 49.5/49.4 (rotamer).

HRMS (ESI-TOF) calcd for  $C_{19}H_{22}N_3O_4^+$  ([M]+H<sup>+</sup>) = 356.1610, Found 356.1607.



trans-N-(4-methoxytetrahydrofuran-3-yl)picolinamide (3q)



118h, yield 14.6 mg, 66%; colorless oil; HPLC (Chiralcel IE, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 21.56 min,  $t_r$  (minor) = 18.63 min, ee = 78%. [ $\alpha$ ]<sup>20</sup><sub>D</sub> = + 7.2 (c = 0.29, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.55 (d, *J* = 4.7 Hz, 1H), 8.29 - 8.08 (m, 2H), 7.87 (td, *J* = 7.7, 1.4 Hz, 1H), 7.45 (dd, *J* = 7.5, 4.8 Hz, 1H), 4.68 - 4.54 (m, 1H), 4.14 (dd, *J* = 10.2, 5.2 Hz, 1H), 4.08 (dd, *J* = 9.6, 4.9 Hz, 1H), 3.97 - 3.92 (m,

1H), 3.90 - 3.84 (m, 1H), 3.76 (dd, J = 10.2, 2.2 Hz, 1H), 3.53 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 164.0$ , 149.3, 148.1, 137.4, 126.4, 122.1, 86.1, 72.3, 71.4, 57.5, 54.5. HRMS (ESI-TOF) calcd for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>3</sub><sup>+</sup> ([M]+Na<sup>+</sup>) = 245.0902, Found 245.0901.





| Peak | Retention Time | Area     | % Area | ,Height |
|------|----------------|----------|--------|---------|
| 1    | 18.627         | 3078943  | 10.96  | 106155  |
| 2    | 21.556         | 25013888 | 89.04  | 633373  |

#### trans-N-(2-methoxycycloheptyl)picolinamide (3r)



118h, yield 15.4 mg, 62%; colorless oil; HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 9.91 min,  $t_r$  (minor) = 11.97 min, ee = 75%.  $[\alpha]^{20}_{D} = -16.6$  (c = 0.31, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.55 (d, *J* = 3.1 Hz, 1H), 8.20 (d, *J* = 7.0 Hz, 2H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.49 – 7.36 (m, 1H), 4.28 – 4.09 (m, 1H), 3.45 – 3.30 (m, 4H), 2.04 – 1.93 (m, 1H), 1.87 –1.78 (m, 2H), 1.77 – 1.60 (m, 5H),

1.59 - 1.42(m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 163.6, 150.2, 148.0, 137.3, 126.0, 122.2, 84.4, 56.5, 54.4, 30.55, 29.2, 28.5, 23.9, 22.3.

HRMS (ESI-TOF) calcd for  $C_{14}H_{21}N_2O_2^+$  ([M]+H<sup>+</sup>) = 249.1603, Found 249.1603.



| Peak | Retention Time | Area     | % Area | <b>Height</b> |
|------|----------------|----------|--------|---------------|
| 1    | 9.908          | 10728615 | 87.35  | 441874        |
| 2    | 11.973         | 1553952  | 12.65  | 55774         |

trans-N-(5-methoxyoctan-4-yl)picolinamide (3s)



65h, yield 23.1 mg, 88%; colorless oil; HPLC (Chiralcel Lux 5u Cellulose-2, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min,  $\lambda$  = 254 nm) *t*<sub>r</sub> (major) = 10.64 min, *t*<sub>r</sub> (minor) = 9.51min, *ee* = 84%. [α]<sup>20</sup><sub>D</sub> = -1.3 (*c* =0.47, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.47 (d, *J* = 4.2 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 9.5 Hz, 1H), 7.81 – 7.66 (m, 1H), 7.31 (dd, *J* = 6.7, 5.4 Hz, 1H), 4.14 (dd, *J* = 14.7, 7.9 Hz, 1H), 3.38 (s, 3H), 3.25 – 3.09 (m, 1H), 1.64 – 1.52 (m, 1

2H), 1.50 - 1.41 (m, 1H), 1.38 - 1.23 (m, 5H), 0.91 - 0.74 (m, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 164.1, 145.0, 148.1, 137.1, 125.9, 122.2, 82.5, 58.6, 51.0, 34.6, 33.0, 19.6, 19.1, 14.2, 14.0.

HRMS (ESI-TOF) calcd for  $C_{15}H_{25}N_2O_2^+$  ([M]+H<sup>+</sup>) = 265.1916, Found 265.1915.



| Peak | Retention Time | Area     | % Area | Height  |
|------|----------------|----------|--------|---------|
| 1    | 9.354          | 35731478 | 50.16  | 1728407 |
| 2    | 11.170         | 35503105 | 49.84  | 1223519 |



| Peak | Retention Time | Area     | % Area | Height |
|------|----------------|----------|--------|--------|
| 1    | 9.511          | 1348352  | 7.95   | 76947  |
| 2    | 10.638         | 15616576 | 92.05  | 786706 |

trans-N-(2-methoxy-1,2-diphenylethyl)picolinamide (3t)



118h, yield 22.7 mg, 68%, dr = 99/1; white solid; mp 102 – 103 °C; HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min,  $\lambda$  = 254 nm)  $t_r$  (major) = 12.86 min,  $t_r$  (minor) = 14.60 min, ee = 57%.  $[\alpha]_D^{20} = -22.0$  (c = 0.45, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.92 (d, *J* = 8.3 Hz, 1H), 8.55 (d, *J* = 4.4 Hz, 1H), 8.00 (d, *J* = 7.8 Hz, 1H), 7.71 (td, *J* = 7.7, 1.6 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.30

- 7.25 (d, *J* = 7.1 Hz, 2H), 7.23 - 7.13 (m, 8H), 5.21 (dd, *J* = 8.5, 4.1 Hz, 1H), 4.49 (d, *J* = 4.1 Hz, 1H), 3.21 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 163.8, 149.9, 148.2, 140.3, 138.7, 137.2, 128.3, 128.2, 127.9, 127.34, 127.32, 127.1, 126.1, 122.3, 86.0, 58.8, 57.5.

0.15 500 ₽ 0.10 -9.972 9.354 0.05 0.00 4.00 6.00 8.00 2.00 10.00 12.00 14.00 16.00 18.00 20.00 分钟 Peak Retention Time % Area Height Area 1 9.354 554567 4.34 26396 2 9.972 637584 4.99 26348 12.737 179442 3 5787280 45.31 4 144450 14.296 5794162 45.36 0.10 14.598 AU 0.05 - 10.048 -9.420 0.00 14.00 2.00 4.00 6.00 8.00 12.00 16.00 18.00 10.00 20.00 分钟

HRMS (ESI-TOF) calcd for  $C_{21}H_{21}N_2O_2^+$  ([M]+H<sup>+</sup>) = 333.1603, Found 333.1608.

| Peak | Retention Time | Area    | % Area | Height |
|------|----------------|---------|--------|--------|
| 1    | 9.420          | 29465   | 0.51   | 1403   |
| 2    | 10.048         | 33656   | 0.59   | 1471   |
| 3    | 12.860         | 4447720 | 77.49  | 132225 |

| 4 | 14.598 | 1229126 | 21.41 | 30489 |
|---|--------|---------|-------|-------|
|---|--------|---------|-------|-------|

*trans-N-*(2-(phenylamino)cyclohexyl)picolinamide (3u)

NHPh NHPh NH Reacted in 0.5 mL *p*-xylene for 18h, yield 28.7 mg, 97%; light yellow solid; mp 100 – 101 °C; HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm)  $t_r$  (major) = 9.70 min,  $t_r$  (minor) = 8.16 min, *ee* = 95%.  $[\alpha]^{20}_{D} = -5.6$  (*c* =0.57, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.46 (d, *J* = 3.9 Hz, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.79 (t, *J* = 7.6 Hz, 1H), 7.46 - 7.30 (m, 1H), 7.07

(t, J = 7.4 Hz, 2H), 6.63 – 6.46 (m, 3H), 4.40 (s, 1H), 4.14 – 3.91 (m, 1H), 3.33 – 3.12 (m, 1H), 2.33 (d, J = 12.4 Hz, 1H), 2.21 – 2.07 (m, 1H), 1.89 – 1.69 (m, 2H), 1.56 – 1.31 (m, 3H), 1.30 – 1.17 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 165.0$ , 149.6, 148.0, 147.7, 137.3, 129.2, 126.2, 122.3, 116.5, 112.7, 58.4, 52.8, 32.6, 32.4, 25.0, 24.4.

HRMS (ESI-TOF) calcd for  $C_{18}H_{22}N_3O^+$  ([M]+H<sup>+</sup>) = 296.1763, Found 296.1757.



| Peak | Retention Time | Area     | % Area | Height |
|------|----------------|----------|--------|--------|
| 1    | 8.155          | 407723   | 2.39   | 19356  |
| 2    | 9.700          | 16678054 | 97.61  | 682750 |

#### *N*-((1*R*,2*R*)-2-hydroxycyclohexyl)picolinamide (3v, 92 % *ee*)

Reacted in 0.2 mL *p*-xylene for 118h, yield 11.0 mg, 50 %; white solid; mp 116 – 117 °C; HPLC (Chiralcel AS-H, hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min,  $\lambda$  = 254 nm)  $t_r$  (major) = 9.47 min,  $t_r$  (minor) = 6.50 min, ee = 92%. [ $\alpha$ ]<sup>20</sup><sub>D</sub> = + 1.9 (c = 0.22, in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.53 (d, *J* = 4.0 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 8.09 (d, *J* = 4.6 Hz, 1H), 7.84 (t, *J* = 7.7 Hz, 1H), 7.50 – 7.36 (m, 1H), 3.96

- 3.79 (m, 1H), 3.72 (s, 1H), 3.58 - 3.45 (m, 1H), 2.16 - 2.04 (m, 2H), 1.76 (s, 2H), 1.49 - 1.28 (m, 4H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ = 165.6, 149.5, 148.0, 137.4, 126.3, 122.5, 75.2, 55.8, 34.3, 31.5, 24.6, 24.1.



HRMS (ESI-TOF) calcd for  $C_{12}H_{16}N_2NaO_2^+$  ([M]+Na<sup>+</sup>) = 243.1109, Found 243.1108.

#### 9. References

<sup>1</sup> (a) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, *Synlett.*, 2005, 2445; (b) D. J. Shang, J. G. Xin, Y. L. Liu, X. Zhou, X. H. Liu and X. M. Feng, *J. Org. Chem.*, 2008, **73**, 630; (c) X. Li, X. H. Liu, Y. Z. Fu, L. j. Wang, L. Zhou and X. M. Feng, *Chem.–Eur. J.*, 2008, **14**, 4796.

### 10. Experimental procedure for the scale-up reaction and

### transformations of the product.



A 50 mL round-bottom flask was charged with Mg(OTf)<sub>2</sub> (0. 5 mmol, 160 mg), L3 (0. 5 mmol, 350 mg) and 1a (5.0 mmol, 1.01g) under N<sub>2</sub> atmosphere. Then, *p*-xylene (25 mL) was added and the mixture was stirred at 35  $\mathbb{C}$  for 20 minutes. Finally, methanol (25.0 mmol, 1.01 mL) were added under stirring at 35  $\mathbb{C}$ . The reaction mixture was stirred at 35  $\mathbb{C}$  for 22 hours. The residue was purified by flash chromatography (Eluent: petroleum ether/AcOEt 2:1) on silica gel to afford the desired product 3a (1.12 g, 96% yield, 90% *ee*). And the optical pure product 3a (57 %

yield, >99% ee) was obtained through single recrystallization.



**3a** (46.8 mg, 0.20 mmol) and sodium iodide (66.0 mg, 0.44 mmol) was dissolved in  $CH_2Cl_2/CH_3CN$  (1:1, 0.2 mL). Silicon tetrachloride (50 uL, 0.44 mmol) was added and heated under reflux for 5 hours. The mixture is then hydrolyzed by adding 10% sodium hydroxide solution (1 mL) and extracted with  $CH_2Cl_2$  (3×5 mL). The solvent was evaporated and the residue was purified by column chromatography (Eluent: ethyl acetate) on silica gel to give product **3v** (40.9 mg, 93% yield, >99% *ee*).

#### *N*-((1*R*,2*R*)-2-hydroxycyclohexyl)picolinamide (3v, > 99% *ee*)





| Peak | Retention Time | Area    | % Area | <b>Height</b> |
|------|----------------|---------|--------|---------------|
| 1    | 6.310          | 6239    | 0.07   | 357           |
| 2    | 9.265          | 8380531 | 99.93  | 283802        |



# 11. Copy of <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra

1d



22.881 22.868 22.868 22.866 22.866 22.867 22.191 22.171 22.171 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.191 22.195 22.191 22.195 22.191 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.195 22.205 22.195 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22







**1e** 

7.898 7.711 7.711 7.691 7.691 7.672 7.296 7.278

#### 2.845 2.841 2.623 2.623 2.623 2.623 2.623 2.623 2.623 2.623 1.926 1.927 1.926 1.927 1.926 1.927 1.529 1.529 1.529 1.529 1.529 1.529 1.529 1.529 1.529 1.529 1.529 1.529 1.529 1.529 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.5277 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527 1.527





1h





1i









S31



3b





3c

#### R 3348 8 3348 8 3348 8 3348 8 3348 8 3348 8 3395 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 003 8 0003 8 0003 8 003





3d





3h





3i





3j





3k

# 8.544 8.534 8.534 8.534 8.534 8.534 8.534 8.534 8.534 8.102 9.71835 7.71835 7.71835 7.71835 7.71835 7.71835 7.71832 7.71832 7.71832 7.71832 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.71409 7.714400 7.71409 7.714400 7.7146 7.71409 7.7146 7.7146 7.714400 7.





**3**1







S41







S43





3q









3t

#### 8.930 8.554 8.554 8.554 8.554 8.554 8.554 8.508 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.7704 7.77004 7.77004 7.7704 7.7704 7.7704 7



-3.209



S48











# **12.** Copy of CD spectra in CH<sub>2</sub>Cl<sub>2</sub>





3a



3k







3v

